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Zeeman Effect in Phase Space
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The two-dimensional hydrogen atom in an external magnetic field is considered in the context of phase space. Using the solution of
the Schrödinger equation in phase space, theWigner function related to the Zeeman effect is calculated. For this purpose, the Bohlin
mapping is used to transform the Coulomb potential into a harmonic oscillator problem. Then, it is possible to solve the
Schrödinger equation easier by using the perturbation theory. The negativity parameter for this system is realised.

1. Introduction

Since the early years of the development of quantum
mechanics, its formulation in phase space has been trouble-
some. The seminal paper by Wigner in 1932 addressed such
a problem in an attempt to deal with the superfluidity of
helium [1]. The Wigner function, f W ðq, pÞ, was introduced
as a Fourier transform of the density matrix, ρðq, q′Þ. Then,
the phase space manifold (Γ), which has a symplectic struc-
ture, is described by the coordinates ðq, pÞ [1–4]. TheWigner
function is identified as a quasiprobability density since f W
ðq, pÞ is real but it is not positively defined. However, the
integrals ρðqÞ = Ð f wðq, pÞdp and ρðpÞ = Ð f wðq, pÞdp are
distribution functions.

In theWigner formalism, each operator, A, defined in the
Hilbert space, H , is associated with a function, aW ðq, pÞ,
in Γ. This procedure is precisely specified by a mapping
ΩW : A⟶ aWðq, pÞ, such that the associative algebra of
operators defined in H leads to be an algebra in Γ, given by
ΩW : AB⟶ aW⋆bW , where the star product, ⋆, is defined by

aW⋆bW = aW q, pð Þ exp iℏ
2
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!

∂p
−
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!
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0@ 1A24 35bW q, pð Þ:

ð1Þ

As a consequence, a noncommutative structure in Γ is
obtained that has been explored in different ways [2–25].
Recently [26–30], unitary representations of symmetry Lie
groups have been obtained on a symplectic manifold, explor-
ing the noncommutative nature of the star product and using
the mapping ΩW [26–28]. As a result, using a specific repre-
sentation of aGalilei group, the Schrödinger equation in phase
space is obtained. On the other hand, the scalar representation
of the Lorentz group for spin 0 and spin 1/2 leads to the
Klein-Gordon and Dirac equations in phase space. In rel-
ativist and nonrelativistic approaches, the wave functions
are closely associated with the Wigner function [26, 27].
This provides a fundamental ingredient for the physical
interpretation of the formalism showing its advantage in
relation to other attempts.

In recent years, the two-dimensional physical systems
have been investigated due to both experimental and theoret-
ical interests. For example, it is possible to cite the fractional
Hall effect in a tilted magnetic field [31, 32], superconductiv-
ity in two-dimensional organic conductors induced by
magnetic field [33], investigations of graphene [34, 35], etc.
Particularly, a two-dimensional model of hydrogen atom
was considered in several contexts; for instance, it is possible
to describe highly three-dimensional anisotropic crystals
[36], semiconductor heterostructures [37–39], and astro-
physical applications [40–42]. In addition, the hydrogen
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atom in a uniform magnetic field can present a nonclassical
behavior with the increase of strength of magnetic field
[43–46]. In this paper, the objective is to investigate the
two-dimensional hydrogen atom in a constant magnetic field
in phase space picture, i.e., the Schrödinger equation in phase
space is used to study the Zeeman effect. The Zeeman effect is
applied in a variety of systems, including intense laser lights,
comic rays, and the study of intergalactic and interstellar
medium [47, 48]. The importance to study the Wigner func-
tion for such an effect is in order to obtain information about
the chaotic nature of such systems.

In Section 2, a review about the formalism of quantum
mechanics in phase space and its connection with Wigner
function is presented. In Section 3, the Hamiltonian of
hydrogen atom in an external magnetic field and Bohlin
mapping are discussed. The solution for the Schrödinger
equation for the Zeeman effect in phase space is solved by
perturbative method in Section 4. In Section 5, a summary
and concluding remarks are presented.

