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In the standard model, the permutation symmetry among the three generations of fundamental fermions is usually regarded to be
broken by the Higgs couplings. It is found that the symmetry is restored if we include the mass matrix parameters as physical
variables which transform appropriately under the symmetry operation. Known relations between these variables, such as the
renormalization group equations, as well as formulas for neutrino oscillations (in vacuum and in matter), are shown to be
covariant tensor equations under the permutation symmetry group.

1. Introduction

One of the long-standing puzzles in the standard model
(SM) is the existence of three generations of fermions
which behave identically under the gauge interactions.
The resulting exchange symmetry will be dubbed as the g-
permutation symmetry in this paper. This symmetry is
commonly regarded as broken by the Higgs coupling
through its vacuum expectation value (VEV), resulting in
four mass matrices and a plethora of physical parameters,
viz., the fermion masses and the mixing matrices for quarks
(V) and for neutrinos (Vpyys)- If these parameters are
considered as fixed entities, then they would seem to be a
collection of arbitrary numbers, which do not transform
under the symmetry operation, and the g-permutation
would just be broken. However, there are at least three clas-
ses of physical phenomena which suggest an alternative
interpretation. (1) Neutrino oscillation in vacuum: here, as
a neutrino beam travels, the mixing parameters evolve
along and are not static. (2) Neutrino oscillation in matter
(see, e.g., [1-3]): when neutrinos propagate in a medium,
an induced mass is obtained which changes the mixing
pattern. (3) The renormalization group equations (RGE)
for quarks (see, e.g., [4-8]) and for neutrinos (see, e.g., [9,
10]): a change in energy scales entails a new set of param-
eters and are governed by the RGE. For cases (2) and (3),

one could say that the physical “vacuum” itself is evolving.
In all of these examples, conceptually, it is more natural to
regard the mass matrix parameters as changeable physical
variables. And, when one considers g-permutation, these
variables should also transform under the symmetry opera-
tions. Once we do that, it becomes clear that they have
natural assignments as tensors under S;, the permutation
group of three objects. With this interpretation, one can
show that the g-permutation symmetry, now operating on
both the fundamental fermions and the mass matrix
parameters, is restored. In this connection, it should be
noted that, in SM, the mass parameters are, apart from a
common Higgs VEV, identified with the “coupling
constants” of the Higgs to the fermions. The permutation
operation, (y,,m;) — (y;,m;), is not unlike the charge
conjugation transformation, (v, e) — (y¢,—e). Thus, it is
reasonable to include masses in a permutation operation.
In the literature, there are numerous relations amongst
the mass matrix parameters associated with neutrino oscilla-
tions and RGE of quarks and neutrinos (see, e.g., [8, 10, 11],
and the references therein). These are obtained by direct and
explicit calculations. When written in appropriate variables,
hints of a permutation symmetry seem ubiquitous. In this
paper, we present a general analysis of these equations. It is
found that the SM has a g-permutation symmetry group S,

(1) x S5(d) x S5(1) x S;(v) (or [S;]*), where the factors denote
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permutations in sectors of the u- and d-type quarks, the
charged leptons and the neutrinos, respectively. Also, the rela-
tions mentioned above are all covariant tensor equations
under [S;]*, just like the tensor equations in theories with rota-
tional symmetry. It should be emphasized that, to establish a
symmetry for a given Lagrangian, it is necessary to assign
appropriate transformation properties to the variables contain
therein. The symmetry [S,]* would be broken if one assigns
the mass matrix variables as singlets under its operation.

Our considerations are similar to those of another exam-
ple of symmetry restoration in a familiar setting. Consider

the case of an atom in an external B-field. The interaction

term is proportional to B - o. If we treat B as a fixed external
field, then this term breaks the rotational symmetry. On the

other hand, we can include B as a dynamical variable in the
atomic system, transforming as a vector, then rotational
symmetry is restored. The transformation of the mass matrix
parameters under g-permutation is analogous to the rotation

of the B-field.

