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In this paper, we analytically study the holographic superconductor models with the high derivative (HD) coupling terms. Using
the Sturm-Liouville (S-L) eigenvalue method, we perturbatively calculate the critical temperature. The analytical results are in
good agreement with the numerical results. It confirms that the perturbative method in terms of the HD coupling parameters is
available. Along the same line, we analytically calculate the value of the condensation near the critical temperature. We find that
the phase transition is second order with mean field behavior, which is independent of the HD coupling parameters. Then, in
the low-temperature limit, we also calculate the conductivity, which is qualitatively consistent with the numerical one. We find
that the superconducting energy gap is proportional to the value of the condensation. But we note that since the condensation
changes with the HD coupling parameters, as the function of the HD coupling parameters, the superconducting energy gap
follows the same change trend as that of the condensation.

1. Introduction

The mechanism of the high-temperature superconductor is
one of the long-standing important and fundamental issues
in strongly correlated condensed matter physics. AdS/CFT
(Anti-de Sitter/Conformal Field theory) correspondence
[1–4] provides a powerful tool and novel mechanism to
attack this problem. Great progresses have been made,
and the first holographic superconductor model has been
constructed in [5]. This model exhibits appealing charac-
teristics, one of which is the superconducting energy gap
ωg/Tc ≈ 8. This value roughly approximates that measured
in high-temperature superconductor materials [6]. It is in
contrast to the one of ωg/Tc ≈ 3:5 from weakly coupled
BCS theory.

Lots of works on the holographic superconductor have
been fully explored (see [7–9] and references therein). An
interesting holographic superconductor model is first con-
structed in one class of 4-derivative theory [10], which

involves the coupling between the Maxwell field and a Weyl
tensor, and after that, lots of extended studies on the holo-
graphic superconductor in 4-derivative theory framework
are explored in [11–21]. Compared with the usual holo-
graphic superconductor, the superconducting energy gap
ωg/Tc runs from 6, approaching the one of weakly coupled
BCS theory, to 10, which is beyond that of the usual holo-
graphic superconductor and shed a light on the study of the
high-temperature superconducting energy gap [10, 11, 20]
(The running of superconducting energy gap is also observed
in the Gauss-Bonnet (GB) gravity [22, 23] and the quasitopo-
logical gravity [24, 25], in which ωg/Tc is always greater
than 8.). Furthermore, the holographic superconductor and
its properties, including the superconducting energy gap
and Homes’ law, have also been studied in 6-derivative the-
ory, where the Maxwell fields couple more Weyl tensor
[26]. There are wider superconducting energy gap proxi-
mately ranging from 5.5 to 16. And in certain range of
parameters of the holographic superconductor models in
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both 4- and 6-derivative theory frameworks, the experimen-
tal results of Homes’ law can be satisfied.

Most of the studies are implemented numerically. To
back up the numerical results and especially explore the
mechanism behind these phenomena, we can resort to the
analytical methods. The analytical matching method is devel-
oped in [22, 23, 27–29] to calculate the critical temperature
and critical magnetic field. But the validity depends on the
choice of the matching point. A particular case is that the
analytical method is invalid for the GB holographic super-
conductor with zero scalar mass since the curvature correc-
tion term does not contribute to the analytic approximation
[23]. A new analytic procedure by using the second-order
Sturm-Liouville (S-L) method is developed to work out the
critical temperature in [30], in which the analytic result is
in good agreement with the numerical one. And then, this
procedure is widely applied to other holographic models
and proved to be powerful (see [31–49] and references
therein). In addition, the optical conductivity can be also
worked out analytically [30]. By this way, the superconduct-
ing energy gap can be estimated analytically, which is in good
agreement with the numerical result.

In this paper, we will analytically study the holographic
superconductor model from higher derivative (HD) theory
[10, 26] by using the S-L variational method. The plan of this
work is organized as follows. In Section 2, we present a brief
introduction of the holographic superconductor models
from HD theory. By using the S-L method, we analytically
work out the critical temperature of the superconducting
phase transition in Section 3. In Section 4, the condensation
near the critical temperature is also analytically obtained.
Then, we analytically derive the low frequency conductivity
in the low-temperature limit in Section 5. In particular, the
superconducting energy gap is approximately worked out.
Finally, the conclusion and discussion are presented in
Section 6.

