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In the standard model, the permutation symmetry among the three generations of fundamental fermions is usually regarded to be
broken by the Higgs couplings. It is found that the symmetry is restored if we include the mass matrix parameters as physical
variables which transform appropriately under the symmetry operation. Known relations between these variables, such as the
renormalization group equations, as well as formulas for neutrino oscillations (in vacuum and in matter), are shown to be
covariant tensor equations under the permutation symmetry group.

1. Introduction

One of the long-standing puzzles in the standard model
(SM) is the existence of three generations of fermions
which behave identically under the gauge interactions.
The resulting exchange symmetry will be dubbed as the g-
permutation symmetry in this paper. This symmetry is
commonly regarded as broken by the Higgs coupling
through its vacuum expectation value (VEV), resulting in
four mass matrices and a plethora of physical parameters,
viz., the fermion masses and the mixing matrices for quarks
(VCKM) and for neutrinos (VPMNS). If these parameters are
considered as fixed entities, then they would seem to be a
collection of arbitrary numbers, which do not transform
under the symmetry operation, and the g-permutation
would just be broken. However, there are at least three clas-
ses of physical phenomena which suggest an alternative
interpretation. (1) Neutrino oscillation in vacuum: here, as
a neutrino beam travels, the mixing parameters evolve
along and are not static. (2) Neutrino oscillation in matter
(see, e.g., [1–3]): when neutrinos propagate in a medium,
an induced mass is obtained which changes the mixing
pattern. (3) The renormalization group equations (RGE)
for quarks (see, e.g., [4–8]) and for neutrinos (see, e.g., [9,
10]): a change in energy scales entails a new set of param-
eters and are governed by the RGE. For cases (2) and (3),

one could say that the physical “vacuum” itself is evolving.
In all of these examples, conceptually, it is more natural to
regard the mass matrix parameters as changeable physical
variables. And, when one considers g-permutation, these
variables should also transform under the symmetry opera-
tions. Once we do that, it becomes clear that they have
natural assignments as tensors under S3, the permutation
group of three objects. With this interpretation, one can
show that the g-permutation symmetry, now operating on
both the fundamental fermions and the mass matrix
parameters, is restored. In this connection, it should be
noted that, in SM, the mass parameters are, apart from a
common Higgs VEV, identified with the “coupling
constants” of the Higgs to the fermions. The permutation
operation, ðψi,miÞ⟶ ðψj,mjÞ, is not unlike the charge
conjugation transformation, ðψ, eÞ⟶ ðψc,−eÞ. Thus, it is
reasonable to include masses in a permutation operation.

In the literature, there are numerous relations amongst
the mass matrix parameters associated with neutrino oscilla-
tions and RGE of quarks and neutrinos (see, e.g., [8, 10, 11],
and the references therein). These are obtained by direct and
explicit calculations. When written in appropriate variables,
hints of a permutation symmetry seem ubiquitous. In this
paper, we present a general analysis of these equations. It is
found that the SM has a g-permutation symmetry group S3
ðuÞ × S3ðdÞ × S3ðlÞ × S3ðνÞ (or ½S3�4), where the factors denote
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permutations in sectors of the u- and d-type quarks, the
charged leptons and the neutrinos, respectively. Also, the rela-
tions mentioned above are all covariant tensor equations
under ½S3�4, just like the tensor equations in theories with rota-
tional symmetry. It should be emphasized that, to establish a
symmetry for a given Lagrangian, it is necessary to assign
appropriate transformation properties to the variables contain
therein. The symmetry ½S3�4 would be broken if one assigns
the mass matrix variables as singlets under its operation.

Our considerations are similar to those of another exam-
ple of symmetry restoration in a familiar setting. Consider

the case of an atom in an external B
!
-field. The interaction

term is proportional to B
!
· σ!. If we treat B

!
as a fixed external

field, then this term breaks the rotational symmetry. On the

other hand, we can include B
!
as a dynamical variable in the

atomic system, transforming as a vector, then rotational
symmetry is restored. The transformation of the mass matrix
parameters under g-permutation is analogous to the rotation

of the B
!
-field.

