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In this paper, we have investigated a scalar particle with position-dependent mass subject to a uniform magnetic �eld and a quantum 
�ux, both coming from the background which is governed by the Kaluza-Klein theory. By modifying the mass term of the scalar 
particle, we insert the Cornell-type potential. In the search for solutions of bound states, we determine the relativistic energy 
pro�le of the system in this background of extra dimension. Particular cases of this system are analyzed and a quantum e�ect can 
be observed: the dependence of the magnetic �eld on the quantum numbers of the solutions.

1. Introduction

In quantum mechanics systems, we consider the mass of the 
particle that is immersed in the system as a constant, for exam-
ple, the e�ective mass of the hydrogen atom problem, the mass 
of the three-dimensional harmonic oscillator, and the mass of 
an electrically charged particle subject to a perpendicular uni-
form magnetic �eld to the plane of motion of the particle 
(Landau quantization) [1]. �ese are classic problems and 
idealized prototypes which provide results that can be approx-
imated with real problems and with large applications. 
However, recently, several studies have emerged with the prop-
osition that e�ective mass can be a function of the position 
[2–16]. �e justi�cation for this change in e�ective mass is 
based on systems where there are several applications, for 
example, semiconductor heterostructures [17], electronic 
properties of the semiconductors [18], quantum wells, wires 
and dots [19–22], quantum liquids [23], and He clusters [24]. 
It is noteworthy that quantum systems where mass is a func-
tion of the position is known in the literature as a position-de-
pendent mass quantum system [25, 26].

Position-dependent mass quantum systems have been 
investigated in the relativistic context, for example, the pionic 
atom [27], in solution of the Dirac equation [28], in 
implications in atomic physics [29], in the quark-antiquark 

interaction [30], in e�ects of external �elds on a two-
dimensional Klein Gordon particle under pseudo-harmonic 
oscillator interaction [31], in noncommutative space [32], in 
the cosmic spacetime [33, 34], in the global monopole 
spacetime [35], in the rotating cosmic string spacetime [36], 
in the spacetime with torsion [25, 26, 37], in possible scenarios 
of Lorentz symmetry violation [38–40], on the Kelin–Gordon 
oscillator [41–44], on the Majorana fermion [45], in the Som-
Raychaudhuri spacetime [46, 47], and in Kaluza-Klein theory 
[48].

�e �rst attempt to explaining the physics interaction 
(gravitation and electromagnetism) in a uni�ed theory has 
been proposed the Kaluza-Klein theory (KKT) [49, 50]. �ey 
established that the electromagnetism can be introduced 
through an extra (compacti�ed) dimension in the spacetime, 
where the spatial dimension becomes �ve-dimensional.

Recently, the KKT has been the background for quantum 
systems research. In the nonrelativistic context, we have stud-
ies in global e�ects due to cosmic defects [51], in Aharonov–
Bohm e�ect for bound states [52] and in Landau levels [53]; 
in the relativistic context, we have studies in Aharonov–Bohm 
e�ect for bound states on the con�nement of a scalar particle 
to a Coulomb-type potential [48], in loop variables for a class 
of spacetimes, in geometric phases in graphene [55], on the 
Klein–Gordon oscillator [56] and in the Dirac �eld [57]. 
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However, one point that has not yet been investigated is the 
interaction between a position-dependent mass scalar �eld 
with a linear potential plus a Coulomb-type potential in an 
environment described by the KKT theory.

In this paper, we investigate the e�ects of central potentials 
on a position-dependent mass scalar �eld in a spacetime of 
(1 + 4) dimensions described by KKT, where we chose a 
particular case for the gauge �eld with extra dimension, which 
characterizes the relativistic Landau gauge [33, 26] and 
describes the presence of a magnetic quantum �ux along the 
�-axis providing an e�ect analogous to the Aharanov–Bohm 
e�ect for bound states [58, 59]. Given this, we solve the Klein–
Gordon equation in this background, where, analytically, we 
obtain solutions of bound states for a scalar �eld subject to a 
linear central potential plus a Coulomb-type potential, that is, 
a Cornell-type potential. We then detail these solutions of 
bound states for only the linear potential and only the 
Coulomb-type potential, where in all cases the in�uence of 
the gauge con�guration from the extra dimension on the 
relativistic energy levels of the system is perceptible.