2. The Holographic Superconductor from
HD Theory

In this section, we present a brief review on the holographic
superconductor from HD theory. For more details, please
refer to [26]. We shall work in the probe limit. So, we shall
start with the background geometry of the 4-dimensional
SS-AdS black brane:

ds2 = −f rð Þdt2 + 1
f rð Þ dr

2 + r2

L2
dx2 + dy2
� �

,

f rð Þ = r2

L2
1 − r3+

r3

� �
,

ð1Þ

where r+ is the horizon of the black brane while the confor-
mal AdS boundary locates at r⟶∞. The Hawking temper-
ature of this black brane is

T = 3r+
4πL2

: ð2Þ

On top of the above fixed background, we consider the
actions including the charged complex scalar field Ψ and
the Maxwell field strength Fμν coupling with the Weyl tensor
as follows:

SA =
ð
d4x

ffiffiffiffiffiffi
−g

p
−

L2

8g2F
FμvX

μvρσFρσ

� �
, ð3Þ

Sψ =
ð
d4x

ffiffiffiffiffiffi
−g

p
− Dμψ

2�� −m2 ψj 2����� �
: ð4Þ

In the action SA, Fμν = ∇μAν − ∇νAμ with Aμ being the
Uð1Þ gauge field. The tensor X comprises an infinite family
of HD terms [50] (The HD coupling terms are introduced
by the Weyl tensor, which vanishes at the conformal AdS
boundary. Such HD coupling terms can give lots of interest-
ing results. For instance, they break the electromagnetic
(EM) self-duality in 4 dimensional spacetimes, which corre-
sponds to the particle-vortex duality in the boundary theory
[51–56]. In addition, the similar coupling terms can be also
introduced to construct the holographic quantum critical
phase (QCP) [57–59]. When the backreaction is included,
we can construct the metal insulator phase transition
[55, 60] and explore the effect on the chaos, the holographic
entanglement, the thermodynamics, and the holographic
thermalization from the Weyl tensor [60–64]. We can also
construct the holographic superconductors with the HD cou-
plings of anUð1Þ field to a scalar field as in [65–67]. This type
of holographic superconductor model exhibits a rich phase
structure, and in particular, the transition from the normal
to the superconducting phase can be tuned to be of first order
or of second order depending of the coupling parameters.):

Xμv
ρσ = Iμv

ρσ − 8γ1,1L2Cμv
ρσ − 4L4γ2,1C2Iμv

ρσ

− 8L4γ2,2Cμv
αβCαβ

ρσ − 4L6γ3,1C3Iμv
ρσ

− 8L6γ3,2C2Cμv
ρσ − 8L6γ3,3Cμv

α1β1Cα1β1
α2β2Cα2β2

ρσ+⋯,
ð5Þ

where Iμv
ρσ = 2δμ½ρδvσ� is an identity matrix and Cn =

Cμv
α1β1Cα1β1

α2β2 ⋯ Cμv
αn−1βn−1

. The factor of L in Equations

(3) and (5) is introduced so that the coupling parameters
gF and γi,j are dimensionless. But for later convenience, we
shall set L = 1 and gF = 1 below. When Xμv

ρσ = Iμv
ρσ, the

action SA is just the standard Maxwell theory. For conve-
nience, we write γ1,1 = γ and γ2,i = γi (i = 1, 2). In this paper,
we shall truncate the X tensor up to the square of the Weyl
tensor, which constructs 4- or 6-derivative theory. Since the
effect of both 6-derivative terms, i.e., γ1 and γ2 terms, is sim-
ilar [26, 50], it is enough to study γ and γ1 terms in this paper.
Note that in the SS-AdS black brane background, the param-
eters γ and γ1 are constrained in the regions −1/12 ≤ γ ≤ 1/12
[51, 68] and γ1 ≤ 1/48 [50], respectively, when other param-
eters are turned off. Here, we also study the superconductiv-
ity in these parameter spaces. Ψ in the action SΨ is the
charged complex scalar field, which has mass m and charge
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q of the gauge field A. It is convenient to write Ψ as Ψ = ψeiθ,
where ψ and θ are the real scalar field and the Stückelberg
field, respectively. The covariant derivative Dμ is defined as
Dμ = ∂μ − iqAμ. Choosing the gauge θ = 0, we obtain the
EOMs of the gauge field and scalar field as