2. Symplectic Quantum Mechanics

In this section, the representation of the Galilei group in H

ðΓÞ is presented. This procedure leads us to the Schrödinger
equation in phase space. Then, a connection between this
representation and the Wigner formalism is established.

Using the star operator, Â = a⋆, the position and
momentum operators, respectively, are defined by

Q̂ = q⋆ = q + iℏ
2 ∂p, ð2Þ

P̂ = p⋆ = p −
iℏ
2 ∂q: ð3Þ

The operators given in equations (2) and (3) satisfy the
Heisenberg commutation relation,

Q̂, P̂
� �

= iℏ: ð4Þ

In addition, the following operators are introduced:

K̂ =mQ̂i − tP̂i,
L̂i = ∈ijkQ̂jP̂k,

Ĥ = P̂
2

2m = 1
2m P̂

2
1 + P̂

2
2 + P̂

2
3

� �
:

ð5Þ

From this set of unitary operators, after simple calcula-
tions, the following set of commutation relations are
obtained:

L̂i, L̂j

� �
= iℏ∈ijkL̂k,

L̂i, K̂ j

� �
= iℏ∈ijkK̂k,

L̂i, P̂ j

� �
= iℏ∈ijkP̂k,

K̂i, P̂ j

� �
= iℏmδij1,

K̂i, Ĥ
� �

= iℏP̂i,

ð6Þ

with all other commutation relations being null. This is the
Galilei-Lie algebra with a central extension characterized
by m. The operators defining the Galilei symmetry P̂, K̂ ,
L̂, and Ĥ are then generators of translations, boost, rota-
tions, and time translations, respectively.

Defining the operators

�Q = q1,
�P = p1,

ð7Þ

for boost, operators �Q and �P transform as

exp −iv
K̂
ℏ

� �
2�Q exp −iv

K̂
ℏ

� �
= 2�Q + vt1, ð8Þ

exp −iv
K̂
ℏ

� �
2�P exp iv

K̂
ℏ

� �
= 2�P +mv1: ð9Þ

This shows that �Q and �P transform as position and
momentum variables, respectively. These operators satisfy
½�Q, �P� = 0. Then, �Q and �P cannot be interpreted as observ-
ables. Nevertheless, they can be used to construct a Hilbert
space framework in phase space. Then, we define the func-
tions ϕðq, pÞ in HðΓÞ that satisfy the conditionð

dqdpϕ∗ q, pð Þϕ q, pð Þ <∞: ð10Þ

The wave function ψðq, p, tÞ = hq, p ∣ ψðtÞi associated
with the state of the system is defined, but does not have
the content of the usual quantum mechanics state.

The time evolution equation for ψðq, p, tÞ is derived by
using the generator of time translations, i.e.,

ψ tð Þ = e−iĤt/ℏψ 0ð Þ: ð11Þ

Then, this leads to

iℏ∂tψ q, p ; tð Þ = Ĥ q, pð Þψ q, p ; tð Þ, ð12Þ

or

iℏ∂tψ q, p ; tð Þ =H q, pð Þ⋆ψ q, p ; tð Þ, ð13Þ

which is the Schrödinger equation in phase space [26].
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The association of ψðq, p, tÞ with the Wigner function is
given by [26]

f w q, pð Þ = ψ q, p, tð Þ⋆ψ† q, p, tð Þ: ð14Þ

This function satisfies the Liouville-von Neumann
equation [26].