We add that the Particle Data Group (PDG) parame-
trization [12] is ill-equipped to exploit the g-permutation
symmetry. Besides being rephasing dependent, the PDG
variables θij’s, despite their appearances, have very compli-
cated behaviour under g-permutation, making it difficult
to uncover possible symmetries in an equation.

2. Tensor Analysis of S3

We turn now to an analysis of the representation of the g-
permutation group, which is based on S3. The elements of
S3 operate on three objects, say Bi, i = 1, 2, 3. For our pur-
poses, it suffices to concentrate on the exchange operators:

Xij : Bi ⟷ Bj, Bk ⟷ Bk, i ≠ j ≠ k: ð1Þ

To borrow the terminology of Oð3Þ, we will call Bi a P-
vector or Bi ~ 3. The three-dimensional representation of S3
, however, is reducible (∑Bi = invariant). Nevertheless, it is
convenient to use the reducible 3 and develop a tensor
analysis for S3, similar to that for Oð3Þ. This is useful
because, as it turns out, the physical variables behave like
P-tensors under permutations, and relations between them
are covariant P-tensor equations.

To begin, we note that, different from the linear algebra of
Oð3Þ, simple functions of Bi behave like Bi under permuta-
tions and are also P-vectors, e.g.,

1
Bi

� �
=

1
B1

,
1
B2

,
1
B3

� �
~ 3,

sin Bið Þ = sin B1, sin B2, sin B3ð Þ ~ 3,
sin2Bi

� �
= sin2B1, sin2B2, sin2B3
� �

~ 3:

ð2Þ

Next, out of two P-vectors, Bi and Ci, we can construct
rank-two P-tensors such as f ðBiÞ ± f ðCjÞ or f ðBiÞf ðCjÞ,
where f is some regular function. The simplest of these
tensors are Bi ± Ci or BiCj. Thus, the product BiCj can be

decomposed into three P-vectors: (1) diagonal: ðB1C1, B2
C2, B3C3Þ =Dii (no sum), (2) symmetrical: Sij = BiCj + Bj

Ci = Sji, i ≠ j, and (3) antisymmetrical: Aij = BiCj − BjCi =
−Aji, i ≠ j. Their transformation properties may be further
elucidated by the use of invariant tensors in S3. In addi-
tion to the familiar Oð3Þ tensors δij and eijk, in S3 there
is a third, Eijk which is defined as

Eijk =
1, i ≠ j ≠ k, even under exchange of indices,

0, any repeated index:

(

ð3Þ

This may be dubbed as the “symmetrical Levi-Civita
symbol.” Using these, we have the following:

δijBiCj =〠
i

Dii ~ 1, P − scalar ;

EijkSjk ~ �Si ~ 3, P‐vector ;

eijkAjk ~ ~Ai ~ ~3, pseudo‐P‐vector:

ð4Þ

~Ai is a pseudo-P-vector since under the exchange
operator,

Xij : ~Ai ⟷ −~Aj, ~Ak ⟷ −~Ak: ð5Þ

Thus, the rank-two P-tensor BiCj is decomposed into
three 3’s under S3, two of them are P-vectors, while the
third is a pseudo-P-vector.

Other useful constructions are

F = EijkBiCjDk ~ 1, P‐scalar Xij : F⟶+F
� �

, ð6Þ

G = eijkBiCjDk ~ ~1, pseudo‐P‐scalar Xij : G⟶−G
� �

:

ð7Þ
In addition, for odd or even functions of Aij, e.g.,

sin Aij ~ ~3, sin2Aij ~ 3: ð8Þ

In summary, the tensor analysis of S3 has a lot in
common with that of Oð3Þ, though with two important
differences: (1) the existence of the symmetric Levi-Civita
symbol Eijk; (2) the linear tensor algebra is generalized to
include functions of tensors for S3. Once these two differ-
ences are properly managed, the implementation of the S3
symmetry amounts to demanding that all relations are
covariant tensor equations, just like the familiar equations
which are covariant under rotation.

3. The Broken g-Permutation Symmetry and
Its Restoration

We will now turn to the g-permutation symmetry in the SM.
To accommodate neutrino oscillations which are central to
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the consideration in this paper, the SM will be augmented by
the inclusion of Dirac neutrino mass term. This minimal
extension of the SM brings the leptonic sector on a par with
the quark sector and will facilitate the ensuing discussions.
The interesting possibility of neutrinos being Majorana
particles will not be dealt with here but could hopefully be
the topic of a future investigation.