∇v XμvρσFρσ

� �
− 4q2Aμψ2 = 0, ð6Þ

∇2 − m2 + q2A2� �� 	
ψ = 0: ð7Þ

Further, we assume the following form for both the gauge
field and the scalar field as

A = ϕ rð Þ, 0, 0, 0ð Þ,
ψ = ψ rð Þ,

ð8Þ

which are only the function of the radial coordinate r. Under
this ansatz, the EOMs (6) can be explicitly written as

ψ″ rð Þ + 4r3 − r3+
r4 − rr3+

ψ′ rð Þ − m2 r4 − rr3+
� �

− r2ϕ2 rð Þ
r3 − r3+ð Þ2

ψ rð Þ = 0,

ϕ″ rð Þ + 2 r6 + 4r3r3+γ + 96r6+γ1
� �
r7 − 8r4r3+γ − 48rr6+γ1

ϕ′ rð Þ

−
2q2r7ψ2 rð Þ

r3 − r3+ð Þ r6 − 8r3r3+γ − 48r6+γ1ð Þϕ rð Þ = 0,

ð9Þ

where the prime denotes the derivative with respect to r. It is
more convenient to work in the coordinate u = r+/r, in which
u = 1 and u = 0 are the horizon and the AdS boundary,
respectively. Then, the above EOMs become

ψ″ uð Þ − 2 + u3

u − u4
ψ′ uð Þ + m2r2+ u3 − 1

� �
+ q2u2ϕ2 uð Þ

r2+u
2 u3 − 1ð Þ2

ψ uð Þ = 0,

ð10Þ

ϕ″ uð Þ − 24u2 γ + 12u3γ1
� �

1 − 8u3γ − 48u6γ1
ϕ′ uð Þ

−
2q2ψ2 uð Þ

u2 1 − u3ð Þ 1 − 8u3γ − 48u6γ1ð Þ ϕ uð Þ = 0,
ð11Þ

where the prime now represents the derivative with respect to
u. We shall fix the mass of the scalar field to m2 = −2 in this
paper. So, the asymptotical behaviors for both ψ and φ at
the boundary u⟶ 0 are

ϕ = μ −
ρ

r+
u, ð12Þ

ψ = uψ1 + u2ψ2, ð13Þ
where μ and ρ are interpreted as the chemical potential
and charge density of the dual boundary field theory,
respectively. According to the AdS/CFT correspondence,

either ψ1 or ψ2 will act as a condensation operator while
the other will be identified as a source. Here, we treat ψ1
as the source and ψ2 as the expectation value, which is
denoted as ψ2 = hO+i.

3. The Critical Temperature

In this section, following the SL method proposed in [30], we
analytically work out the critical temperature Tc for the
superconducting phase transition. Note that through this
paper, we set q = 1.

To this end, we consider the system approaching the
phase transition point, for which T ⟶ Tc such that we can
approximately set ψ = 0. Then, the Maxwell EOM (11)
reduces to

ϕ″ uð Þ − 24u2 γ + 12u3γ1
� �

1 − 8u3γ − 48u6γ1
= 0: ð14Þ

Since the introduction of the HD coupling term, it is hard
to directly obtain the analytic solution of ϕðuÞ as that in [30].
Alternatively, by treating the coupling parameters γ and γ1 as
the small quantities, we can solve perturbatively the above
equation order by order. (Since for the allowed region of
the coupling parameters, the denominator 1 − 8u3γ − 48u6
γ1 in Equation (14) is larger than zero, it is safe to solve
perturbatively this equation in terms of the order of the
coupling parameters.) Up to the first order of γ and γ1,
we obtain ϕðuÞ as

ϕ uð Þ = − 1 − uð ÞC − 2γ 1 − u4
� �

C −
48
7 γ1C 1 − u7

� �
, ð15Þ

where C is a constant of integration. When γ = γ1 = 0,
ϕðuÞ = Cðu − 1Þ, which reduces to that without the Weyl
coupling term as [30]. The integration constant C can
be determined by the UV asymptotic behavior of ϕðuÞ
(Equation (12)), which gives

