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In this paper, we analytically study the holographic superconductor models with the high derivative (HD) coupling terms. Using
the Sturm-Liouville (S-L) eigenvalue method, we perturbatively calculate the critical temperature. The analytical results are in
good agreement with the numerical results. It confirms that the perturbative method in terms of the HD coupling parameters is
available. Along the same line, we analytically calculate the value of the condensation near the critical temperature. We find that
the phase transition is second order with mean field behavior, which is independent of the HD coupling parameters. Then, in
the low-temperature limit, we also calculate the conductivity, which is qualitatively consistent with the numerical one. We find
that the superconducting energy gap is proportional to the value of the condensation. But we note that since the condensation
changes with the HD coupling parameters, as the function of the HD coupling parameters, the superconducting energy gap
follows the same change trend as that of the condensation.

1. Introduction

The mechanism of the high-temperature superconductor is
one of the long-standing important and fundamental issues
in strongly correlated condensed matter physics. AdS/CFT
(Anti-de Sitter/Conformal Field theory) correspondence
[1-4] provides a powerful tool and novel mechanism to
attack this problem. Great progresses have been made,
and the first holographic superconductor model has been
constructed in [5]. This model exhibits appealing charac-
teristics, one of which is the superconducting energy gap
w,/T = 8. This value roughly approximates that measured
in high-temperature superconductor materials [6]. It is in
contrast to the one of w,/T ~3.5 from weakly coupled
BCS theory.

Lots of works on the holographic superconductor have
been fully explored (see [7-9] and references therein). An
interesting holographic superconductor model is first con-
structed in one class of 4-derivative theory [10], which

involves the coupling between the Maxwell field and a Weyl
tensor, and after that, lots of extended studies on the holo-
graphic superconductor in 4-derivative theory framework
are explored in [11-21]. Compared with the usual holo-
graphic superconductor, the superconducting energy gap
w,/T, runs from 6, approaching the one of weakly coupled

BCS theory, to 10, which is beyond that of the usual holo-
graphic superconductor and shed a light on the study of the
high-temperature superconducting energy gap [10, 11, 20]
(The running of superconducting energy gap is also observed
in the Gauss-Bonnet (GB) gravity [22, 23] and the quasitopo-
logical gravity [24, 25], in which w, /T, is always greater
than 8.). Furthermore, the holographic superconductor and
its properties, including the superconducting energy gap
and Homes’ law, have also been studied in 6-derivative the-
ory, where the Maxwell fields couple more Weyl tensor
[26]. There are wider superconducting energy gap proxi-
mately ranging from 5.5 to 16. And in certain range of
parameters of the holographic superconductor models in
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both 4- and 6-derivative theory frameworks, the experimen-
tal results of Homes’ law can be satisfied.

Most of the studies are implemented numerically. To
back up the numerical results and especially explore the
mechanism behind these phenomena, we can resort to the
analytical methods. The analytical matching method is devel-
oped in [22, 23, 27-29] to calculate the critical temperature
and critical magnetic field. But the validity depends on the
choice of the matching point. A particular case is that the
analytical method is invalid for the GB holographic super-
conductor with zero scalar mass since the curvature correc-
tion term does not contribute to the analytic approximation
[23]. A new analytic procedure by using the second-order
Sturm-Liouville (S-L) method is developed to work out the
critical temperature in [30], in which the analytic result is
in good agreement with the numerical one. And then, this
procedure is widely applied to other holographic models
and proved to be powerful (see [31-49] and references
therein). In addition, the optical conductivity can be also
worked out analytically [30]. By this way, the superconduct-
ing energy gap can be estimated analytically, which is in good
agreement with the numerical result.

In this paper, we will analytically study the holographic
superconductor model from higher derivative (HD) theory
[10, 26] by using the S-L variational method. The plan of this
work is organized as follows. In Section 2, we present a brief
introduction of the holographic superconductor models
from HD theory. By using the S-L method, we analytically
work out the critical temperature of the superconducting
phase transition in Section 3. In Section 4, the condensation
near the critical temperature is also analytically obtained.
Then, we analytically derive the low frequency conductivity
in the low-temperature limit in Section 5. In particular, the
superconducting energy gap is approximately worked out.
Finally, the conclusion and discussion are presented in
Section 6.