In order not to clutter our notations, we will first concen-
trate our discussion to the leptonic sector of the SM. The
parallel case of the quark sector will be brought in when
appropriate. Also, to study the effect of g-permutation, one
need only to focus on the part of the SM Lagrangian which
contains the fermion-Higgs interaction, after it has acquired
its VEV. The result, after diagonalization of the mass matrix,
can be represented by the following terms in the Lagrangian
(see, e.g., Ref. [13]), schematically,

L l,Hð Þ ~ JμW
†
μ + h:c:

� �
− 1 +

h
v

� �
〠
α

mα�ψαψα +〠
i

mi�ψiψi

 !
,

Jμ ~〠
α,i

�ψαVαiψi:

ð9Þ

Here, to highlight the part of the lepton-Higgs L

which is relevant for our discussion, we omit the gauge
coupling constants and proper Dirac matrices in Lðl,HÞ.
Also, α = ðe, μ, τÞ, ψi refers to νi, mα and mi are their masses,
Wμ refers to theW-boson, h denotes the Higgs field and v is
its VEV, and Vαi is an element of the PMNS matrix.

We may now study the action of g-permutation on
Lðl,HÞ. If the permutation only acts on the fermions

(with Xij = Xð0Þ
ij , Xαβ = Xð0Þ

αβ ),

X 0ð Þ
ij : ψi ⟷ ψj, ψk ⟷ ψkð Þ,

X 0ð Þ
αβ : ψα ⟷ ψβ, ψγ ⟷ ψγ

� �
,

ð10Þ

then clearly Lðl,HÞ is not invariant and the g-permutation
symmetry is broken. However, we may include ðmα,mi, VαiÞ
as dynamical variables which also transform under the action
of Xij and Xαβ. The structure of Lðl,HÞ suggests that they
transform like P-tensor. So now we have

Xij : ψi ⟷ ψj ;mi ⟷mj ; Vαi ⟷ Vαj,

Xαβ : ψα ⟷ ψβ ;mα ⟷mβ ; Vαi ⟷Vβi:
ð11Þ

With these assignments and referring to the tensor analy-
sis in Section 2, it is evident that Lðl,HÞ is invariant:

Xij, Xαβ

� �
: L l,Hð Þ⟷L l,Hð Þ: ð12Þ

The symmetry group here is S3ðlÞ × S3ðνÞ. Exactly the
same argument can be given for the quark sector, with
the replacement of ðe, μ, τÞ by ðu, c, tÞ and ðν1, ν2, ν3Þ by
ðd, s, bÞ. We conclude that the SM has a g-permutation

symmetry group, given by S3ðuÞ × S3ðdÞ × S3ðlÞ × S3ðνÞ =
½S3�4 that operate not only on the fundamental fermions
but also on the masses and mixing parameters, which
transform like P-vectors, as indicated by the indices they
carry. A more concrete interpretation of Equation (12) is
to regard Lðl,HÞ as an effective Lagrangian. It is used
as a starting point for calculations in flavor physics. The
results thus obtained are expressed in terms of the physical
parameters contained in Lðl,HÞ. Equation (12) then
implies that these results must exhibit the ½S3�4 symmetry.
Some examples are cited in Section 5.

The existence of the symmetry group ½S3�4 can also be
established from another approach. The diagonalization of
the Yukawa coupling ð~ �ψLYψRHÞ,

Y = u†LYDuR, ð13Þ

and the absorption of ðuL, uRÞ into the wave functions
yield the Lagrangian in the mass eigenstate basis. This
procedure also constrains additional Uð3Þ transformations
on ψ, so that the global symmetry ðUð3Þ ×Uð3Þ × :⋯ Þ of
the gauge interaction Lagrangian is broken down to
UBð1Þ ×ULð1Þ, as stated in the literature. However, the
solution to the diagonalization of a 3 × 3 matrix has a
six ð3!Þ-fold symmetry,

YD = X†Y′DX, ð14Þ

where X is a 3 × 3 permutation matrix, e.g.,

X12 =

0 1 0

1 0 0

0 0 1

0
BBBBB@

1
CCCCCA: ð15Þ

The replacement of ðuL, uRÞ by ðXuL, XuRÞ corresponds
to an operation of S3, which survives the diagonalization
process, and is a symmetry of the Lagrangian. Thus, the SM
(with Dirac neutrinos) is found to have the global symmetry
group ½S3�4 ×UBð1Þ ×ULð1Þ. The action of ½S3�4 is given by
Equation (11).