We add that the Particle Data Group (PDG) parame-
trization [12] is ill-equipped to exploit the g-permutation
symmetry. Besides being rephasing dependent, the PDG
variables 0,s, despite their appearances, have very compli-
cated behaviour under g-permutation, making it difficult
to uncover possible symmetries in an equation.

2. Tensor Analysis of S;

We turn now to an analysis of the representation of the g-
permutation group, which is based on S;. The elements of
S; operate on three objects, say B;, i =1,2,3. For our pur-
poses, it suffices to concentrate on the exchange operators:
X, B« B,B B, i#j#k (1)

To borrow the terminology of O(3), we will call B; a P-
vector or B; ~ 3. The three-dimensional representation of S;
, however, is reducible (} B; = invariant). Nevertheless, it is
convenient to use the reducible 3 and develop a tensor
analysis for S;, similar to that for O(3). This is useful
because, as it turns out, the physical variables behave like
P-tensors under permutations, and relations between them
are covariant P-tensor equations.

To begin, we note that, different from the linear algebra of
O(3), simple functions of B; behave like B; under permuta-
tions and are also P-vectors, e.g.,

Y_ (1 1 1Y,
B) \B/B, By ”
(sin B;) = (sin By, sin B,, sin B;) ~ 3, )
(sin’B;) = (sin’B,, sin’B,, sin’B;) ~ 3.
Next, out of two P-vectors, B; and C;, we can construct
rank-two P-tensors such as f(B;) +f(C;) or f(B,)f(C)),

where f is some regular function. The simplest of these
tensors are B; + C; or B,C;. Thus, the product B;C; can be
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decomposed into three P-vectors: (1) diagonal: (B,C,, B,
C,, B;C;) =D;; (no sum), (2) symmetrical: S;;=B,C; + B;
Ci=S;, i#j, and (3) antisymmetrical: A;; =B,C; - B,C;=
—Aj;, i# j. Their transformation properties may be further

elucidated by the use of invariant tensors in S;. In addi-
tion to the familiar O(3) tensors §;; and e, in S; there
is a third, E;; which is defined as

l)
Eijk = 0
(3)

This may be dubbed as the “symmetrical Levi-Civita
symbol.” Using these, we have the following:

i# j # k, even under exchange of indices,

any repeated index.

8,B,C; = ZD"" ~1,P —scalar;
7

E;jSjx ~ S; ~ 3, P-vector ; (4)

eijkAjk ~ Ai ~3, pseudo-P-vector.

A; is a pseudo-P-vector since under the exchange

operator,

X Aje— —Aj, A — A (5)
Thus, the rank-two P-tensor B;C; is decomposed into

three 3’s under S;, two of them are P-vectors, while the
third is a pseudo-P-vector.
Other useful constructions are

F=E;;B,C;Dy ~1,P-scalar(X,; : F—+F), (6)

G = ¢;B,C;Dy ~ 1, pseudo-P-scalar (X;; : G—~G).
(7)

In addition, for odd or even functions of A;;, e.g.,
sin A;; ~ 3,sin°A;; ~ 3. (8)

In summary, the tensor analysis of S; has a lot in
common with that of O(3), though with two important
differences: (1) the existence of the symmetric Levi-Civita
symbol E;;; (2) the linear tensor algebra is generalized to
include functions of tensors for S;. Once these two differ-
ences are properly managed, the implementation of the S;
symmetry amounts to demanding that all relations are
covariant tensor equations, just like the familiar equations
which are covariant under rotation.

3. The Broken g-Permutation Symmetry and
Its Restoration

We will now turn to the g-permutation symmetry in the SM.
To accommodate neutrino oscillations which are central to
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the consideration in this paper, the SM will be augmented by
the inclusion of Dirac neutrino mass term. This minimal
extension of the SM brings the leptonic sector on a par with
the quark sector and will facilitate the ensuing discussions.
The interesting possibility of neutrinos being Majorana
particles will not be dealt with here but could hopefully be
the topic of a future investigation.