3. Two-Dimensional Hydrogen Atom in an
External Magnetic Field and Bohlin Mapping

The Hamiltonian for the two-dimensional hydrogen atom
in a constant and uniform magnetic field B = Bẑ is given
as [44, 49, 50]

H = P‐eAð Þ2
2m −

k

x2 + y2ð Þ1/2
, ð15Þ

where m and e represent the electron mass and charge,
respectively, A is the magnetic potential vector and k is
a constant. In a two-dimensional case, equation (15) is
written as

H = P2

2m −
k

x2 + y2ð Þ1/2
+ mω

2 x2 + y2
� 	

+ ωLz , ð16Þ

where ω = eB/2mc is the frequency and Lz is the angular
momentum in the z-direction. Here, the constant ωLz
will be neglected once the energy is defined up to a
constant.

In order to solve the Schrödinger equation for this Ham-
iltonian, the Bohlin mapping is used.

3.1. Bohlin Mapping. Bohlin mapping is defined by [51–53]

x + iy = q21 − q22
� 	

+ i 2q1q2ð Þ, ð17Þ

or

x = q21 − q22, ð18Þ

y = 2q1q2: ð19Þ
Defining

Px + iPy =
p1 + ip2

2 q1 + iq2ð Þ ð20Þ

leads to

Px =
p1q1 + p2q2
2 q21 + q22
� 	 , ð21Þ

Py =
p2q1 − p1q2
2 q21 + q22
� 	 : ð22Þ

Substituting equations (18), (19), (21), and (22) in equa-
tion (16) leads to the Hamiltonian

H = 1
2

p21 + p22
q21 + q22
� 	 − k

q21 + q22
� 	 + B2

8 q21 + q22
� 	3

: ð23Þ

Using ℏ = ω = e =m = 1 and taking the hypersurface
given by H = E leads to

1
2 p21 + p22
� 	

+ B2

8 q21 + q22
� 	3 − E q21 + q22

� 	
− k = 0, ð24Þ

which is the Hamiltonian to be used in the next section. It
should be noted that the Bohlin transformation is a canonical
transformation [54].

4. Zeeman Effect in Phase Space

Using equation (24), the equation is written as

1
2 p21 + p22
� 	

+ B2

8 q21 + q22
� 	3 − E q21 + q22

� 	
− k


 �
⋆ψ q1, p1, q2, p2ð Þ = 0:

ð25Þ

It should be noted that the above equation is obtained
from the classical Hamiltonian by means of the star prod-
uct. Thus, the Bohlin mapping that leads to equation (24)
is a classical transformation. This equation is analyzed by
the perturbation theory. The equation in phase space is
defined as

Ĥ0 + Ĥ1
� 	

ψ q1, p1, q2, p2ð Þ = kψ q1, p1, q2, p2ð Þ, ð26Þ

where Ĥ0 = ð1/2Þðp21 + p22Þ⋆−Eðq21 + q22Þ⋆ and Ĥ1 = ðB2/8Þ
ðq21 + q22Þ⋆.

The equation for Ĥ0 has the form

Ĥ0ψ
0ð Þ q1, p1, q2, p2ð Þ = k 0ð Þψ 0ð Þ q1, p1, q2, p2ð Þ, ð27Þ

where ψð0Þðq1, p1, q2, p2Þ and kð0Þ represent, respectively,
the eigenfunction and eigenvalue of the unperturbed
Hamiltonian.

Defining the operators

â =
ffiffiffiffiffiffiffiffiffiffi
W
2 q1

r
⋆+i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2W p1

r
⋆

 !
,

â† =
ffiffiffiffiffi
W
2

r
q1⋆−i

ffiffiffiffiffiffiffiffi
1

2W

r
p1⋆

 !
,

b̂ =
ffiffiffiffiffi
W
2

r
q2⋆+i

ffiffiffiffiffiffiffiffi
1

2W

r
p2⋆

 !
,

b̂
† =

ffiffiffiffiffi
W
2

r
q2⋆−i

ffiffiffiffiffiffiffiffi
1

2W

r
p2⋆

 !
,

ð28Þ
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whereW2/2 = −E, the star operators q1⋆ and p1⋆ are given by

qi⋆ = qi +
i
2

∂
∂pi

,

pi⋆ = pi −
i
2

∂
∂qi

,
ð29Þ

and perturbed Hamiltonian is

Ĥ =W ââ† + b̂b̂
† + 1

� �
+ B2

8 â + â†
� 	2 + b̂ + b̂

†� �2
 �3
:

ð30Þ

The unperturbed Hamiltonian is defined as

Ĥ0 =W âca† + b̂cb† + 1
� �

: ð31Þ

Then, the perturbed part is

Ĥ1 =
B2

8 â + â†
� 	2 + b̂ + b̂

†� �2
 �3
: ð32Þ

The equation that is to be analyzed is given as

H⋆ψ q1, p1, q2, p2ð Þ = kψ q1, p1, q2, p2ð Þ: ð33Þ

The unperturbed equation is

H0⋆ψ
0ð Þ
n1,n2 q1, p1, q2, p2ð Þ = k 0ð Þ

n1,n1ψ
0ð Þ
n1,n2 q1, p1, q2, p2ð Þ, ð34Þ

The unperturbed part, Ĥ0, has solutions given by

ψ 0ð Þ
n1,n2 q1, p1, q2, p2ð Þ = ϕn1 q1, p1ð ÞΓn2

q2, p2ð Þ, ð35Þ

where ϕn1ðq1, p1Þ and Γn2
ðq2, p2Þ are solutions. The eigen-

value equations are given by

âϕn1 =
ffiffiffiffiffi
n1
p

ϕn1 − 1, ð36Þ

â†ϕn1 =
ffiffiffiffiffiffiffiffiffiffiffiffi
n1 + 1

p
ϕn1 + 1, ð37Þ

b̂Γn2
= ffiffiffiffiffi

n2
p

Γn2−1, ð38Þ

cb†Γn2
=

ffiffiffiffiffiffiffiffiffiffiffiffi
n2 + 1

p
Γn2+1:

ð39Þ

Using the relations âϕ0 = 0 and b̂Γ0 = 0, the ground state
solution is

ψ
0ð Þ
0,0 q1, p1, q2, p2ð Þ =N e− Wq21+p21ð ÞLn1 Wq21 + p21

� 	
e− Wq22+p22ð ÞLn2

� Wq22 + p22
� 	

,
ð40Þ

where Ln1 and Ln2 are Laguerre polynomials; and N is a
normalization constant. The eigenvalue solutions, given in
equation (34), are

k 0ð Þ
n1,n2 = n1 + n2 + 1ð ÞW: ð41Þ

The excited states are obtained from equation (40) using
operators given in equations (36), (37), and (38).

Then, the solution for the first-order perturbed Hamilto-
nian is given by

It is to be noted that the following integral needs to be
solved

I =
ð
ψ∗ 0ð Þ
m1,m2

q1, p1, q2, p2ð ÞB
2

8 â + â†
� 	2 + b̂ + b̂

†� �2
 �3
� ψ 0ð Þ

n1,n2 q1, p1, q2, p2ð Þdq1dp1dq2dp2,
ð43Þ

before a solution for equation (42). Using the orthogonality
relations

ð
ϕ∗n q1, p1ð Þϕm q1, p1ð Þdq1dp1 = δn,m,ð
Γ∗
n q2, p2ð ÞΓm q2, p2ð Þdq2dp2 = δn,m,

ð44Þ

ψ 1ð Þ
n1,n2 q1, p1, q2, p2ð Þ = ψ 0ð Þ

n1,n2 q1, p1, q2, p2ð Þ + 〠
m1≠n1;m2≠n2

�
Ð
ψ
∗ 0ð Þ
m1,m2 q1, p1, q2, p2ð ÞĤ1ψ

0ð Þ
n1,n2 q1, p1, q2, p2ð Þdq1dp1dq2dp2

k 0ð Þ
n1,n2 − k 0ð Þ

m1,m2

 !
× ψ 0ð Þ

m1,m2
q1, p1, q2, p2ð Þ:

ð42Þ
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the ground state is

ψ
1ð Þ
0,0 q1, p1, q2, p2ð Þ

= ψ
0ð Þ
0,0 q1, p1, q2, p2ð Þ + B2

8W

� −21
ffiffiffi
2
p

− 18 − 25
ffiffiffiffiffi
10
p� �

ψ
0ð Þ
2,0 + −3

ffiffiffi
2
p

2 − 3
 !