We now pause to consider the effect of rephasing invari-
ance, which was glossed over earlier. With rephasing, the
transformation of Vαi can acquire a phase:

Xij : Vαi ⟶ phaseð Þ · Vαj: ð16Þ

This means that only rephasing invariant combinations
of a set of Vαi’s can have definite transformation laws under
exchange. Two well-known combinations are Wαi = jVαij2
and the Jarlskog invariant [14], defined by

Im VαiVβjV
∗
αjV

∗
βi

� �
= J〠

γk

eαβγeijk: ð17Þ

Thus, for physical variables, the transformation laws
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under exchange are (for the lepton sector)

Xij : Wαi ⟷Wαj ; J ⟷ −J ,

Xαβ : Wαi ⟷Wβi ; J ⟷ −J:
ð18Þ

Note that, in the terminology of Section 2, J is a
pseudo-P-scalar. Also, for the quark sector, the corre-
sponding invariant, JðqÞ, is also a pseudo-P-scalar:

X qð Þ
ij , X

qð Þ
αβ

� �
: J qð Þ ⟷ −J qð Þ: ð19Þ

While the transformation of Wαi is not surprising,
J⟶−J under any exchange is a remarkable property.

Another interesting aspect of rephasing invariance is
that one can take out an overall phase from V and
demand, without loss of generality, that det V = +1, while
restricting further rephasing by det P = +1, where P is a
diagonal phase matrix [15]. Under this condition, there are
rephasing invariants:

Γαβγ
ijk = VαiVβjVγk = Re Γαβγ

ijk

h i
− iJ , ð20Þ

where α ≠ β ≠ γ, i ≠ j ≠ k. This yields an alternative definition
for J :

J = − Im VαiVβjVγk

� �
, det V = +1: ð21Þ

Since det V changes sign under both V⟶−V and the
exchange of rows or columns, to keep det V = +1 under the
exchange operation, we have now

Xij : Vαi ⟷Vαj andV ⟷ −V ,

Xαβ : Vαi ⟷Vβi andV ⟷ −V :
ð22Þ

Note that for V⟶−V , the invariants J and Wαi are
unaffected. The variables ðxi, yjÞ [15], which was defined in

terms of Re ½Γαβγ
ijk �, now have the transformation laws:

Xij orXαβ

� �
: x1, x2, x3ð Þ⟷ − ya, yb, ycð Þ, ð23Þ

where ða, b, cÞ is a permutation of ð1, 2, 3Þ. This implies,
in particular, that ∑xi⟷−∑yj and x1x2x3⟷−y1y2y3.
With J2 = x1x2x3 − y1y2y3, we have J2 ⟶ J2, consistent
with J⟷−J .

In summary, the SM has the symmetry group ½S3�4
when the physical mass matrix parameters behave as
tensors. This set includes the fermion masses, the mixing
matrices ½WðCKMÞ� and ½WðPMNSÞ�, and two signs for the
Jarlskog invariants, J = ±

ffiffiffiffi
J2

p ðJ2 = function of ½W�Þ, in the
quark and lepton sectors, respectively. The transformation
laws are given in Equations (11), (18), and (22).

4. Composite Tensors

To apply the g-permutation symmetry to physical processes,
it turns out that, besides the basic tensors, certain combina-
tions make frequent appearances. We now present a brief
discussion of their properties.