In order not to clutter our notations, we will first concen-
trate our discussion to the leptonic sector of the SM. The
parallel case of the quark sector will be brought in when
appropriate. Also, to study the effect of g-permutation, one
need only to focus on the part of the SM Lagrangian which
contains the fermion-Higgs interaction, after it has acquired
its VEV. The result, after diagonalization of the mass matrix,
can be represented by the following terms in the Lagrangian
(see, e.g., Ref. [13]), schematically,

201~ (40} 20e) - (14 2) (s s v )
],u, ~ Z %Vaﬂ//i-

©)

Here, to highlight the part of the lepton-Higgs &£
which is relevant for our discussion, we omit the gauge
coupling constants and proper Dirac matrices in Z(, H).
Also, a = (e, y, T), y, refers to v;, m, and m; are their masses,
W, refers to the W-boson, h denotes the Higgs field and v is
its VEV, and V ; is an element of the PMNS matrix.

We may now study the action of g-permutation on
Z(I,H). If the permutation only acts on the fermions

. 0 0
(with X;; = X[, X5 = X\})),

Xy s v (v v,
10
aff v/a V/ﬁ’ V/y v/y >

then clearly (I, H) is not invariant and the g-permutation
symmetry is broken. However, we may include (m,, m;, V ;)
as dynamical variables which also transform under the action
of X;; and X,z. The structure of Z(I, H) suggests that they

transform like P-tensor. So now we have

Xij ey smpe—m Ve e Vo,

(11)
thﬁ : Ww(—)Wﬁ;ma(_)mﬁ;sziMVﬁi'

With these assignments and referring to the tensor analy-
sis in Section 2, it is evident that #(I, H) is invariant:

(Xijp Xop): Z(LH) «— Z(L H). (12)

The symmetry group here is S;(I) x S;(v). Exactly the
same argument can be given for the quark sector, with
the replacement of (e, y,7) by (u,¢,t) and (v, v,,v;) by
(d,s,b). We conclude that the SM has a g-permutation

symmetry group, given by S;(u) x S;(d) x S;(I) x S;(v) =
[S;]* that operate not only on the fundamental fermions
but also on the masses and mixing parameters, which
transform like P-vectors, as indicated by the indices they
carry. A more concrete interpretation of Equation (12) is
to regard Z(I,H) as an effective Lagrangian. It is used
as a starting point for calculations in flavor physics. The
results thus obtained are expressed in terms of the physical
parameters contained in Z(I,H). Equation (12) then
implies that these results must exhibit the [S;]* symmetry.
Some examples are cited in Section 5.

The existence of the symmetry group [S;]* can also be
established from another approach. The diagonalization of
the Yukawa coupling (~ ¥, Yy, H),

Y =ul Ypup, (13)

and the absorption of (u;,uy) into the wave functions
yield the Lagrangian in the mass eigenstate basis. This
procedure also constrains additional U(3) transformations
on y, so that the global symmetry (U(3)x U(3) X .-+ ) of
the gauge interaction Lagrangian is broken down to
Up(1) x U, (1), as stated in the literature. However, the
solution to the diagonalization of a 3 x3 matrix has a
six (3!)-fold symmetry,

Y, =X"Y' X, (14)

where X is a 3 x 3 permutation matrix, e.g.,

010
1 0 0

Xy, = (15)
0 0 1

The replacement of (u;, ug) by (Xu;, Xug) corresponds
to an operation of S;, which survives the diagonalization
process, and is a symmetry of the Lagrangian. Thus, the SM
(with Dirac neutrinos) is found to have the global symmetry
group [S;]* x Ug(1) x U, (1). The action of [S,]* is given by
Equation (11).

We now pause to consider the effect of rephasing invari-
ance, which was glossed over earlier. With rephasing, the
transformation of V; can acquire a phase:

Xjj: Vi — (phase) - V. (16)
This means that only rephasing invariant combinations

of a set of V ;s can have definite transformation laws under

exchange. Two well-known combinations are W, = |V ,|*
and the Jarlskog invariant [14], defined by

Im (vaﬁjvg;jvgi) =1 eapy i (17)
yk

Thus, for physical variables, the transformation laws



under exchange are (for the lepton sector)

Xij W, e— Wa]-;]<—) -7, (18)

Xaﬁ : Wm-<—>Wﬁi;]<—>—].