2. The Holographic Superconductor from
HD Theory

In this section, we present a brief review on the holographic
superconductor from HD theory. For more details, please
refer to [26]. We shall work in the probe limit. So, we shall
start with the background geometry of the 4-dimensional
SS-AdS black brane:

1 r?
ds* = —f(r)dt* + mdrz t o

f0-1(1-%).

where r, is the horizon of the black brane while the confor-
mal AdS boundary locates at r — co. The Hawking temper-
ature of this black brane is

(dx* + dy?),
(1)

3r,
= . 2
4r1? @
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On top of the above fixed background, we consider the
actions including the charged complex scalar field ¥ and
the Maxwell field strength F,, coupling with the Weyl tensor

as follows:

LZ
$i= [/~ Bk E ) )
Sy = Jd“xﬁ(—!DMz -m’|y[?). (4)

In the action S, F,, =V,A, -V A, with A, being the
U(1) gauge field. The tensor X comprises an infinite family
of HD terms [50] (The HD coupling terms are introduced
by the Weyl tensor, which vanishes at the conformal AdS
boundary. Such HD coupling terms can give lots of interest-
ing results. For instance, they break the electromagnetic
(EM) self-duality in 4 dimensional spacetimes, which corre-
sponds to the particle-vortex duality in the boundary theory
[51-56]. In addition, the similar coupling terms can be also
introduced to construct the holographic quantum critical
phase (QCP) [57-59]. When the backreaction is included,
we can construct the metal insulator phase transition
[55, 60] and explore the effect on the chaos, the holographic
entanglement, the thermodynamics, and the holographic
thermalization from the Weyl tensor [60-64]. We can also
construct the holographic superconductors with the HD cou-
plings of an U(1) field to a scalar field as in [65-67]. This type
of holographic superconductor model exhibits a rich phase
structure, and in particular, the transition from the normal
to the superconducting phase can be tuned to be of first order
or of second order depending of the coupling parameters.):

X‘uvpa = I}WPG - Syl,lecw/pa - 4L4y2,1 CZI‘MVPU
- 8L4Y2,2 Cyvaﬁcaﬁpg - 4LsyS,l C3I;4vpg

_ 8L6y3’2C2CWPU _ 8L6y3,3cyvall‘;l ClxlﬁlaZBZC Po4...

>

(5)

% p,

where IWP":Z(SM[P(SV“} is an identity matrix and C"=
CW"‘“B1 Calﬁ1“2ﬁ2 Cgr_lﬁn,l' The factor of L in Equations

(3) and (5) is introduced so that the coupling parameters
gr and y;; are dimensionless. But for later convenience, we

shall set L=1 and g, =1 below. When X, 7" =1, the
action S, is just the standard Maxwell theory. For conve-
nience, we write y, ; =y and y,,; =y, (i=1,2). In this paper,
we shall truncate the X tensor up to the square of the Weyl
tensor, which constructs 4- or 6-derivative theory. Since the
effect of both 6-derivative terms, i.e., y, and y, terms, is sim-
ilar [26, 50], it is enough to study y and y, terms in this paper.
Note that in the SS-AdS black brane background, the param-
eters y and y, are constrained in the regions —1/12 <y < 1/12
[51, 68] and y, < 1/48 [50], respectively, when other param-
eters are turned off. Here, we also study the superconductiv-
ity in these parameter spaces. ¥ in the action Sy is the
charged complex scalar field, which has mass m and charge
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q of the gauge field A. It is convenient to write ¥ as ¥ = ye',
where ¥ and 0 are the real scalar field and the Stiickelberg
field, respectively. The covariant derivative D# is defined as

D,=0,-iqA,. Choosing the gauge 0=0, we obtain the
EOMs of the gauge field and scalar field as

V,(X"PF,,) - 4q>Aty? =0, (6)
[V? = (m* +¢*A*) ]y =0. (7)

Further, we assume the following form for both the gauge
field and the scalar field as

A=(¢(r),0,0,0), ®)
y=y(r),

which are only the function of the radial coordinate r. Under
this ansatz, the EOMs (6) can be explicitly written as

" ar’-r m?(rt —rr)) - ¢ (r) B
(r) ri—rrl vi)- (r* - r?r)2 y(r) =0,
" 2(r6 +4r’ry+96rly,)
o)+ 7 —8rirdy — 48rrSy, ()
2 2r7 2 r
_ ar'y(r) o(r) =0,

(7 =) 8y ~48ry,)

©)

where the prime denotes the derivative with respect to r. It is
more convenient to work in the coordinate u = r_/r, in which
u=1 and u=0 are the horizon and the AdS boundary,
respectively. Then, the above EOMs become