�e structure of this paper is as follows: in  Section 2, we 
investigate a position-dependent mass scalar �eld in a back-
ground described by KKT, where, in our �rst analysis Section 
2.1, we describe the relativistic quantum dynamics of this 
position-dependent mass system subject to Cornell-type inter-
action, of which, analytically, we determine its energy pro�le. 
�en, we analyze particular cases of this system, Section 2.2 
where we consider only the Coulomb-type central potential 
and Section 2.3 only the central linear potential; in Section 3, 
we present our conclusions.

2. Effects of Central Potentials on a Position-
Dependent Mass System in a Kaluza-Klein 
Theory

�e main idea behind the KKT [49, 50] is that the spacetime 
is �ve-dimensional with the purpose of unifying electromag-
netism and gravitation. In this way, we can work with general 
relativity in �ve dimensions. �e information about the elec-
tromagnetism is given by introducing a gauge �eld ��(�) in 
the line element of the spacetime as [48, 53] (� = ℏ = 1) :

where � = (�2 + �2)1/2 is radial coordinate, 0 ≤ � ≤ 2�, −∞ < � < ∞, � is the Kaluza constant [51], and � is the extra 
dimension. We are interested in investigating a massive scalar 
�eld of position-dependent mass subject to a uniform 
magnetic �eld and under the Aharonov-Bohm e�ect for 
bound states [58, 59]. �en, based on Refs. [48, 56], we can 
introduce a uniform magnetic �eld �0 and a quantum �ux 
� through the line element of the Minkowski spacetime (1) 
in the form

(1)��2 = −��2 + ��2 + �2��2 + ��2 + [�w + ���(�)���]
2,

(2)

��2 = −��2 + ��2 + �2��2 + ��2 + [�w + (�0�
2

2 +
�
2�)��]

2

,

where the gauge �eld is given by the component

which gives rise to a uniform magnetic �eld �→� = ∇ × �→� = �−1�0�̂ [53], where �̂ is unitary vector in the  
�-direction. �erefore, for a position-dependent mass scalar 
�eld in this �ve-dimensional spacetime, the Kelin–Gordon 
equation is written in the form [48]:

where ���, with �, � = 0, 1, 2, 3, 4, is inverse metric tensor, �
is rest mass of the scalar �eld and �(→�) = �(�) is scalar central 
potential. In this way, from Equations (2) and (4) becomes

which represents the interaction of a position-dependent mass 
scalar �eld with a uniform magnetic �eld in the �ve-dimen-
sional spacetime described by a KKT.

2.1. Cornell-Type Potential. �e Cornell potential, which 
consists of a linear potential plus a Coulomb potential, is a 
particular case of the quark-antiquark interaction, which has 
one more harmonic type term [30]. �e Coulomb potential 
is responsible by the interaction at small distances and the 
linear potential leads to the con�nement. Recently, the Cornell 
potential has been studied in the ground state of three quarks 
[60]. However, this type of potential is worked on spherical 
symmetry; in cylindrical symmetry, which is our case, this 
type of potential is known as Cornell-type potential [46]. �is 
type of interaction has been studied in Refs. [33, 36, 37, 40, 
42, 44, 46]. Given this, let us consider the central potential

where � and � are constants. In addition, the solution to 
Equation (5) can be written in the form

where � = 0,±1,±2, . . ., −∞ < � < ∞, � is a constant and �(�)
is a radial wave function. By substituting Equations (6) and 
(7) into  Equation (5), we obtain

where we de�ne the parameters

(3)�� =
�0�2
2� +

�
2��,

(4)��(���√−���)� − √−�[� + �(�→� )]2� = 0,

(5)