ψ
0ð Þ
2,2

"

+ −30
ffiffiffiffiffi
21
p

− 3
ffiffiffi
6
p� �

ψ
0ð Þ
4,0 + 4

ffiffiffi
3
p

ψ
0ð Þ
4,2 − 8

ffiffiffiffiffiffiffiffiffiffi
1155
p

ψ
0ð Þ
6,0

#
:

ð45Þ

And for excited states, the wave functions are

ψ
1ð Þ
1,0 = ψ

0ð Þ
1,0 +

B2

8W 89, 30ψ 0ð Þ
1,2 + 13, 47ψ 0ð Þ

1,4 + 6, 32ψ 0ð Þ
1,6

h
− 89, 43ψ 0ð Þ

3,0 − 19, 33ψ 0ð Þ
3,2 − 23, 51ψ 0ð Þ

5,0 − 10, 31ψ 0ð Þ
5,4

− 11, 83ψ 0ð Þ
7,0
i
,

ψ
1ð Þ
0,1 = ψ

0ð Þ
0,1 +

B2

8W −89, 30ψ 0ð Þ
2,1 − 13, 47ψ 0ð Þ

4,1 − 6, 32ψ 0ð Þ
6,1

h
+ 89, 43ψ 0ð Þ

0,3 + 19, 33ψ 0ð Þ
2,3 + 23, 51ψ 0ð Þ

0,5 + 10, 31ψ 0ð Þ
4,5

+ 11, 83ψ 0ð Þ
0,7
i
:

ð46Þ

TheWigner function for the hydrogen atom in a constant
magnetic field is given by

f w q1, p1, q2, p2ð Þ = ψ∗ 1ð Þ
n1,n2 q1, p1, q2, p2ð Þ⋆ψ 1ð Þ

n1,n2 q1, p1, q2, p2ð Þ:
ð47Þ

It should be noted that all plots consider q2 = p2 = 1 in
order to show a 3D figure, thus q1 = q and p1 = p. In
Figures 1 and 2, the behavior of the Wigner function is
presented for order zero with magnetic field assuming values

B = 1 and B = 0:1, respectively, with E = 1. In Figures 3 and 4,
the behavior of the Wigner function is shown for the first
order with magnetic field assuming values B = 1 and B = 0:1,
respectively, with E = 10.

Comparing the graphics given in Figures 1–4, the nega-
tive part of the Wigner function increases with larger values
of energy and magnetic field.

The Wigner function to the first order for magnetic field
values B = 1 and B = 0:1 is shown in Figures 5 and 6 for E = 1.
The behavior of the Wigner function to the first order with
magnetic field value B = 0:5 is shown in Figures 7 and 8, for
E = 1 and E = 10, respectively. The correction of the first
order of eigenvalue of equation (33) is given by

δk 1ð Þ
n1,n2 =

ð
ψ 0ð Þ
n1,n2Ĥ1ψ

∗ 0ð Þ
n1,n2dq1dp1dq2dp2: ð48Þ

Performing calculations for Ĥ1 leads to

k 1ð Þ
n1,n2 = n1 + n2 + 1ð ÞW + B2

8 δ, ð49Þ

44 22 00
q

p
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–2 –4
–4

–0.2

0
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0.4

0.6

0.8

1.0

Figure 1: Wigner function zero order, Zeeman effect, E = 1 and
B = 1:
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Figure 2: Wigner function zero order, Zeeman effect, E = 1 and
B = 0:1.
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Figure 3: Wigner function first order, Zeeman effect, E = 10 and
B = 1.
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where