(a) For the masses mα (and similarly for mi), we have a
scalar, ∑mα, and an antisymmetric tensor Δmβγ =
mβ −mγ, which becomes a pseudo-P-vector:

Δ~mα =
1
2
eαβγΔmβγ ~ ~3: ð24Þ

This combination will appear repeatedly in
applications

(b) Out of two Wαi’s, we have

(i) Wαi −Wαj, or ð1/2ÞeijkðWαj −WαkÞ, which

transforms as a 3 in S3ðlÞ and a ~3 in S3ðνÞ
(ii) ð1/2ÞeαβγeijkWβjWγk =wαi. Here, wαi is an

element of the cofactor matrix of W, as defined
before [15]. Sums of its rows and columns
are given by ∑α wαi =∑iwαi = detW. It trans-
forms as the product of pseudo-P-vectors
~3ðlÞ × ~3ðνÞ, or ~3ðuÞ × ~3ðdÞ in the quark sector.
For specific forms of the ½W� matrix, with (a)
½W� = I and (b)½W� = ½D0�/3 (maximal mixing,
½D0�αi = 1, for all α and i), we have (a) ½w� =
I and (b) ½w� = 0. These properties will be use-
ful later

(iii) ð1/2Þ½ð1/2ÞEαβγEijkWβjWγk −Wαi� =Λαi. This
combination was also used before [8, 10, 11]. It
played an essential role in many of the formulas
in neutrino oscillation and in RGE. The
transformation properties of Λαi are exactly like
Wαi. What sets them apart is its structure for
specific forms of the ½W� matrix. Of particular
interests are: (i) if Wαi = 0, then Λβj = 0, α ≠ β,
i ≠ j, and (ii) if Wαi = 1, then except possibly
for Λαi, all other Λβj = 0. (iii) If ½W� = ½D0�/
3, for maximal mixing, then ½Λ� = −½D0�/18. If ½
W� = ½I�, then ½Λ� = ½0�. To prove (i), note that
Wαi = 0 implies Vαi = 0. One can then use the
alternative definition Λβj = Re ½VγkVδlV

∗
γlV

∗
δk�

to deduce Λβj = 0. As for (ii), if Wαi = 1, then
Wαj =Wβi = 0, α ≠ β, i ≠ j. Using (i), (ii) follows

(iv) WαjWαk, or EijkWαjWαk. This is yet another
composite which transforms likeWαi. It is, how-
ever, not independent because of the relation:

Λβi +Λγi = −WαjWαk: ð25Þ

Nevertheless, it is sometimes used for simplicity
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(c) We can also construct

1
3!
eαβγeijkWαiWβjWγk = det W: ð26Þ

Under Xαβ or Xij, det W⟷− det W, so that det W
is a pseudo-P-scalar. So far, no practical use has been
found for det W, nor for other higher rank tensors
out of the basic ones

5. Applications

We may now turn to detailed analyses of neutrino oscilla-
tions and RGE, in which one can arrange to vary certain
parameters to induce changes to all the parameters as a set.
The resulting equations will now be written in the tensor
notation. This new look offers fresh insights into their
structure, making them more understandable. In the
following, we will study these issues case by case.

5.1. Neutrino Oscillation in Vacuum. When a neutrino beam
travels down a path, the neutrino mass eigenstates pick up a
phase, exp ð2iϕiÞ, ϕi =m2

i L/4E, which then causes change of
the mixing matrix. This effect depends only on the phase
difference, Δϕij = ϕi − ϕ j. In the tensor terminology, neutrino
oscillation is driven by the pseudo-P-vector

~Φi =
1
2!
eijkΔϕjk = Δ~m2

i
L
4E

� �
~ ~3: ð27Þ

The probability Pðνα ⟶ νβÞ is well known, and, in a
notation that is adoptable for our use, given by Equations
(58) and (59) of Ref. [11],

P να ⟶ ναð Þ = 1 − 4 Wα1Wα2 sin2Φ21 +Wα1Wα3 sin2Φ31
�

+Wα2Wα3 sin2Φ32
�
,

P να ⟶ νβ
� �

= −4 Λγ3 sin2Φ21 +Λγ2 sin2Φ31
	

+Λγ1 sin2Φ32� + 2J sin 2Φ21½
+ sin 2Φ13 + sin 2Φ32�, α ≠ β ≠ γ:

ð28Þ

To transcribe these equations, we start with Pðνα ⟶ νβÞ,
α ≠ β. In tensor notation it reads