− �
2�
��2
+ �
2�
��2
+ 1�
��
�� +
1
�2
�2�
��2
− ( �
��2
− �0)
�2�
���w +

�2�
�w2
+ �
2�
��2

+ �
2

4�2�2
�2�
�w2
− �0�2�
�2�
�w2
+ �
2
0�2
4
�2�
�w2
− [� + 
(�)]2 = 0,

(6)�(�) = �� + ��,

(7)�(�, �, �,w, �) = �−�(E �−��−��−�w)�(�),

(8)
�2�
��2
+ 1�
��
�� −
�2

�2
� − 2��� � − 2���� − �

2�2� + �� = 0,

(9)

� = E
2 − �2 − �2 − �2 − ��(� − ��2� ) − 2��;

�2 = (� − ��2� )
2
; �2 = �2 + �

2�2
4 ,
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with � = ��0/�.
Let us de�ne � = √��, then Equation (8) becomes

where

�e radial wave function �(�) must be well behaved at � → 0
and at � → ∞. �en, the analysis of the asymptotic behavior 
of  Equation (10) at � → 0 and at � → ∞ gives us the following 
solution in terms of an unknown function �(�) [33, 35]:

�en, by substituting Equation (12) into Equation (10), we have

which is known in the literature as bicon�uent Heun equation 
[33, 61] and �(�) is a bicon�uent Heun function: 
�(�) = ��(2|�|, �, �/� + �2/4, 2�; �).

�e bicon�uent Heun equation has two singular points, 
where one is the origin and the other is in�nity [33]. �e origin 
is a regular singular point. Given this, Equation (13) has at 
least one solution around the origin given by the power series 
[62]:

By substituting  Equation (14) into  Equation (13), we obtain 
the recurrence relation of the bicon�uent Heun series

and the coe§cients

(10)
�2�
��2
+ 1�
��
�� −
�2

�2
� − �� � − ��� − �

2� + ��� = 0,

(11)� = 2��√�
; � = 2��
�3/2
.

(12)�(�) = �|�|�−(1/2)�(�+�)�(�).

(13)

�2�
��2
+ [2|�| + 1� − 2� − �]

��
��

+ [ �� +
�2
4 − 2 − 2|�| −

�
2� (2|�| + 1) −



� ]� = 0,

(14)�(�) = ∞∑
�=0
����.

(15)��+2 =
[� + �(� + 1)]��+1 − (� − 2�)��
(� + 2)(� + 2 + 2|�|) ,

(16)

�1 =
�
1 + 2|�| ; �2 =

(� + �)�1 − ��0
2(2 + 2|�|) =

�0
4(1 + |�|)[

(� + �)�
1 + 2|�| − �],

where we de�ne the new parameters

As we are interested in solutions of bound states, therefore, to 
obtain a �nite degree polynomial for the bicon�uent Heun 
series, we must truncate the power series, and this is possible 
through the following conditions [33, 26]:

where � = 1, 2, 3, . . ., represents the radial modes. In order to 
analyze these conditions, we must assign values to �. In this 
case, consider � = 1, that is, the radial mode corresponding to 
the lowest energy state of the system. �erefore, the condition 
��+1 = 0 produces �2 = 0, which from Equation (16) we obtain

where we choose the frequency (or the magnetic �eld) as the 
parameter of adjustment of the condition ��+1 = 0, not only 
for the radial mode � = 1, but for any value of �. In addition, 
as the parameter � depends on the magnetic �eld as estab-
lished in Equation (20), where we have simpli�ed our notation 
by labelling:

It is noteworthy that a third-degree algebraic equation has at 
least one real solution and it is exactly this solution that gives 
us the allowed values of the magnetic �eld for the lowest state 
of the system, which we do not write because its expression is 
very long. We can note, from Equation (19) that the possible 
values of the magnetic �eld depend on the quantum numbers 
of the system and the parameters associated with the back-
ground governed by a KKT. In addition, for each relativistic 
energy level, we have a di�erent relation of the magnetic �eld 
to the parameters of the gauge �eld given by KKT, of the 
parameters associated to the Cornell-type potential and the 
quantum numbers of the system {�, �}. For this reason, we have 
labelled the parameters �, � and �0 in Equations (19) and (20).