Note that, in the terminology of Section 2, J is a
pseudo-P-scalar. Also, for the quark sector, the corre-

sponding invariant, @, is also a pseudo-P-scalar:

(Xl(]{i)’Xl(:g): J@ s @, (19)

While the transformation of W, is not surprising,
J——] under any exchange is a remarkable property.

Another interesting aspect of rephasing invariance is
that one can take out an overall phase from V and
demand, without loss of generality, that det V = +1, while
restricting further rephasing by det P=+1, where P is a
diagonal phase matrix [15]. Under this condition, there are
rephasing invariants:

I = ViV Ve =Re 7] =i, (20)

where o # S # v, i # j # k. This yields an alternative definition
for J:

J=~1Im (V,VgV,),det V=+1. (21)

Since det V changes sign under both V——V and the
exchange of rows or columns, to keep det V' = +1 under the
exchange operation, we have now

Xijj: Vo= Vyjand Ve =V,
(22)
Xop i Vo= VgandV e— -V,

Note that for V——V, the invariants | and W, are
unaffected. The variables (x;, y;) [15], which was defined in

terms of Re [I" f}fy], now have the transformation laws:

(Xij orXaﬁ): (X1, %5 %3) <= =(V Vi Vo) (23)

where (a,b,c) is a permutation of (1,2,3). This implies,
in particular, that Yx;«—-Yy; and x;x,x3¢—=y,y,;.
With J? =x,%,%; — ,7,¥;, we have J> — J?, consistent
with Je——].

In summary, the SM has the symmetry group [S,]*
when the physical mass matrix parameters behave as
tensors. This set includes the fermion masses, the mixing
matrices [W(M] and [WPMNS)] and two signs for the
Jarlskog invariants, J = +v/J?(J? = function of [W]), in the
quark and lepton sectors, respectively. The transformation
laws are given in Equations (11), (18), and (22).

Advances in High Energy Physics

4. Composite Tensors

To apply the g-permutation symmetry to physical processes,
it turns out that, besides the basic tensors, certain combina-
tions make frequent appearances. We now present a brief
discussion of their properties.

(a) For the masses m, (and similarly for m;), we have a
scalar, }'m,, and an antisymmetric tensor Amg, =

mg — m,,, which becomes a pseudo-P-vector:
Am

"= E6043],Am,,3y ~3. (24)

This combination will
applications

appear repeatedly in

(b) Out of two W s, we have
(i) We =Wy or (172)e; (W, — W), which
transforms as a 3 in S;(/) and a 3 in S;(v)

(i) (1/2)eqp i Wpi W =w,;. Here, w, is an
element of the cofactor matrix of W, as defined
before [15]. Sums of its rows and columns
are given by Y w, =Y w, =det W. It trans-
forms as the product of pseudo-P-vectors
3(I) x 3(v), or 3(u) x 3(d) in the quark sector.
For specific forms of the [W] matrix, with (a)
[W]=1I and (b)[W]=[D,]/3 (maximal mixing,
[Dy],; =1, for all a and i), we have (a) [w]=
I and (b) [w] = 0. These properties will be use-
ful later

(iii) (1/2)[(1/2)E s, B W g; Wi = Woi] = Ay This
combination was also used before [8, 10, 11]. It
played an essential role in many of the formulas
in neutrino oscillation and in RGE. The
transformation properties of A,; are exactly like
W ;- What sets them apart is its structure for
specific forms of the [W] matrix. Of particular
interests are: (i) if W,; =0, then Ag; =0, a# 5,
i#j, and (ii) if W, =1, then except possibly
for A, all other Ag =0. (iii) If [W]=[D]/
3, for maximal mixing, then [A] = —[D,]/18. If |
W] =[I], then [A] =[0]. To prove (i), note that
W,; =0 implies V,;=0. One can then use the
alternative definition Ag;=Re [V V5V, V5]
to deduce Ag;=0. As for (ii), if W,;=1, then
W= Wp =0, a#f,i#j. Using (i), (ii) follows

ot

(iv) Wo;Wo or EyW,, Wy This is yet another
composite which transforms like W ;. It is, how-
ever, not independent because of the relation:

Nevertheless, it is sometimes used for simplicity
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(c) We can also construct

1
31 CapyCii

ka- Wﬁ]Wyk =det W. (26)
Under X 4 or X;;, det We——det W, so that det W

is a pseudo-P-scalar. So far, no practical use has been
found for det W, nor for other higher rank tensors
out of the basic ones

5. Applications

We may now turn to detailed analyses of neutrino oscilla-
tions and RGE, in which one can arrange to vary certain
parameters to induce changes to all the parameters as a set.
The resulting equations will now be written in the tensor
notation. This new look offers fresh insights into their
structure, making them more understandable. In the
following, we will study these issues case by case.

5.1. Neutrino Oscillation in Vacuum. When a neutrino beam
travels down a path, the neutrino mass eigenstates pick up a
phase, exp (2i¢,), ¢, = m?L/AE, which then causes change of
the mixing matrix. This effect depends only on the phase
difference, A¢,; = ¢, — ¢;. In the tensor terminology, neutrino

oscillation is driven by the pseudo-P-vector
-1 (LY

The probability P(v, —> vg) is well known, and, in a

notation that is adoptable for our use, given by Equations
(58) and (59) of Ref. [11],

P(vy,—v,) = 1= 4(W, W, sin’®@,, + W W5 sin’®y,
+ W, W sin’@y),
P(vy—vg) = —4[A,; sin’ @, + A, sin* @y,
+ A, sin*@;,] + 2J[sin 20,
+8in 20,5 +sin 205,], a# f#y.
(28)
To transcribe these equations, we start with P(v, — vg),
a # f3. In tensor notation it reads

P(vy — vg) = —4E,5,0,;A,; sin’®; + 2] (ZsinZ@,) .

(29)

Thus, first of all, P(v, — v;) is a P-scalar under S;(v),
which is reasonable. This is achieved by combining A ,; with
sin’®;(~ 3) and J(~ 1) with Y ;sin2®; (also ~ 1). Note also
that P(v, — v;) = 0if [W] = [I],and [A] is the unique matrix
(not [W] or [w]) which also vanishes if [W] = [I]. The formula

for P(v, — v4) shows that it consists of a symmetric
part, ~S,s, and an antisymmetric part, ~J ~ 1. The anti-
symmetric part is CP and T violating. With J being a
pseudo-P-scalar, we can apply X, ' repeatedly and obtain

P(vy—vg) =P(vg—>v,) =P(v

y ™ Va)

(30)
= _P(Vﬁ — \)a) =

which is a well-known result. It should also be noted that,
in the quark sector, the CP-measure, J - HAmiﬁ . HAmfj, is
a P-scalar under S;(u) x S;(d), again a reasonable require-
ment for general CP violations.

Finally, the probability P(v, — v,) can be obtained by
unitarity, »gP(v, — vpg) =1, with use of the relation in
Equation (25).

5.2. Neutrino Oscillation in Matter. When neutrinos propa-
gate in a medium rich in electrons, the effective Hamiltonian
acquires an induced mass (6H),, = A. We may regard this as
the first component of a P-vector, (8H 8H5#, SHP) =

(6HP) ¢ ~ 3, which also covers the possibility of “gedanken
media” that are rich in y and/or in 7. The addition of
(OHP); generates changes in the physical variables. These
were expressed [11] as differential equations given by, with
dA = (6HP),, and D, = m?,

dD,

dAl = Wei) (31)
Wel WeZ We3
Al Wa wo w, ]
2dA " D,-D
W‘rl WTZ W‘r3 1 2
Wel WeZ’ _Wel We2’ 0
Arss A3 0 1
" D,-D
A, ~Ayg 0 27
(32)
0, We2 We3’ _WeZ W23
0, A‘rl’ _A‘rl 1
+
0, Ay Ay, D;-D,
Wel WeS’ 0’ Wel We3
_ATZ’ 0, ATZ
~Ap 0, A,