2 +u? )+ m?r? (1’ - 1) +q U ¢ (u)
- u
v r2u?(u? - 1)2

Y (u) y(u) =0,

(10)

u—ut

"o — 24u2(y+ 12u3y1) '(u)
1 - 8uly — 48uby,
29°y* (u)

B uz(l - u3)(1 - 81/!3)/—48146)/1) ¢(“) =0,

(11)

where the prime now represents the derivative with respect to
u. We shall fix the mass of the scalar field to m? = -2 in this
paper. So, the asymptotical behaviors for both y and ¢ at
the boundary u — 0 are

d=p-Lu (12)
y=uy, + 'y, (13)

where y and p are interpreted as the chemical potential
and charge density of the dual boundary field theory,
respectively. According to the AdS/CFT correspondence,

either v, or y, will act as a condensation operator while
the other will be identified as a source. Here, we treat v,
as the source and vy, as the expectation value, which is
denoted as y, = (0,).

3. The Critical Temperature

In this section, following the SL method proposed in [30], we
analytically work out the critical temperature T, for the
superconducting phase transition. Note that through this
paper, we set g=1.

To this end, we consider the system approaching the
phase transition point, for which T'— T, such that we can
approximately set yw=0. Then, the Maxwell EOM (11)
reduces to

24P (y + 120%y, )

" R LR YR |} 14
¢ () 1 - 8uly — 48uby, (14)

Since the introduction of the HD coupling term, it is hard
to directly obtain the analytic solution of ¢(u) as that in [30].
Alternatively, by treating the coupling parameters y and y, as
the small quantities, we can solve perturbatively the above
equation order by order. (Since for the allowed region of
the coupling parameters, the denominator 1 — 8u®y — 48u°
y, in Equation (14) is larger than zero, it is safe to solve
perturbatively this equation in terms of the order of the
coupling parameters.) Up to the first order of y and y,,
we obtain ¢(u) as

$(u)=—(1-w)&-2y(1-u")E - gy{g(l -u’), (15)

where C is a constant of integration. When y=y, =0,
¢(u) =C(u—1), which reduces to that without the Weyl
coupling term as [30]. The integration constant C can
be determined by the UV asymptotic behavior of ¢(u)
(Equation (12)), which gives

__r
G- (16)

It is convenient to introduce A = p/r2_, for which r,_ is the

radius of the horizon at T = T.. Then, the solution for ¢(u)
(15) can be rewritten as

ewl a7

S(u) =Ar (1 —u) |1+ 29¢(u) + Z

where &(u)=1+u+u*+u’ and & (u)=1+u+u?+u’+
ut +u® + ub.

After the solution of ¢(u) is at hand, we turn to solve
Equation (10) for the scalar field w(u). Near the critical tem-
perature (T — T), Equation (10) becomes



" 12, 1
VW) ¥ 0%
_ 2 A(u=1)(7+ 14y (w) + 48y, ()
2 49(u +u+1)

y(u)=0,

(18)

where we have used the solution of ¢(u), i.e., Equation (17).
In order to match the behavior at the conformal AdS bound-
ary, we introduce the form for y(u) as

N F(u). (19)

y(u)=

F(u) is introduced in the above equation as a trial func-
tion, for which we shall take the formula as

F(u)=1-au?, (20)

where « is the parameter to be determined. It satisfies the

boundary conditions F(0) = 1 and F'(0) = 0. Inserting Equa-
tion (19) into Equation (18), one obtains a second-order S-L
self-adjoint differential equation for F(u) as

(u2 - u5)F"(u) + (2u- 5u4)F/(u) — 4’ F(u)

2
ARy a8y, Tu Myt - d8yd)
49(u* - 1)

(21)

The S-L theory indicates that the eigenvalue A* mini-
mizes the expression [37]:

R é{T(u) [Fw)] P(u)[F(u)V}du

» > 22
JoQ(u)[F(u)] du (22)
where
T(u)=u’ -,
Qu) = - u? (7 + 14y + 48);19— 73u — ldyut - 48y1u7)2 |
(¥ -1)
(23)

Then, the critical temperature T, = T./\/p can be
given as
= 3
T

¢ 471\/1

(24)

The strategy for calculating the critical temperature is
to minimize the expression (22) of the eigenvalue A* with
respect to the coefficient a, and then, substituting the
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TaBLe 1: The analytical and numerical results for the
critical temperature of the holographic superconductors from the
4-derivative theory.

y -1/12 -1/24 0 1/24 1712

T, | Anatytica 0.103 0.109  0.117 0129  0.149
Tolyumeica 0105 0111 0118 0130  0.150
TaBLE 2: The analytical and numerical results for the

critical temperature of the holographic superconductors from the
6-derivative theory.