P να ⟶ νβ
� �

= −4EαβγδijΛγi sin2 ~Φ j + 2J 〠
i

sin2~Φi

 !
:

ð29Þ

Thus, first of all, Pðνα ⟶ νβÞ is a P-scalar under S3ðνÞ,
which is reasonable. This is achieved by combining Λαi with
sin2 ~Φið~ 3Þ and Jð~ ~1Þ with ∑isin2~Φi (also ~ ~1). Note also
that Pðνα ⟶ νβÞ = 0 if ½W� = ½I�, and ½Λ� is the uniquematrix
(not ½W� or ½w�) which also vanishes if ½W� = ½I�. The formula

for Pðνα ⟶ νβÞ shows that it consists of a symmetric

part, ~ Sαβ, and an antisymmetric part, ~ J ~ ~1. The anti-
symmetric part is CP and T violating. With J being a
pseudo-P-scalar, we can apply Xαα′ repeatedly and obtain

P να ⟶ νβ
� �

= P νβ ⟶ νγ
� �

= P νγ ⟶ να
� �

= −P νβ ⟶ να
� �

=⋯,
ð30Þ

which is a well-known result. It should also be noted that,
in the quark sector, the CP-measure, J ·ΠΔm2

αβ ·ΠΔm2
ij, is

a P-scalar under S3ðuÞ × S3ðdÞ, again a reasonable require-
ment for general CP violations.

Finally, the probability Pðνα ⟶ ναÞ can be obtained by
unitarity, ∑βPðνα ⟶ νβÞ = 1, with use of the relation in
Equation (25).

5.2. Neutrino Oscillation in Matter. When neutrinos propa-
gate in a medium rich in electrons, the effective Hamiltonian
acquires an induced mass ðδHÞee = A. We may regard this as
the first component of a P-vector, ðδHD

ee, δHD
μμ, δHD

ττÞ =
ðδHDÞξ ~ 3, which also covers the possibility of “gedanken
media” that are rich in μ and/or in τ. The addition of
ðδHDÞξ generates changes in the physical variables. These
were expressed [11] as differential equations given by, with
dA = ðδHDÞee and Di =m2

i ,

dDi
dA

=Wei, ð31Þ

1
2
d
dA

We1 We2 We3

Wμ1 Wμ2 Wμ3

Wτ1 Wτ2 Wτ3

0
BBBBBB@

1
CCCCCCA

=
1

D1 −D2

�

We1We2, −We1We2, 0

Λτ3, −Λτ3, 0

Λμ3, −Λμ3, 0

0
BBBBBB@

1
CCCCCCA

+
1

D2 −D3

�

0, We2We3, −We2We3

0, Λτ1, −Λτ1

0, Λμ1, −Λμ1

0
BBBBBB@

1
CCCCCCA

+
1

D3 −D1

�

−We1We3, 0, We1We3

−Λτ2, 0, Λτ2

−Λμ2, 0, Λμ2

0
BBBBBB@

1
CCCCCCA
,

ð32Þ
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d
dA

ln Jð Þ = −〠
i≠j

Wei −Wej

Di −Dj
: ð33Þ

In tensor notation, these equations read

δm2
i = δHD� �

ξ
Wξi, ð34Þ

δWαi = 2Eαξηeijk δHD� �
ξ

Ληj

Δ~Dk

, ð35Þ

δ ln Jð Þ = −
δHD� �

ξ
Δ ~Wξk

Δ~Dk

: ð36Þ

Here, Δ~Dk = ð1/2ÞeklmðDl −DmÞ, Δ ~Wξk = ð1/2Þeklm ðWξl

−WξmÞ. For normal medium, we will take ðδHDÞξ = ðdA, 0,
0Þ. In this case, Equation (35) does not cover δWei, which
can be obtained by

δWei = −δ Wμi +Wτi

� �
: ð37Þ

Wecan nowdiscuss the salient features of these equations.
To beginwith, it is clear that they are covariant tensor (includ-
ing P-parity) equations under S3ðlÞ × S3ðνÞ. It is noteworthy
that these equations utilize the tensors Wαi, Λαi, and Δ ~Wαi
(but not wαi or EijkWαjWαk), all of which have similar trans-
formation properties. It turns out that there are consistency
conditions which dictate where they belong. For Equation
(34), in the special case ½W� = ½I�, it is known that δm2

