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We present the general expression of helicity amplitudes for generic multibody particle decays characterised by multiple decay
chains. This is achieved by addressing for the first time the issue of the matching of the final particle spin states among different
decay chains in full generality for generic multibody decays, proposing a method able to match the exact definition of spin states
relative to the decaying particle ones. We stress the importance of our result by showing that one of the matching methods used
in the literature is incorrect, leading to amplitude models violating rotational invariance. The results presented are therefore
relevant for performing numerous amplitude analyses, notably those searching for exotic structures like pentaquarks.

1. Introduction

The helicity formalism, proposed by Jacob and Wick [1] in
1959 to treat relativistic processes involving particles with
spin, is still one of the most important tools for performing
amplitude analyses of particle decays. To date, complex
amplitude analyses involving final-state particles with spin
and multiple decay chains have been performed, especially
for the search of new resonant structures. Pentaquark
searches are a typical example: a pentaquark involves at least
one baryon in the final state and introduces an additional
decay chain. For instance, pentaquark states were discovered
by the LHCb collaboration performing an amplitude analysis
of the Λ0

b ⟶ J/ψpK− baryon decay [2].
However, a consistent definition of the final particle spin

states for these kinds of decays turned out to be an issue, since
the definition of helicity states is different for different decay
chains. Various solutions to match the final particle spin
states have been proposed [2–5], but none addressed the
problem in full generality for generic multibody decays. In
this paper, we present a general method for matching spin
states, obtained requiring that, for any decay chain, the final
particle states are defined by the same Lorentz transforma-
tions relatively to the decaying particle spin states.

To this end, we first review the definition of spin states in
quantum mechanics in Section 2, with a particular attention
to their phase specifications. The key point we want to stress
is that the relative phases among sets of spin states linked by
rotations are fully specified by the transformations applied.
Therefore, phase differences like those arising when spin
states are rotated with respect to their quantisation axis or
like the change of sign under 2π angle rotations of fermion
states can not be neglected in helicity amplitudes.

Then, we revisit the helicity formalism as originally pro-
posed by Jacob andWick [1], highlighting the different treat-
ments of daughter particle helicity states in two-body
processes. We also propose a simpler definition of two-
particle helicity states than the standard one, which allows
for an easier matching of the final particle spin states.

In Section 4, we present how to write helicity amplitudes
with a consistent definition of the final particle spin states for
different decay chains, applicable to any multibody decay
topology. We explicitly derive helicity amplitudes for three-
body decays.

We stress the need for a consistent definition of the final
particle spin states in Section 5. First, we discuss the conse-
quences of an incorrect phase introduced between amplitudes
describing different decay chains on the decay distributions,
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showing that they produce observable effects on the decay
distributions via interference terms. Next, we perform a
numerical study on Λ+

c → pK−π+ helicity amplitude models
featuring different methods to match the final particle spin
states, checking a general property of the decay distributions
following from rotational invariance. We show how the
method employed for the amplitude analyses [2, 3] is
incorrect, leading to amplitude models violating rotational
invariance, while that proposed in this article fully satisfies
rotational symmetry.

2. On Spin State Definition

In this section, we review the definition of spin states in
quantum mechanics underlining the importance of their
phase specification, which will be needed for the upcoming
discussion of multibody particle decays in the helicity
formalism.

In quantum mechanics, the spin of a particle is described
by a vector of spin operators Ŝ = ðŜx, Ŝy, ŜzÞ, which defines a
right-handed spin coordinate system ðx, y, zÞ. The spin
states js,mi are defined as the simultaneous eigenstates of
the spin squared modulus S∧2 and Ŝz , with eigenvalues sðs
+ 1Þ and m, respectively. The z-axis is called the quantisa-
tion axis, while x- and y-axes will be named the orthogonal
axes.

The choice of the orthogonal axes specifies the relative
phases among spin states, which can be conventionally
chosen by defining the action of the “ladder” operators
Ŝ± = Ŝx ± iŜy transforming js,mi into js,m ± 1i eigenstates
(see, e.g., Ref. [6]). The overall phase of the spin states is
undefined and can be chosen arbitrarily.