V1 1/48 0 —1/48
TC |Analytical 0.170 0.117 0.106
TC |Numerical 0.183 0.118 0.107

value of A into Equation (24), we can obtain the value
of T..

When the HD coupling terms vanish, i.e., y =y, =0, the
eigenvalue A* can be analytically worked out as

/\2‘)’:0»}’1:0
B 4807 — 80 + 60
10v/37(02 — 1) +30(3 — In (3)) - 3a2(7 + 10 In (3) + a(130 — 60 In (9))

(25)

Its minimum can be achieved at & = 0.6016. The corre-
sponding minimum value of A% is A% = 17.309. Therefore,
the critical temperature T'. reads as T, = 0.11704. This ana-
Iytical result is in very good agreement with the numerical
result: T, = 0.118 [5].

But when y#0 or y, #0, it is hard to work out the
analytical expression of A>. Therefore, we resort to the
perturbative calculation. For the 4-derivative term, we
obtain the value of A* up to the order of y as O(y°),
while for the 6-derivative term, we obtain its value up
to the order of y, as O(y}). Finally, we present the results
for 4- and 6-derivative theories in Tables 1 and 2, respec-
tively. For comparison, we also give the corresponding
numerical results in Tables 1 and 2. From the two tables,
we see that the analytical results we worked out here are
in very good agreement with the numerical ones. It con-
firms that the perturbative method to calculate the value
of A* is available.

4. Condensation

In this section, we aim to investigate the condensation
operator near the phase transition region. Away from
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y=-1/12

<O>"IT,

0 T/T. 0

095 096 097 098 0.99 1.00 : 095 096 0.97
——— Analytic ——— Analytic
—— Numerical —— Numerical

5
y=1/12
<O>'""IT,
4
3
2
1
T/T. 0 T/T,
098 0.99 1.00 ) 095 096 097 098 0.99 1.00 :
——— Analytic
—— Numerical

FIGURE 1: The condensation from 4-derivative theory for different y obtained analytically and numerically, respectively.

(but close to) the critical temperature T, field Equation
(11) for ¢ can be rewritten as

24u*y o - (0,)*u?F*(u) oo
G- M A nEey-n 170
(26)

¢" (u) +

Near the phase transition region, the condensation (0, )*
/r is very small. Thus, we can expand ¢(u) perturbatively
in terms of the condensation (0, )*/r* as

(0.

$(u) =A(1-u) 1+2y’§(u)+§)’1£1(”) + !

r

X

+

(27)

where y(u) satisfies the boundary condition (1) = x'(1) = 0.
Substituting Equation (27) into Equation (26), we obtain
the differential equation for y(u) up to the first order of
(O +>2/ri:

!

{(1 - 8u’y -~ 48u6y1))('(u)}

_ (7 + 14y (u) + 48y, 81 (1)
=A 7(w? +u+1) Flu)"

(28)

Integrating both sides of the above equation in the
interval [0,1] with the boundary condition, we obtain

X'(0)=-Ad, (29)
where
(M7 + 14yE () + 48y, 8, (1) 2
o = Jo IOETESY F(u)“du. (30)

Near the boundary u = 0, combining Equations (12) and
(27), one has

rﬁ - rﬁzu =A(1-u) {1 +2y8(u) + 4_78)’151(”)}
PR ) (31)

[X(O) + ux'(0)+-~]

Comparing the coefficient of u from both sides of the
equation, we obtain

LAy - <@+>2X’(0) :A(l + <@;>2.szf).

ry

(32)

Therefore, the condensate near the critical temperature is

/ T
<@+> = KT% 1- ?C’

4m\? 2

k=|—) —.

5) 7

It indicates that the phase transition is second order with

mean field behavior, which is independent of the HD coupling

parameters. It analytically confirms the results numerically
obtained in our previous works [10, 26].

Finally, we also give the analytical and numerical conden-

sation for samples y and y, in Figures 1 and 2, respectively.

Near the critical temperature, the analytical results match
well with the numerical ones.