For our analysis to become complete we must take � = 1
in the condition � = 2�, that is, � = 2, which gives us the 
expression

(17)� = �� +
�2
4 − 2 − 2|�|; � =

�
2 (2|�| + 1) + �.

(18)��+1 = 0; � = 2�,

(19)
�3�,1 −
2�2�2
1 + 2|�|�

2
�,1 −
4���2(1 + |�|)
1 + 2|�| ��,1 −

�2�2(2|�| + 3)
2 = 0,

(20)��,1 =
2
�
√��,1 − �2 ↔ ��,10 = 2� √��,1 − �2.

�en, by substituting the real solution of Equation (19) into
Equation (21) it is possible to obtain the allowed values of the 
relativistic energy for the radial mode � = 1 of a position depend-
ent mass scalar particle in a background governed by the metric 
given in Equation (2). In contrast to Refs. [51, 56], we can see 
that the lowest energy state de�ned by the real solution of algebraic 
equation given in Equation (19) plus the expression given 

(21)
E�,�,1 = ±√�2 + �2 + �2 + 2�� + ���,1(� −

��
2� ) + 2��,1(2 +

��������
� − ��2�
��������
) − �

2�2

�2�,1
.

in Equation (21) is de�ned by the radial mode � = 1, instead of 
� = 0. �is e�ect arises due to the presence of the Cornell-type 
central potential in the system. Note that it is necessary physically 
that the lowest energy state is � = 1 and not � = 0, otherwise the 
opposite would imply that �1 = 0, which requires that the rest mass 
of the scalar particle be zero that is contrary to the proposal of this 
investigation.
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and in pseudo-harmonic interactions [71, 72]. �erefore, in 
this particular case, Equation (19) is reduced and gives us the 
allowed values of the magnetic �eld for the radial mode 
� = 1:

We can note that the allowed values of the magnetic �eld 
are connected by the quantum �ux � through the shiª in  
the eigenvalues of the angular momentum, ���� = (� − ��/2�), 
that is, an e�ect analogous to the Aharonov-Bohm e�ect for 
bound states [58, 59], making them a periodic function 
with periodicity �0 = ±(2�/�)�, with � = 0, 1, 2, . . ., that is, 
��,10 (� + �0) = ��∓�,10 (�).

 Equation (21) is also reduced as follows:

�en, by substituting Equation (23) into Equation (24), we 
obtain

(23)

��,1 = 4�2�[1 + 2√(� − ��/2�)2 + �2] ↔
��,10 = 4�2�2�[1 + 2√(� − ��/2�)2 + �2] .

(24)

E
2
�,�,1 = �2 + �2 + �2 + ���,1[[2 + √(� − ��2� )

2 + �2 + � − ��2� ]]

We can specify our analysis through the Cornell-type poten-
tial, that is, by taking the parameters � → 0 or � → 0, imposing 
that interaction be produced only by the linear potential or the 
Coulomb-type potential, respectively. We can observe that if we 
take the limit � → 0 and � → 0 in Equation (6), hence, we recover 
the Kelin–Gordon equation without position-dependent mass 
in a KKT background de�ned by the gauge con�guration given 
in Equation (3). �erefore, we would have in Equation (5) the 
Kelin–Gordon equation for the relativistic Landau quantization 
and a quantum �ux. In this case, the solution to the radial wave 
equation (8) would be given in terms of the con�uent hyperge-
ometric function. �is analysis has been made in Refs. [51, 56], 
where the magnetic �eld does not have restricted values.

2.2. Coulomb-Type Potential. In this particular case, it 
means that � → 0. �us, the scalar central potential given in  
Equation (6) is rewritten as:

Equation(22) represents a Coulomb-type potential. �is type 
of potential has been studied in propagation of gravitational 
waves [63] and quark models [64]. �ere are also investiga-
tions of the Coulomb-type potential in condensed matter 
systems, an atom with electric quadrupole moment [65] and 
magnetic quadrupole moment [66], neutral particle with per-
manent magnetic dipole moment [67], in molecules [68–70] 

(22)�(�) = �� .