C = −
ρ

r+
: ð16Þ

It is convenient to introduce λ = ρ/r2+c, for which r+c is the
radius of the horizon at T = Tc. Then, the solution for ϕðuÞ
(15) can be rewritten as

ϕ uð Þ = λr+C 1 − uð Þ 1 + 2γξ uð Þ + 48γ1
7 ξ1 uð Þ


 �
, ð17Þ

where ξðuÞ = 1 + u + u2 + u3 and ξ1ðuÞ = 1 + u + u2 + u3 +
u4 + u5 + u6.

After the solution of ϕðuÞ is at hand, we turn to solve
Equation (10) for the scalar field ψðuÞ. Near the critical tem-
perature (T ⟶ Tc), Equation (10) becomes
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ψ″ uð Þ + u3 + 2
u u3 − 1ð Þψ′ uð Þ + 1

u3 − 1

� −
2
u2

+ λ2 u − 1ð Þ 7 + 14γζ uð Þ + 48γ1ζ1 uð Þð Þ2
49 u2 + u + 1ð Þ

" #
ψ uð Þ = 0,

ð18Þ

where we have used the solution of ϕðuÞ, i.e., Equation (17).
In order to match the behavior at the conformal AdS bound-
ary, we introduce the form for ψðuÞ as

ψ uð Þ = O+h iffiffiffi
2

p
r2+

u2F uð Þ: ð19Þ

FðuÞ is introduced in the above equation as a trial func-
tion, for which we shall take the formula as

F uð Þ = 1 − αu2, ð20Þ

where α is the parameter to be determined. It satisfies the
boundary conditions Fð0Þ = 1 and F ′ð0Þ = 0. Inserting Equa-
tion (19) into Equation (18), one obtains a second-order S-L
self-adjoint differential equation for FðuÞ as

u2 − u5
� �

F″ uð Þ + 2u − 5u4
� �

F ′ uð Þ − 4u3F uð Þ

−
λ2u2 7 + 14γ + 48γ1 − 7u − 14γu4 − 48γ1u7

� �2
49 u3 − 1ð Þ F uð Þ = 0:

ð21Þ

The S-L theory indicates that the eigenvalue λ2 mini-
mizes the expression [37]:

λ2 =

Ð 1
0 T uð Þ F ′ uð Þ

h i2
+ P uð Þ F uð Þ½ �2

� 

duÐ 1

0Q uð Þ F uð Þ½ �2du
, ð22Þ

where

T uð Þ = u2 − u5,
P uð Þ = 4u3,

Q uð Þ = −
u2 7 + 14γ + 48γ1 − 7u − 14γu4 − 48γ1u7
� �2

49 u3 − 1ð Þ :

ð23Þ

Then, the critical temperature T̂c ≡ Tc/
ffiffiffi
ρ

p
can be

given as

T̂c =
3

4π
ffiffiffi
λ

p : ð24Þ

The strategy for calculating the critical temperature is
to minimize the expression (22) of the eigenvalue λ2 with
respect to the coefficient α, and then, substituting the

value of λ into Equation (24), we can obtain the value
of T̂c.

When the HD coupling terms vanish, i.e., γ = γ1 = 0, the
eigenvalue λ2 can be analytically worked out as

λ2 γ=0, γ1=0

���
= 48α2 − 80α + 60
10

ffiffiffi
3

p
π α2 − 1ð Þ + 30 3 − ln 3ð Þð Þ − 3α2 7 + 10 ln 3ð Þ + α 130 − 60 ln 9ð Þðð Þ

:

ð25Þ

Its minimum can be achieved at α ≈ 0:6016. The corre-
sponding minimum value of λ2 is λ2 ≈ 17:309. Therefore,
the critical temperature T̂c reads as T̂c = 0:11704. This ana-
lytical result is in very good agreement with the numerical
result: T̂c = 0:118 [5].