(33)
where

(34)

5. The Conductivity at Low-
Temperature Region

In this section, we turn to study the conductivity at the low-
temperature region. When temperature T — 0, the domi-
nant contribution comes from the neighborhood of the
boundary (u = 0). So, we make a rescaling y(bu) and ¢(bu),



y,=1/48

0 T T T T T|T,
0.95 0.96 0.97 0.98 0.99 1.00
——— Analytic
—— Numerical
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0 T T T T i T/T,
0.95 0.96 0.97 0.98 0.99 1.00

~—— Analytic

—— Numerical

F1GURE 2: The condensation from 6-derivative theory for different y, obtained analytically and numerically, respectively.

and then, u — u/b with letting b — co. Thus, the field
Equations (10) and (11) can be simplified as

F' (u) %F’(u) + ¢2r(2u) F(u) =0, (35)
(p"(u) _ <O+>2u2 Fz(u)(/)(u) -0, (36)

z
where we have used Equation (19) and restored the original
coordinate u. We shall solve the above equations subject to
the following boundary conditions:

!

3F'(1) +4F(1)=0, F(0)=1, F'(0)=0.  (37)

Equation (37) is the natural boundary condition at the
horizon, which can be directly deduced from Equation (21).

To proceed, we assume that in the asymptotic regime
closing to the conformal boundary, F(u) takes the following
power law formula:

B
F = 38
()~ (39)
where f is the parameter to be determined. Then, the solu-
tion of field Equation (36) for ¢(u) is

¢(u) = Br VbuK, , (bu), (39)

b= M, (40)

2
s

where & is the integral constant and K, (z) is the modified
Bessel function of the second kind with # denoting the order
of the corresponding Bessel function. Near the boundary u
=0, using Equation (12), the ratio p/r? can be estimated as

p  I'(—=(1/2)) =
P R Bb = \/;9%.

2 3/2
s

(41)

Substituting Equation (39) into Equation (35) and rescal-
ing u — u/b, we have

2 ~2
F" + ;F’ + B u(K,,(u)*F =0, (42)

The above equation is the second-order S-L self-adjoint
differential equation. It should be solved in the interval
(0,00) subject to the boundary condition F(0) =1, F'(0) =0,
and F — 0 as u — 00. The expression for estimating the
minimum eigenvalue of & is provided by

pe IS {uF'(u)] du

= I, () P #)

In order to connect smoothly the asymptotic regime
depicted by the power law formula (38) with the boundary
condition F(0) = 1, we introduce the following trial function:

Fy(u) = <§) tanh (%)

Then, we can minimize expression (43) to fix the value of
B. It is easy to find that we have the minimum 2% = 1.92 at
B=0.8.

Once the solution for the scalar field y is at hand, we can
turn to study the optical conductivity. To this end, we switch
on the perturbations of the gauge field along x direction, A,
(r,t)=A(r)e™. And then, the perturbative gauge field
equation can be read as

(44)

3u(1-y(4-8u’) —48y, (3u’ -2)u’) ,

n
A (u) + (u3 _ 1)(1) + 4)/“3 _48)/1146 (u)
wz 21//(”)2 )
' (- 1) " w2 (u? = 1)(1 + 4yu® — 48y, uS) A(u) =0.

(45)
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To proceed, we reexpress the above equation as the
following form:

[1;(1 —1’) (1+4yu’ - 48y1u6)A’(u)}
w? (1 +4yu® — 48y, u®)
* r,(1-ud) () u?

(46)

We want to recast the above equation as a Schrodinger
form. So, we move to the tortoise coordinate, which is

defined by

2fy?
Ve =

The integration constant has been calculated from the
boundary condition that r, =0 at u=0. Then, Equation
(46) becomes

— + [0 = V] =0, (48)

where @(u)=/1+4yu’ — 48y, uA(u), and the effective
potential V  is

61’ (2y* (76’ = 1)u’ — y(5u° - 2) (144y,u® — 1) + 24y,u° (240y,u° - 96y,u® — 81’ +5))

+
—48y,ub + 4yu® + 1

The wave Equation (48) is to be solved subject to ingoing
boundary condition at the horizon, i.e., the w-dependent part
of the equation for V4 = 0. The solution reads

CD(u) - e—iwr,, - (1 _ u)—iw/Sr,r. (50)

So, at low frequency, to account for the boundary condi-
tion at the horizon, we define

(1 +4yu’ — 48y, us)’
(49)

1 — )3
a-_174 G(u), (51)
v/ 1+ 4yu® — 48y, ub

where &(u) is regular at the horizon (u = 1). Then, Equation
(45) becomes

[18u(24y1u3 (30yu® + (8 — 12y)u’ + 48y, (2 = 507 )u® = 5) + y(~14yu’ + (2y - 5)u’ + 2))] .