6
d W,.-W..
2 __ ei ej .
In tensor notation, these equations read
D

om; = (8H”) W (34)
OW o = 2E g, e (OHP) Ay (35)

n%ij ‘EADk

SHP) AW

siin jy = O AW (36)

Here, AD;. = (1/2)ey,,(D; = D,,), AW = (1/2)ey,, (Wg
— W¢,). For normal medium, we will take (8HD)£ =(dA, 0,

0). In this case, Equation (35) does not cover §W,;, which
can be obtained by
W, =-8(W,; + W,). (37)

We can now discuss the salient features of these equations.
To begin with, it is clear that they are covariant tensor (includ-
ing P-parity) equations under S;(I) x S;(v). It is noteworthy
that these equations utilize the tensors W,;, A,;, and AW,
(but not w,; or E;; W ;W ), all of which have similar trans-
formation properties. It turns out that there are consistency
conditions which dictate where they belong. For Equation
(34), in the special case [W]=I], it is known that dm? =
(6HP),,, thus ruling out the use of A, since [A]=[0]
for [W]=[I]. For Equation (35), we note that since 0<
W, <1, it is necessary that W, =0 at the boundary
W,;=0 or 1. From the properties listed in Section 2, we
find that A,; =0 if W,; =0 or 1, for 7 # a, j# i. These con-
ditions are exactly met owing to the factor E g, e;, so that
from Equation (35), W, =0 if W ;=0 or 1. Finally, for
Equation (36), there are also two consistency checks. First,
J? is known to have a maximum at [W]=[D,]/3, with
]ﬁm =1/108. Also, ] <0 and J >0 belong to two separate
regimes reachable by discrete transformations, but not by
infinitesimal increments. It follows that we must demand
that 6] =0 for |J|=],, or J=0. This also means that §
J=0if any W, =0 or 1, since these last conditions imply
J=0. To satisfy the requirement at J .., AVVEk is a
possible (with wrong parity?) candidate in Equation (36).
But the second condition, that §J=0 if any W, =0 or
1, cannot be fulfilled by any tensor. Equation (36) solves
this problem (and the P-parity problem) by using In J so
that 8] ~ J[-+--+- ], and 8] =0 if J=0. It is remarkable how
the symmetry argument and the direct calculations rein-
force each other in confirming these equations.

5.3. RGE for Quarks and Neutrinos. In this section, we will
deal exclusively with the RGE for quarks. The RGE for Dirac
neutrinos are almost identical (see Equations (26) and (32) in
Ref. [10]) but are simpler since terms proportional to
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neutrino masses can be dropped. It is thus sufficient to
consider quarks only.

One loop RGE for quark mass matrices has been studied
for a long time. When written in the matrix form, they are
given by [4-6]

DM, = a,M,, + bM> + c¢{M,, M}, (38)

DM, =a;My+bM3 + c{M,, M,}. (39)

Here, M, =Y, Y! (M, =Y,Y}), Y, (Y,) is the Yukawa
coupling matrix for the u-type (d-type) quarks; 2= (1/16
n%)(d/dt), t=1n (u/Myy), p is the energy scale, and My, is
the W boson mass. The model dependence of the RGE is
contained in the constants (a,, a;, b, c).

Although the RGE for the mass matrices are simple, they
are not directly useful since the matrices contain a large
number of unphysical degrees of freedom. One needs to
extract the RGE for the physical parameters. This was carried
out, but usually in variables which mask the underlying sym-
metry. The easiest for our adaptation are the equations
obtained in Ref. [7, 8]. These equations describe the varia-
tions of the mass ratios, the mixing parameters, and J.