But when γ ≠ 0 or γ1 ≠ 0, it is hard to work out the
analytical expression of λ2. Therefore, we resort to the
perturbative calculation. For the 4-derivative term, we
obtain the value of λ2 up to the order of γ as Oðγ6Þ,
while for the 6-derivative term, we obtain its value up
to the order of γ1 as Oðγ81Þ. Finally, we present the results
for 4- and 6-derivative theories in Tables 1 and 2, respec-
tively. For comparison, we also give the corresponding
numerical results in Tables 1 and 2. From the two tables,
we see that the analytical results we worked out here are
in very good agreement with the numerical ones. It con-
firms that the perturbative method to calculate the value
of λ2 is available.

4. Condensation

In this section, we aim to investigate the condensation
operator near the phase transition region. Away from

Table 1: The analytical and numerical results for the
critical temperature of the holographic superconductors from the
4-derivative theory.

γ −1/12 −1/24 0 1/24 1/12
T̂c

��
Analytical 0.103 0.109 0.117 0.129 0.149

T̂c
��
Numerical 0.105 0.111 0.118 0.130 0.150

Table 2: The analytical and numerical results for the
critical temperature of the holographic superconductors from the
6-derivative theory.

γ1 1/48 0 −1/48
T̂c

��
Analytical 0.170 0.117 0.106

T̂c
��
Numerical 0.183 0.118 0.107

4 Advances in High Energy Physics



(but close to) the critical temperature Tc, field Equation
(11) for ϕ can be rewritten as

ϕ″ uð Þ + 24u2γ
8u3γ − 1ð Þ ϕ′ uð Þ − O+h i2u2F2 uð Þ

r4+ u3 − 1ð Þ 8u3γ − 1ð Þ ϕ uð Þ = 0:

ð26Þ

Near the phase transition region, the condensation hO+i2
/r4+ is very small. Thus, we can expand ϕðuÞ perturbatively
in terms of the condensation hO+i2/r4+ as

ϕ uð Þ
r+

= λ 1 − uð Þ 1 + 2γξ uð Þ + 48
7 γ1ξ1 uð Þ


 �
+ O+h i2

r4+
χ uð Þ+,⋯ ,

ð27Þ

where χðuÞ satisfies the boundary condition χð1Þ = χ′ð1Þ = 0.
Substituting Equation (27) into Equation (26), we obtain
the differential equation for χðuÞ up to the first order of
hO+i2/r4+:

1 − 8u3γ − 48u6γ1
� �

χ′ uð Þ
h i

′

= λ
u2 7 + 14γξ uð Þ + 48γ1ξ1 uð Þð Þ

7 u2 + u + 1ð Þ F uð Þ2:
ð28Þ

Integrating both sides of the above equation in the
interval [0,1] with the boundary condition, we obtain

χ′ 0ð Þ = −λA , ð29Þ

where

A =
ð1
0

u2 7 + 14γξ uð Þ + 48γ1ξ1 uð Þð Þ
7 u2 + u + 1ð Þ F uð Þ2du: ð30Þ

Near the boundary u = 0, combining Equations (12) and
(27), one has

μ

r+
−

ρ

r2+
u = λ 1 − uð Þ 1 + 2γξ uð Þ + 48

7 γ1ξ1 uð Þ

 �

+ O+h i2
r4+

χ 0ð Þ + uχ′ 0ð Þ+⋯
h i

:

ð31Þ

Comparing the coefficient of u from both sides of the
equation, we obtain

ρ

r2+
= λ −

O+h i2
r4+

χ′ 0ð Þ = λ 1 + O+h i2
r4+

A

� �
: ð32Þ

Therefore, the condensate near the critical temperature is

O+h i = κT2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

Tc

s
, ð33Þ

where

κ = 4π
3

� �2 2ffiffiffiffiffi
A

p : ð34Þ

It indicates that the phase transition is second order with
mean field behavior, which is independent of the HD coupling
parameters. It analytically confirms the results numerically
obtained in our previous works [10, 26].

Finally, we also give the analytical and numerical conden-
sation for samples γ and γ1 in Figures 1 and 2, respectively.
Near the critical temperature, the analytical results match
well with the numerical ones.