1 =
ðδHDÞee, thus ruling out the use of Λξi, since ½Λ� = ½0�
for ½W� = ½I�. For Equation (35), we note that since 0 ≤
Wαi ≤ 1, it is necessary that δWαi = 0 at the boundary
Wαi = 0 or 1. From the properties listed in Section 2, we
find that Ληj = 0 if Wαi = 0 or 1, for η ≠ α, j ≠ i. These con-
ditions are exactly met owing to the factor Eαξηeijk, so that
from Equation (35), δWαi = 0 if Wαi = 0 or 1. Finally, for
Equation (36), there are also two consistency checks. First,
J2 is known to have a maximum at ½W� = ½D0�/3, with
J2max = 1/108. Also, J < 0 and J > 0 belong to two separate
regimes reachable by discrete transformations, but not by
infinitesimal increments. It follows that we must demand
that δJ = 0 for ∣J∣ = Jmax or J = 0. This also means that δ
J = 0 if any Wαi = 0 or 1, since these last conditions imply
J = 0. To satisfy the requirement at Jmax, Δ ~Wξk is a
possible (with wrong parity?) candidate in Equation (36).
But the second condition, that δJ = 0 if any Wαi = 0 or
1, cannot be fulfilled by any tensor. Equation (36) solves
this problem (and the P-parity problem) by using ln J so
that δJ ~ J½⋯⋯�, and δJ = 0 if J = 0. It is remarkable how
the symmetry argument and the direct calculations rein-
force each other in confirming these equations.

5.3. RGE for Quarks and Neutrinos. In this section, we will
deal exclusively with the RGE for quarks. The RGE for Dirac
neutrinos are almost identical (see Equations (26) and (32) in
Ref. [10]) but are simpler since terms proportional to

neutrino masses can be dropped. It is thus sufficient to
consider quarks only.

One loop RGE for quark mass matrices has been studied
for a long time. When written in the matrix form, they are
given by [4–6]

DMu = auMu + bM2
u + c Mu,Mdf g, ð38Þ

DMd = adMd + bM2
d + c Mu,Mdf g: ð39Þ

Here, Mu = YuY
†
u (Md = YdY

†
d), Yu (Yd) is the Yukawa

coupling matrix for the u-type (d-type) quarks; D = ð1/16
π2Þðd/dtÞ, t = ln ðμ/MWÞ, μ is the energy scale, and MW is
the W boson mass. The model dependence of the RGE is
contained in the constants (au, ad , b, c).

Although the RGE for the mass matrices are simple, they
are not directly useful since the matrices contain a large
number of unphysical degrees of freedom. One needs to
extract the RGE for the physical parameters. This was carried
out, but usually in variables which mask the underlying sym-
metry. The easiest for our adaptation are the equations
obtained in Ref. [7, 8]. These equations describe the varia-
tions of the mass ratios, the mixing parameters, and J .

We now write down the tensor form of these equations
and then justify them by comparing with the established
ones which were obtained by direct and explicit calcula-
tions. In the following, as before, the indices ðα, β, γÞ and
ði, j, kÞ refer to ðu, c, tÞ and ðd, s, bÞ, respectively. We define
the mass ratios,

Rαβ =
m2

α

m2
β

, ln ~Rα =
1
2
eαβγ ln Rβγ,

rij =
m2

i

m2
j

, ln ~ri =
1
2
eijk ln rjk:

ð40Þ

Also, the mass differences,

Δ~m2
α =

1
2
eαβγ m2

β −m2
γ

� �
,

Δ~m2
i =

1
2
eijk m2

j −m2
k

� �
:

ð41Þ

Finally, the combinations,

~Hα = eαβγHβγ,Hβγ =
m2

β +m2
γ

m2
β −m2

γ

,

~Gi = eijkGjk,Gjk =
m2

j +m2
k

m2
j −m2

k

:

ð42Þ

Note that they transform as tensors according to the
indices they carry, including pseudo-P-tensors which are
identified with a “ ~ ” symbol.
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With these, we can write down the following RGE in ten-
sor form