Now, let us consider a set of spin states js,mi′ defined rel-
ative to the original one js,mi by applying a rotation R̂:

s,mj i′ = R̂ s,mj i: ð1Þ

The rotation R defines the relative phases among the two
sets: for instance, a rotation around the z-axis of angle α
introduces a phase difference between original and rotated
spin states:

s,mj i′ = R̂z αð Þ s,mj i = e−iαS∧z s,mj i = e−iαm s,mj i: ð2Þ

Therefore, once an overall phase for the original set of
spin states is conventionally chosen, that of the rotated spin
states is defined by the rotation. In other words, the rotated
states are completely defined in terms of the original states
and the rotation.

The fact that the expectation values of the spin operators
transform as a vector under rotations (see, e.g., Ref. [6]) can
give the deceptive impression that one can represent rota-
tions applied to spin states in the usual Cartesian space, while
spin states transform under spin s representations of the SU
ð2Þ group. This is why graphical descriptions are not used
in the present article, though they are widely used in the lit-

erature. For instance, it is well known that fermion states
change sign for a 2π angle rotation around any axis i:

R̂i 2πð Þ s,mj i = e−2iπS∧i s,mj i = −1ð Þ2s s,mj i, ð3Þ

even if the spin operator expectation values do not change.
When considering sets of spin states relatively defined by

rotations, it is important to take into account their relative
phase differences, since interference effects can make them
observable quantities. In this article, we will show how to
properly consider the spin state definition in the case of mul-
tibody particle decays with different intermediate states in
the helicity formalism (Section 4) and the consequences that
an incorrect treatment of spin state definitions has on particle
decay distributions (Section 5).

3. Helicity Formalism Revisited

In this section, we revisit the helicity formalism [1], devel-
oped to overcome problems related to the treatment of spin
in relativistic processes. In particular, we highlight the differ-
ent roles played by the daughter particles in two-body pro-
cesses and the importance of consistently specifying the
definition of their helicity states, including phases. This is
an aspect almost neglected so far, which becomes essential
for a correct treatment of decays characterised by multiple
interfering decay chains. For a clearer treatment of such
aspects and a simpler matching of the final particle spin def-
initions among different decay chains (Section 4), we also
propose a different way to express two-particle helicity states,
which ease the control of their definitions. A review of the
description of relativistic processes involving particles with
spin is reported in Appendix A; there, the definition of
canonical and helicity states used throughout the article is
presented.

The key point underlying the helicity formalism is the
invariance of helicity under rotations, exploited to construct
two-particle states which are eigenstates of total angular
momentum. Indeed, under rotations, both spin states and
the momentum expressing their quantisation axis rotate, so
that the projection of the particle spin on the momentum is
unchanged.

Let us consider a two-body decay A⟶ 1, 2. The particle
1 helicity states jpA1 , s1, λ1i are defined in the helicity system
(see Equation (A.4)):

SH1 = L −pA1 z
� �

R 0,−θ1,−ϕ1ð ÞSA, ð4Þ

with pA1 as the particle 1 momentum in the A spin reference
rest frame SA and θ1, ϕ1 as its spherical coordinates.

The particle 2 helicity states jpA2 , s2, λ2i are defined in the
helicity system:

SH2 = L −pA2 z
� �

R 0,−θ2,−ϕ2ð ÞSA, ð5Þ

which is reached by a different rotation with respect to parti-
cle 1 helicity states, so that the direct product of particle 1 and
2 states cannot be related to the total angular momentum SA.
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Exploiting pA1 = −pA2 , in Equations (13) and (14) of Ref. [1],
the direct product of daughter particle helicity states is
defined as

pA1 , θ1, ϕ1, λ1, λ2
�� �

≡ pA1 , s1, λ1
�� �

⊗ −1ð Þs2−λ2 exp −iπ Ĵ y
� �

pA2 , s2, λ2
�� �

:

ð6Þ

These states can be now related to two-particle states with
a definite value of total angular momentum, which are
denoted jpA1 , J ,M, λ1, λ2i as (here with the ψ = 0 convention
described in Appendix A)

pA1 , θ1, ϕ1, λ1, λ2
�� �

= 〠
J ,M

ffiffiffiffiffiffiffiffiffiffiffiffi
2J + 1
4π

r
DJ
M,λ1−λ2

ϕ1, θ1, 0ð Þ pA1 , J ,M, λ1, λ2
�� �

:

ð7Þ

This expression allows writing the A⟶ 1, 2 decay
amplitude as

AmA ,λ1,λ2 θ1, ϕ1ð Þ = pA1 , θ1, ϕ1, λ1, λ2
� ��T̂ sA,mAj i

=Hλ1,λ2D
∗sA
mA ,λ1−λ2

ϕ1, θ1, 0ð Þ,
ð8Þ

in which jsA,mAi are the A spin states defined in the SA sys-
tem, T̂ is the transition operator, and