(—48y,u +4yu® + 1)

(u+2)( +u+4)w’

6y(u)? iQu+ 1w
+ -
u?(1 + 4yu’ — 48y, ub) r

+

We can expand the wave function €(u) in a Tay-
lor series at the horizon, which gives the boundary
condition as

2r, (-9y + 216 D2 202
(3r, —2i0)%' (1) + r,(-9y +216y, +y(1)°) 20
4y-48y, +1 3r

3r2(2+u+1)

g-3(1-v)g" + [9u2—2(1+u+u2)i3 g'=0.

ty

(52)

At low temperature, it is convenient to solve Equa-
tion (52) by letting u— u/b with b— co. Then,
Equation (52) becomes

39" (u) +

r

2i0 | bu\* 8w ~
—+? (u) [317 tanh (F) W Z(u)=0.



The general solution of Equation (54) can be given
in terms of the Legendre function:

_ (1 —tanh (bu/p) lwplGbr,
Glu)~ (1 + tanh (bu/ﬁ))

. +p bu 55

{C * P-(1/2)+(1/2)\/W <tanh B ) (55)
B b_u

* C‘P7(1/2)+(1/2)\/1+4ﬁ2 (tanh B )} ’

where ¢, and c_ are the integration constants, for which we
shall derive them in terms of the boundary condition at the
horizon below.

At u =1, we have tanh (bu/f) = 1, the Legendre functions
become

+B h bu 22 . bu\ F(B2)
p* buy _ 2P |

—(172)+(172)/ 14452 <tan /3> Tap) ( tan _ﬁ>
(56)

Therefore, we obtain

= [r(l BT e_b} e

(1)~ [c+(b - (iw/3r,)) o c_(b+ (iw/3r,)) eb} o)

r(i-p I(1+p)
(57)

Substituting (1) and €' (1) in the boundary condition
(53), we obtain the ratio (c,/c_) as

c_+=
c

-2 F(l_ﬁ)
—e br(1+/3)*/”’ (58)

where

(b* = 3b) = 6(3 +2b)y + 144(3 + b)y,
(b* +3b) - 6(3 - 2b)y + 144(3 - b)y,

, Hiwb(1+4y - 48y,) (b* - 30y -3 +576y,)
r, (b* +3b(1+ 4y - 48y,) - 18(y - 24y,))’

(59)

According the definition of conductivity and AdS/CFT
correspondence, one has

o)~ i) /(0,Y0.47 - 0.66(c,/c_) (60)

w 0.85-0.30(c,/c_)
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So, in the limit of the low frequency (w — 0), we have

Ro(w) ~e b =T,

Jo(w) :o.ss%. o

E, is identified to be the superconducting energy gap,
which is determined as

E = 37”5:[@ =0.43,/(0,). (62)

g

This result reveals that the superconducting energy gap is
proportional to the value of the condensation. But we note
that since the condensation changes with the HD coupling
parameters, as the function of the HD coupling parameters,
the superconducting energy gap follows the same change
trend as that of the condensation. This analytical result is
qualitatively consistent with the numerical one in [10, 26].

Since the introduction of the HD term, which compli-
cates the EOM, we cannot analytically obtain the conductiv-
ity as the function of w at T — as [29]. In the future, we can
seek new methods to do this thing. For example, we can study
the conductivity as the function of w at zero temperature by
using the semianalytical methods as [69].

6. Conclusions and Discussions

In this paper, we have analytically studied the holographic
superconductor models from the HD theory. To achieve this
goal, we use the Sturm-Liouville (S-L) eigenvalue method,
which has been widely used in holographic models. Different
from the usual holographic superconductor models, we can-
not derive the analytical expression for the eigenvalue A* due
to the introduction of the HD coupling terms. Instead, we
develop the perturbative method in terms of the HD coupling
parameters to calculate the eigenvalue A* and so the critical
temperature. We find that the analytical results are in good
agreement with the numerical results, which confirms that
the perturbative method is available. Along the same line,
we calculate the value of the condensation near the critical
temperature. We find that the phase transition is second
order with mean field behavior, which is independent of the
HD coupling parameters. It analytically confirms the results
numerically obtained in our previous works [10, 26]. We also
calculate the conductivity in the low-temperature limit,
which is qualitatively consistent with the numerical one
[10, 26]. We find that the superconducting energy gap is pro-
portional to the value of the condensation. But we note that
since the condensation changes with the HD coupling
parameters, as the function of the HD coupling parameters,
the superconducting energy gap follows the same change
trend as that of the condensation.
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