D ln ~Rα = b′Δ~m2
α + 2c′ ·wαiΔ~m2

i , ð43Þ

D ln ~ri = b′Δ~m2
i + 2c′ ·wT

iαΔ~m2
α, ð44Þ

DWαi = −2c′ · eαβγeijk Δ~m2
βΛγj

~Gk + Δ~mkΛ
T
jγ
~Hβ

� �
, ð45Þ

D ln J = −c′ · Δ~m2
αwαi

~Gi + Δ~m2
i w

T
iα
~Hα

� �
: ð46Þ

These equations are just Equations (3.17) and (3.18) in
Ref. [7] and Equations (28) and (29) in Ref. [8], although
the indices α and i were not distinguished nor were the
tensors clearly identified. Also, b′ = b/v2, c′ = c/v2, since
masses are used directly here.

The first thing that catches the eye in these equations is
that they are manifestly covariant tensor equations under S3
ðuÞ × S3ðdÞ. Let us now concentrate on the c-dependent part
of them. The resemblance to Equations (34), (35), and (36) is
striking, although there are also differences. For Equations
(43), (44), (45), and (46), there are two “source” terms, Δ~m2

i

and Δ~m2
α, which generate the changes. Their effects on V†

u
and Vd are combined in VCKM, and thus in DWαi and
Dðln JÞ. Also, the simple pole terms ½1/ðDi −DjÞ� in
Equations (35) and (36) are replaced by Gij and Hij,
reflecting the nature of the new situation, while keeping
the singular behaviour if ðDi −DjÞ⟶ 0. In addition,

ðδHDÞξ ~ 3 for neutrino oscillations, while Δ~m2
α and

Δ~m2
i ~ ~3 for RGE. This results in replacing Eαβγ (in Equation

(35)) by eαβγ (in Equation (45)), while keeping Λγj intact so
that δWαi = 0 if Wαi = 0 or 1. As for Dðln JÞ, P-parity calls
for switching Δ ~Wξk to wαi, and all consistency requirements
are met. Now a comment on terms that depend on a or b in
Equations (38) and (39). These terms do not contribute to
changes in mixing, since the diagonalization ofM is the same
as that of a polynomial in M. This is also why only mass
differences, Δ~m2

α and Δ~m2
i , appear in these equations. A com-

mon mass inm2
α orm

2
i , according to Equations (38) and (39),

can always be absorbed in ad and au, respectively.
Just as for neutrino oscillations, it is impressive to see

how the results of direct calculations fit into the framework
of permutation symmetry. Conversely, except for some over-
all constants, and barring the use of higher-rank tensors (e.g.,
ðdet WÞ2Λαi), one could almost write down these equations
without any detailed computations.

Another consequence of permutation symmetry is that
tensors are the entities being measured, e.g., neutrino oscilla-
tions determine the tensors Λγk. They, in turn, are simple
functions ofWαi. It is therefore useful to analyze data directly
in terms of Wαi, thereby avoiding the possible loss of
information in translation. Some of the issues were also
discussed elsewhere [11].

6. Conclusion

The SM is notorious for having a multitude of parameters.
They originate from the breaking of the g-permutation sym-
metry by the Higgs interaction. In this paper, we suggest that,
instead of regarding them as fixed numbers, these parameters
can be included as physical variables which also transform
under the actions of the g-permutation operation. By assign-
ing them as appropriate tensors, the symmetry is shown to be
restored. Indeed, using this procedure, the SM (with inclu-
sion of Dirac neutrino mass terms) is found to have the
discrete symmetry, S3ðuÞ × S3ðdÞ × S3ðlÞ × S3ðνÞ = ½S3�4.

We apply the symmetry to physical processes, including
neutrino oscillations and RGE, for which there are estab-
lished relations between the parameters due to a change in
certain variables. These relations are the results of direct
calculations. When we rewrite them in terms of tensors, it
is revealed that they are indeed covariant tensor equations
under ½S43�. The tensor notation helps to make them very
compact and simple in form. In addition, one gains
insights that could otherwise be obscured by a different
notation. It is hoped that there will be further develop-
ments and applications of the symmetry principle in other
areas of flavor physics.
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