δ = n1 + 1ð Þ n1 + 2ð Þ n1 + 3ð Þ + n1 + 1ð Þ n1 + 2ð Þ2
+ n1 − 1ð Þn1 n1 + 1ð Þ2 + n1 + 1ð Þn1 n1 + 1ð Þ
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n31 n1 + 1ð Þ3

q
+ n1 + 1ð Þn21 + n1 + 1ð Þn1 n1 − 1ð Þ

+ n1 n1 − 1ð Þ2 + n1 n1 − 1ð Þ n1 − 2ð Þ + 3 n1 + 1ð Þn1 n2 + 1ð Þ
+ 3 n1 + 1ð Þn1n2 + 3n21 n2 + 1ð Þ3n21n2
+ 3 n1 − 1ð Þn1 n2 + 1ð Þ + 3 n1 − 1ð Þn1n2
+ 3 n2 + 1ð Þn2 n1 + 1ð Þ + 3 n2 + 1ð Þn2n1
+ 3n22 n1 + 1ð Þ3n22n1 + 3 n2 − 1ð Þn2 n1 + 1ð Þ
+ 3 n2 − 1ð Þn2n1 + n2 + 1ð Þ n2 + 2ð Þ n2 + 3ð Þ
+ n2 + 1ð Þ n2 + 2ð Þ2 + n2 − 1ð Þn2 n2 + 1ð Þ2

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n32 n2 + 1ð Þ3

q
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 + 1ð Þ2n42

q
+ n2 + 1ð Þn2 n2 − 1ð Þ

+ n2 n2 − 1ð Þ2 + n2 n2 − 1ð Þ n2 − 2ð Þ:
ð50Þ

Then, the eigenvalue is

W =
k 1ð Þ
n1,n2 − B2/8

� 	
δ

n1 + n2 + 1 : ð51Þ

44 22 00
q

p
–2–2 –4

–4
0

0.005

0.010

0.015

0.020

Figure 5: Wigner function first order, Zeeman effect, E = 1 and
B = 1.
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Figure 6: Wigner function first order, Zeeman effect, E = 1 and
B = 0:1.
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Figure 7: Wigner function first order, Zeeman effect, E = 1 and
B = 0:5.
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Figure 8: Wigner function first order, Zeeman effect, E = 10 and
B = 0:5.
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Figure 4: Wigner function first order, Zeeman effect, E = 10 and
B = 0:1.
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With the relation W2/2 = −E, the eigenvalues associated
to the Zeeman effect in phase space are given by

En1,n2 = −
1
2

k 1ð Þ
n1,n2 − B2/8

� 	
δ

n1 + n2 + 1

" #2
,

EN = −
1
2

k 1ð Þ
n1,n2 − B2/8

� 	
δ

N

" #2
,

ð52Þ

where N = n1 + n2 + 1. Note that if B⟶ 0, the known
results are obtained [55].

Using the Wigner function, the negative parameter for
the system is calculated. The results are presented in
Tables 1 and 2. It is to be noted that when the magnetic field
increases the negativity parameter also increases. In addition,
for a given value of the magnetic field, the negativity param-
eter increases when the sum n1 + n2 increases. This result is
presented in the graphics above.

5. Concluding Remarks

The Zeeman effect in phase space for the Schrödinger equa-
tion, which endows the Galilean symmetry, is analyzed. The
Wigner function is calculated numerically and presented in
the panels for several parameters. Such a function has a clear
interpretation in the classical limit and can be projected in the
momenta or coordinate space for experimental purpose. The
modulus of theWigner function is also finite that allows a cal-
culation its negativity. The results are presented in Tables 1
and 2. It indicates a direct relation between the magnetic field
and the discrete parameter N = n1 + n2. The increase of the
magnetic field is related to the departure from the classical
behavior since the negativity parameter increases accordingly.
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