Equation (25) corresponds to the allowed values of relativistic 
energy for the radial mode � = 1 of a position-dependent mass 
particle subject to the Coulomb-type potential in a possible 
scenario described by a KKT. By comparing the Equation (25) 
with the result obtained in Refs. [51, 56], we can note that the 
presence of the Coulomb-type potential modi�es the energy 
pro�le of the system. �is modi�cation can be explained by 
the radical breaking of degeneracy of the Landau levels and 
by the representation of the lowest energy state that is de�ned 
by the radial mode � = 1, instead of � = 0. By comparing 
Equation (25) with the result obtained in Ref. [48], we can 
also assume that the presence of a uniform magnetic �eld 
modi�es the energy pro�le of the system. In addition, the 
allowed values of relativistic energy (25) are in�uenced by the 
quantum �ux � through the shiª in the eigenvalues of the 
angular momentum ���� = (� − ��/2�), that is, an e�ect 
analogous to the Aharonov-Bohm e�ect for bound states [58, 
59], making them a periodic function with periodicity 
�0 = ±(2�/�)�, with � = 0, 1, 2, . . ., that is, 
E�,1(� + �0) = E�∓�,1(�). �is latter characteristic may be of 
interest in persistent current calculations [25, 48, 73]. �e 
result given in Equation (25), less than the term �2 that stems 
from the KKT, is analogous to the result obtained in Ref. [37]. 
However, it is noteworthy that, in the latter case, the Landau 

(25)E�,�,1 = ±√�2+ �2 + �2 + 4�2�2[1 + 2√(� − ��/2
)2 + �2](2 + √(� − ��2
 )
2 + �2 + � − ��2
).

gauge is inserted into the Kelin–Gordon equation by the 
minimum coupling.

2.3. Linear Potential. Now, let us consider the particular case 
� → 0. �us, the scalar central potential given in Equation (6) 
is rewritten as:

Equation (22) represents a linear central potential. �ere are 
studies involving the linear potential in atomic and molecular 
physics [74xref>–78], quantum bouncer [79, 80], motion of a 
quantum particle in a uniform force �eld [1, 81] and in rela-
tivistic quantum systems [33, 35, 25, 26, 40, 43, 45, 47]. 
�erefore, in this particular case,  Equation (19) is reduced 
and gives us the allowed values of the magnetic �eld for the 
radial mode � = 1:

Again, we can observe that the allowed values of the mag-
netic field for the radial mode � = 1 (27)  are influenced 
by the quantum flux � through the shift in the eigenvalues 
of the angular momentum ���� = (� − ��/2�), that is, an 

(26)�(�) = ��.

(27)��,10 =
2
�
√[�
2�2
2 (2
��������
� − ��2�
��������
+ 3)]

2/3

− �2.
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also note that the presence of the Cornell-type potential breaks 
the degeneracy of the Landau levels. In addition, a quantum 
e�ect characterized by the dependence of the magnetic �eld 
on the quantum numbers of the system is observed, where we 
have shown that their possible values are determined by a 
third-degree algebraic equation.

We have particularized our system through the parameters 
that characterize the linear term and the Coulomb type term of 
the Cornell-type potential, where we consider the absence of one 
or other. First, we consider the absence of the linear central 
potential, where we determine the allowed values of the magnetic 
�eld and the relativistic energy for the radial mode � = 1. We can 
observe that both are in�uenced by the quantum �ux through a 
shiª in the angular momentum eigenvalues, producing an anal-
ogous e�ect to the Aharonov-Bohm e�ect for bound states, 
making them as periodic functions of the quantum �ux. In addi-
tion, we can also note that the presence of the linear central 
potential breaks the degeneracy of the relativistic Landau levels. 
�en, we consider the absence of the linear central potential and 
analyze its energy pro�le, where, except for the expressions of 
the allowed values of the magnetic �eld and the relativistic 
energy for the lower energy state, which are totally modi�ed, the 
characteristics of the previous case are analogous.
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) − �

2�2

�2�,1
.
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�������� + 3)]

2/3 − �2
+ 2(2 + ��������� − ��2�

��������) × [�
2�22 (2
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