5. The Conductivity at Low-
Temperature Region

In this section, we turn to study the conductivity at the low-
temperature region. When temperature T ⟶ 0, the domi-
nant contribution comes from the neighborhood of the
boundary (u = 0). So, we make a rescaling ψðbuÞ and ϕðbuÞ,
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𝛾 = −1/12

Analytic
Numerical
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Figure 1: The condensation from 4-derivative theory for different γ obtained analytically and numerically, respectively.
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and then, u⟶ u/b with letting b⟶∞. Thus, the field
Equations (10) and (11) can be simplified as

F″ uð Þ + 2
u
F ′ uð Þ + ϕ2 uð Þ

r2+
F uð Þ = 0, ð35Þ

ϕ″ uð Þ − O+h i2u2
r4+

F2 uð Þϕ uð Þ = 0, ð36Þ

where we have used Equation (19) and restored the original
coordinate u. We shall solve the above equations subject to
the following boundary conditions:

3F ′ 1ð Þ + 4F 1ð Þ = 0, F 0ð Þ = 1, F ′ 0ð Þ = 0: ð37Þ

Equation (37) is the natural boundary condition at the
horizon, which can be directly deduced from Equation (21).

To proceed, we assume that in the asymptotic regime
closing to the conformal boundary, FðuÞ takes the following
power law formula:

F uð Þ ≈ β

bu
, ð38Þ

where β is the parameter to be determined. Then, the solu-
tion of field Equation (36) for ϕðuÞ is

ϕ uð Þ =ℬr+
ffiffiffiffiffi
bu

p
K1/2 buð Þ, ð39Þ

b2 = O+h iβ
r2+

, ð40Þ

where ℬ is the integral constant and KnðzÞ is the modified
Bessel function of the second kind with n denoting the order
of the corresponding Bessel function. Near the boundary u
= 0, using Equation (12), the ratio ρ/r2+ can be estimated as

ρ

r2+
= −

Γ − 1/2ð Þð Þ
23/2 ℬb =

ffiffiffi
π

2

r
ℬb: ð41Þ

Substituting Equation (39) into Equation (35) and rescal-
ing u⟶ u/b, we have

F″ + 2
u
F ′ + ~ℬ2

u K1/2 uð Þð Þ2F = 0,  ~ℬ =
~ℬ
b
: ð42Þ

The above equation is the second-order S-L self-adjoint
differential equation. It should be solved in the interval
ð0,∞Þ subject to the boundary condition Fð0Þ = 1, F ′ð0Þ = 0,
and F ⟶ 0 as u⟶∞. The expression for estimating the
minimum eigenvalue of ~ℬ is provided by

~ℬ2 =
Ð∞
0 uF ′ uð Þ
h i2

duÐ∞
0 u3K2

1/2 uð ÞF2 uð Þdu : ð43Þ

In order to connect smoothly the asymptotic regime
depicted by the power law formula (38) with the boundary
condition Fð0Þ = 1, we introduce the following trial function:

Fβ uð Þ = β

u

� �
tanh u

β

� �
: ð44Þ

Then, we can minimize expression (43) to fix the value of
β. It is easy to find that we have the minimum ~ℬ ≈ 1:92 at
β ≈ 0:8.

Once the solution for the scalar field ψ is at hand, we can
turn to study the optical conductivity. To this end, we switch
on the perturbations of the gauge field along x direction, Ax
ðr, tÞ = AðrÞe−iωt . And then, the perturbative gauge field
equation can be read as

A″ uð Þ + 3u2 1 − γ 4 − 8u3
� �

− 48γ1 3u3 − 2
� �

u3
� �

u3 − 1ð Þ 1ð Þ + 4γu3 − 48γ1u6
A′ uð Þ

+ ω2

r2+ u3 − 1ð Þ2
+ 2ψ uð Þ2
u2 u3 − 1ð Þ 1 + 4γu3 − 48γ1u6ð Þ

" #
A uð Þ = 0:

ð45Þ

0.95 0.96 0.97 0.98 0.99 1.00
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1

2

3

4

5
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Analytic
Numerical

0.95 0.96 0.97 0.98 0.99 1.00
T/TC
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𝛾
1
 = −1/48