We now write down the tensor form of these equations
and then justify them by comparing with the established
ones which were obtained by direct and explicit calcula-
tions. In the following, as before, the indices (a, 3, y) and
(i, j, k) refer to (u, ¢, t) and (d, s, b), respectively. We define
the mass ratios,

m?> -
Rtxﬁ = m—g, ln Ra = —eaﬁy ln Rﬁy’
! (40)
T = e
1= m—?, nf; = Ee,jk nrj.
Also, the mass differences,
A = 1e m2 — m?
a” HTapy\""p i (41)
A = le m* — m:
i 2 ijk j k
Finally, the combinations,
N m% + mf,
Hy=eupHpy, Hp, = 2 2
B Y (42)
& oG m]2 +m}
= Ty g = —
i ijk k> M jk m]z — mi

Note that they transform as tensors according to the
indices they carry, including pseudo-P-tensors which are
identified with a “~” symbol.
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With these, we can write down the following RGE in ten-
sor form

DIn R, =b" A +2¢" - w Am?, (43)
DIn¥,=b'Ain? +2¢" - wl Am?, (44)

at

DW= -2 - eype1 (Am;ijGk + AﬁakAjTyHﬁ), (45)

DInj=—c - (Afnzw G, + Afnizwl?;fia) : (46)

a~ol

These equations are just Equations (3.17) and (3.18) in
Ref. [7] and Equations (28) and (29) in Ref. [8], although
the indices & and i were not distinguished nor were the
tensors clearly identified. Also, b’ =b/v?, ¢’ =c/v?, since
masses are used directly here.

The first thing that catches the eye in these equations is
that they are manifestly covariant tensor equations under S,
(u) x S5(d). Let us now concentrate on the c-dependent part
of them. The resemblance to Equations (34), (35), and (36) is
striking, although there are also differences. For Equations
(43), (44), (45), and (46), there are two “source” terms, Arh?
and Asir2, which generate the changes. Their effects on V!
and V, are combined in Vg, and thus in W, and
P(InJ). Also, the simple pole terms [1/(D;-D;)] in
Equations (35) and (36) are replaced by G;; and Hj;,
reflecting the nature of the new situation, while keeping
the singular behaviour if (D;-D;)— 0. In addition,

(8HP); ~3 for neutrino oscillations, while A and
At} ~ 3 for RGE. This results in replacing E,p, (in Equation
(35)) by €apy (in Equation (45)), while keeping A,; intact so
that SW ;=0 if W,;=0 or 1. As for P(In J), P-parity calls

for switching AW{k to w,;, and all consistency requirements

ai’
are met. Now a comment on terms that depend on a or b in
Equations (38) and (39). These terms do not contribute to
changes in mixing, since the diagonalization of M is the same
as that of a polynomial in M. This is also why only mass
differences, A’ and A}, appear in these equations. A com-
mon mass in m2 or m?, according to Equations (38) and (39),
can always be absorbed in a,; and a,, respectively.

Just as for neutrino oscillations, it is impressive to see
how the results of direct calculations fit into the framework
of permutation symmetry. Conversely, except for some over-
all constants, and barring the use of higher-rank tensors (e.g.,
(det W)*A,,), one could almost write down these equations
without any detailed computations.

Another consequence of permutation symmetry is that
tensors are the entities being measured, e.g., neutrino oscilla-
tions determine the tensors A,;. They, in turn, are simple
functions of W ;. It is therefore useful to analyze data directly
in terms of W, thereby avoiding the possible loss of
information in translation. Some of the issues were also
discussed elsewhere [11].

6. Conclusion

The SM is notorious for having a multitude of parameters.
They originate from the breaking of the g-permutation sym-
metry by the Higgs interaction. In this paper, we suggest that,
instead of regarding them as fixed numbers, these parameters
can be included as physical variables which also transform
under the actions of the g-permutation operation. By assign-
ing them as appropriate tensors, the symmetry is shown to be
restored. Indeed, using this procedure, the SM (with inclu-
sion of Dirac neutrino mass terms) is found to have the
discrete symmetry, S, () x S;(d) x S5 (1) x S5(v) = [S5]*.

We apply the symmetry to physical processes, including
neutrino oscillations and RGE, for which there are estab-
lished relations between the parameters due to a change in
certain variables. These relations are the results of direct
calculations. When we rewrite them in terms of tensors, it
is revealed that they are indeed covariant tensor equations
under [S3]. The tensor notation helps to make them very
compact and simple in form. In addition, one gains
insights that could otherwise be obscured by a different
notation. It is hoped that there will be further develop-
ments and applications of the symmetry principle in other
areas of flavor physics.
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