Analytic
Numerical

Figure 2: The condensation from 6-derivative theory for different γ1 obtained analytically and numerically, respectively.
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To proceed, we reexpress the above equation as the
following form:

r+ 1 − u3
� �

1 + 4γu3 − 48γ1u6
� �

A′ uð Þ
h i

′

+ ω2 1 + 4γu3 − 48γ1u6
� �

r+ 1 − u3ð Þ A uð Þ = 2r + ψ2 uð Þ
u2

A uð Þ:

ð46Þ

We want to recast the above equation as a Schrödinger
form. So, we move to the tortoise coordinate, which is
defined by

r∗ =
ð

dr
f rð Þ =

1
6r+

ln 1 − uð Þ3
1 − u3

− 2
ffiffiffi
3

p
tan−1

ffiffiffi
3

p
u

u + 2

" #
: ð47Þ

The integration constant has been calculated from the
boundary condition that r∗ = 0 at u = 0. Then, Equation
(46) becomes

d2Φ

dr2∗
+ ω2 −Veff
� 	

Φ = 0, ð48Þ

where ΦðuÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4γu3 − 48γ1u6

p
AðuÞ, and the effective

potential Veff is

The wave Equation (48) is to be solved subject to ingoing
boundary condition at the horizon, i.e., the ω-dependent part
of the equation for Veff = 0. The solution reads

Φ uð Þ ∼ e−iωr∗ ∼ 1 − uð Þ−iω/3r+ : ð50Þ

So, at low frequency, to account for the boundary condi-
tion at the horizon, we define

A = 1 − uð Þ−iω/3r+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4γu3 − 48γ1u6

p G uð Þ, ð51Þ

where GðuÞ is regular at the horizon (u = 1). Then, Equation
(45) becomes

We can expand the wave function GðuÞ in a Tay-
lor series at the horizon, which gives the boundary
condition as

3r+ − 2iωð ÞG ′ 1ð Þ + 2r+ −9γ + 216γ1 + ψ 1ð Þ2� �
4γ − 48γ1 + 1 −

2ω2

3r+
− iω

" #
G 1ð Þ = 0:

ð53Þ

At low temperature, it is convenient to solve Equa-
tion (52) by letting u⟶ u/b with b⟶∞. Then,
Equation (52) becomes

3G″ uð Þ + 2iω
r + G ′ uð Þ − 3b2 tanh bu

β

� �2
−
8ω2

3r2+

" #
G uð Þ = 0:

ð54Þ

Veff =
2fψ2

−48γ1u6 + 4γu3 + 1 + 6u3 2γ2 7u3 − 1
� �

u3 − γ 5u3 − 2
� �

144γ1u6 − 1
� �

+ 24γ1u3 240γ1u9 − 96γ1u6 − 8u3 + 5
� �� �

1 + 4γu3 − 48γ1u6ð Þ2
f :

ð49Þ

18u 24γ1u3 30γu6 + 8 − 12γð Þu3 + 48γ1 2 − 5u3
� �

u6 − 5
� �

+ γ −14γu6 + 2γ − 5ð Þu3 + 2
� �� �

−48γ1u6 + 4γu3 + 1ð Þ2
" #

G

+ 6ψ uð Þ2
u2 1 + 4γu3 − 48γ1u6ð Þ −

i 2u + 1ð Þω
r+

−
u + 2ð Þ u2 + u + 4

� �
ω2

3r2+ u2 + u + 1ð Þ

" #
G − 3 1 − u3

� �
G″ + 9u2 − 2 1 + u + u2

� � iω
r+


 �
G ′ = 0:

ð52Þ
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The general solution of Equation (54) can be given
in terms of the Legendre function:

G uð Þ ≈ 1 − tanh bu/βð Þ
1 + tanh bu/βð Þ

� �1ωβ/6br+

� c + P+β
− 1/2ð Þ+ 1/2ð Þ

ffiffiffiffiffiffiffiffiffi
1+4β2

p tanh bu
β

� �


+ c−P
−β

− 1/2ð Þ+ 1/2ð Þ
ffiffiffiffiffiffiffiffiffi
1+4β2

p tanh bu
β

� ��
,

ð55Þ

where c+ and c− are the integration constants, for which we
shall derive them in terms of the boundary condition at the
horizon below.

At u = 1, we have tanh ðbu/βÞ ≈ 1, the Legendre functions
become

P±β
− 1/2ð Þ+ 1/2ð Þ

ffiffiffiffiffiffiffiffiffi
1+4β2

p tanh bu
β

� �
≃

2±β/2
Γ 1 ∓ βð Þ 1 − tanh bu

β

� �∓ β/2ð Þ
:

ð56Þ

Therefore, we obtain

G 1ð Þ ≈ c+
Γ 1 − βð Þ e

+b + c−
Γ 1 + βð Þ e

−b

 �

e− iω/3r+ð Þ,

G ′ 1ð Þ ≈ c+ b − iω/3r+ð Þð Þ
Γ 1 − βð Þ e+b −

c− b + iω/3r+ð Þð Þ
Γ 1 + βð Þ e−b


 �
e− iω/3r+ð Þ:

ð57Þ

Substituting Gð1Þ and G ′ð1Þ in the boundary condition
(53), we obtain the ratio ðc+/c−Þ as

c+
c−

= −e−2b
Γ 1 − βð Þ
Γ 1 + βð Þℳ , ð58Þ

where

ℳ = b4 − 3b
� �

− 6 3 + 2bð Þγ + 144 3 + bð Þγ1
b4 + 3b
� �

− 6 3 − 2bð Þγ + 144 3 − bð Þγ1

"

+ 4iωb 1 + 4γ − 48γ1ð Þ b4 − 30γ − 3 + 576γ1
� �

r+ b4 + 3b 1 + 4γ − 48γ1ð Þ − 18 γ − 24γ1ð Þ� �2
#
:

ð59Þ

According the definition of conductivity and AdS/CFT
correspondence, one has

σ ωð Þ ≈ i

ffiffiffiffiffiffiffiffiffiffi
O+h ip
ω

0:47 − 0:66 c+/c−ð Þ
0:85 − 0:30 c+/c−ð Þ : ð60Þ

So, in the limit of the low frequency (ω⟶ 0), we have

ℜσ ωð Þ ∼ e−2b = e−Eg/T ,

ℑσ ωð Þ ≈ 0:55
ffiffiffiffiffiffiffiffiffiffi
O+h ip
ω

:
ð61Þ

Eg is identified to be the superconducting energy gap,
which is determined as

Eg ≈
3

ffiffiffiffiffiffiffiffiffiffiffiffi
β O+h i

p
2π ≈ 0:43

ffiffiffiffiffiffiffiffiffiffi
O+h i

p
: ð62Þ

This result reveals that the superconducting energy gap is
proportional to the value of the condensation. But we note
that since the condensation changes with the HD coupling
parameters, as the function of the HD coupling parameters,
the superconducting energy gap follows the same change
trend as that of the condensation. This analytical result is
qualitatively consistent with the numerical one in [10, 26].

Since the introduction of the HD term, which compli-
cates the EOM, we cannot analytically obtain the conductiv-
ity as the function of ω at T ⟶ as [29]. In the future, we can
seek newmethods to do this thing. For example, we can study
the conductivity as the function of ω at zero temperature by
using the semianalytical methods as [69].

6. Conclusions and Discussions

In this paper, we have analytically studied the holographic
superconductor models from the HD theory. To achieve this
goal, we use the Sturm-Liouville (S-L) eigenvalue method,
which has been widely used in holographic models. Different
from the usual holographic superconductor models, we can-
not derive the analytical expression for the eigenvalue λ2 due
to the introduction of the HD coupling terms. Instead, we
develop the perturbative method in terms of the HD coupling
parameters to calculate the eigenvalue λ2 and so the critical
temperature. We find that the analytical results are in good
agreement with the numerical results, which confirms that
the perturbative method is available. Along the same line,
we calculate the value of the condensation near the critical
temperature. We find that the phase transition is second
order with mean field behavior, which is independent of the
HD coupling parameters. It analytically confirms the results
numerically obtained in our previous works [10, 26]. We also
calculate the conductivity in the low-temperature limit,
which is qualitatively consistent with the numerical one
[10, 26]. We find that the superconducting energy gap is pro-
portional to the value of the condensation. But we note that
since the condensation changes with the HD coupling
parameters, as the function of the HD coupling parameters,
the superconducting energy gap follows the same change
trend as that of the condensation.
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