Hλ1,λ2 ≡ J = sA,M =mA, λ1, λ2h jT̂ sA,mAj i ð9Þ

are complex numbers called helicity couplings, describing the
decay dynamics. Note that the key point underlying Equation
(7) is that the state jpA1 , 0, 0, λ1, λ2i (with pA1 aligned with the
z-axis) is an eigenstate of Ĵ z with eigenvalue λ1 − λ2, which is
then rotated to

pA1 , θ1, ϕ1, λ1, λ2
�� �

= R̂ ϕ1, θ1, 0ð Þ pA1 , 0, 0, λ1, λ2
�� �

: ð10Þ

We note en passant that, using the properties of Wigner
D-matrices (Equation (B.9)), the two-body amplitude can
be rewritten as

AmA ,λ1,λ2 θ1, ϕ1ð Þ =Hλ1,λ2D
sA
λ1−λ2,mA

0,−θ1,−ϕ1ð Þ, ð11Þ

so that, compared with Equation (B.5), the Wigner D-matrix
is indeed the representation of the helicity rotation Rð0,−θ1,
−ϕ1Þ aligning the pA1 momentum to the z-axis on the A par-
ticle spin states jsA,mAi.

Let us now consider the particle 2 state in Equation (6):
the rotation exp ð−iπŜyÞ acts on the helicity state inverting
the z-axis direction; therefore, the particle 2 states entering
the amplitude (Equation (7)) are actually opposite-helicity
states, which represent spin projection eigenstates in the
direction opposite to pA1 . This different role of particle 1
and 2 states must be properly considered when these particles
have a subsequent decay: the amplitude for the particle 2
decay must take into account that it is not referred to jpA2 ,
s2, λ2i states but to those obtained applying the inversion

exp ð−iπŜyÞ and the phase factor ð−1Þs2−λ2 . We stress that
these tricky aspects related to the helicity formalism have
been neglected or underestimated so far, because for simple
processes (like decays via single decay chains or involving
spinless particles), they do not have consequences on the
decay distributions. However, they matter for the treatment
of the more general decays considered in this article.

To take into account in a cleaner way the different roles of
particles 1 and 2 in the helicity formalism, we propose a sim-
pler definition of the two-particle state (Equation (6)), which
allows for an easier matching of the final particle spin defini-
tions among different decay chains (Section 4). We define the
two-particle product state as

pA1 , θ1, ϕ1λ1, �λ2
�� �

= pA1 , s1, λ1
�� �

⊗ pA2 , s2, �λ2
�� �

, ð12Þ

in which jpA2 , s2, �λ2i represent spin projection eigenstates in

the direction opposite to pA2 . The operator b�λ is the opposite
of the helicity:

b�λ = −Ŝ · p
p
, ð13Þ

and the opposite-helicity reference system of particle 2 is
defined by

SOH2 = L pA2 z
� �

R 0,−θ1,−ϕ1ð ÞSA, ð14Þ

that is, the particle 2 rest frame is reached by boosting along its
momentum pA2 pointing in the direction opposite to the z-axis.
Comparing Equations (4) and (14), we see that both particle 1
and particle 2 states are obtained from the same rotation Rð0,
−θ1,−ϕ1Þ, so that their spin is referred to the “same” spin ref-
erence system (they only differ by a boost along the z-axis),
including the same definition of the orthogonal axes.

It is therefore possible to define eigenstates of total
angular momentum jpA1 , J ,M, λ1, �λ2i similarly as before,
and Equation (7) holds with the substitution −λ2 ⟶ �λ2:

pA1 , θ1, ϕ1, λ1, �λ2
�� �

= 〠
J ,M

ffiffiffiffiffiffiffiffiffiffiffiffi
2J + 1
4π

r
DJ
M,λ1+�λ2

ϕ1, θ1, 0ð Þ pA1 , J ,M, λ1, �λ2
�� �

:

ð15Þ

The two-body decay amplitude becomes

AmA ,λ1,�λ2 θ1, ϕ1ð Þ = pA1 , θ1, ϕ1, λ1, �λ2
� ��T̂ sA,mAj i

=Hλ1,�λ2D
∗sA
mA ,λ1+�λ2

ϕ1, θ1, 0ð Þ, ð16Þ

and the helicity values allowed by angular momentum con-
servation are

∣λ1∣ ≤ s1, ∣�λ2∣ ≤ s2, ∣λ1 + �λ2∣ ≤ sA: ð17Þ

The amplitudes (Equations (8) and (16)) are the same
but for the substitution λ2 ↔ �λ2, so why bother with a
new state definition? The difference is in the definition of
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particle 2 states: in the standard formulation (Equation (6)),
the particle 2 opposite-helicity state is obtained inverting the
helicity one, applying two rotations to the initial system SA
plus a phase; in our definition, it is just defined by a single rota-
tion from SA. Our choice simplifies both the writing of particle
2 subsequent decay amplitudes and the matching of the final
particle spin states among different decay chains.

For the purpose of Section 4, it is useful to derive the rela-
tion between opposite-helicity and canonical states, the ana-
logue of Equation (A.6) for helicity states. It is obtained
applying Equation (A.5) along with the relations pA2 = −pA1 ,
pA2 = pA1 , to the definition of canonical states (Equation (A.1)):

SC2 = L −pA2
� �

SA = L pA1
� �

SA = R ϕ1, θ1, 0ð ÞL pA1Z
� �

R 0,−θ1,−ϕ1ð ÞSA
= R ϕ1, θ1, 0ð ÞL pA2Z

� �
R 0,−θ1,−ϕ1ð ÞSA = R ϕ1, θ1, 0ð ÞSOH2 :

ð18Þ

The rotation is indeed the same as the one from the heli-
city to the canonical system of particle 1 (see Equation (A.6)):

SC1 = R ϕ1, θ1, 0ð ÞSH1 : ð19Þ

4. Helicity Amplitudes for Generic Multibody
Particle Decays Featuring Multiple
Decay Chains

In this section, we present how helicity amplitudes for
generic multibody particle decays characterised by multiple
decay chains can be written: in particular, we propose an
original method to match the final particle spin states among
different decay chains able to properly take into account the
definition of spin states. For the sake of clarity, we consider a
three-body decay A⟶ 1, 2, 3, but the method presented to
write helicity amplitudes is applicable to any decay topology.

Decay amplitudes for multibody particle decays are
obtained in the helicity formalism by breaking the decay
chain in sequential two-body decays mediated by intermedi-
ate states; for instance, a three-body decay is treated by break-
ing it into two binary decays. Three decay chains, involving
three kinds of intermediate states, are possible: A⟶ R
ð⟶1, 2Þ, 3, A⟶ Sð⟶1, 3Þ, 2, and A⟶Uð⟶2, 3Þ, 1.

We first consider the A⟶ Rð⟶1, 2Þ, 3 decay chain:
the A⟶ R, 3 decay can be expressed in the A rest frame
by Equation (16):

AA→R,3
mA ,λR ,�λ

R
3
θR, ϕRð Þ = pAR , θR, ϕR, λR, �λ

R
3

D ���T̂ sA,mAj i
=HA→R,3

λR ,�λ
R
3
D∗sA
mA ,λR+�λ

R
3
ϕR, θR, 0ð Þ,

ð20Þ

and the R⟶ 1, 2 decay can be written in the same form, in
the R rest frame, by applying Equation (16) to the R state j
sR, λRi as the decaying particle:

AR→1,2
λR ,λ

R
1 ,�λ

R
2
θR1 , ϕ

R
1

� 	
= pR1 , θ

R
1 , ϕ

R
1 , λ

R
1 , �λ

R
2

D ���T̂ pAR , sR, λR
�� �

=HR→1,2
λR1 ,�λ

R
2
D∗sR
mR ,λ

R
1 +�λ

R
2
ϕR1 , θ

R
1 , 0

� 	
:

ð21Þ

The R superscript is put on helicity values and angles of
particles 1 and 2 to stress that their definition is specific to
the A⟶ Rð⟶1, 2Þ, 3 decay chain.

The total amplitude of the A⟶ Rð⟶1, 2Þ, 3 decay is
written introducing R as the intermediate state, and summing
the amplitudes over the helicity values λR satisfies the angular
momentum conservation requirements (Equation (17)):

AA→R,3→1,2,3
mA ,λ

R
1 ,�λ

R
2 ,�λ

R
3

Ωð Þ = pif g, λR1 , �λ
R
2 , �λ

R
3

D ���T̂ sA,mAj i

=〠
λR

pR1 , θ
R
1 , ϕ

R
1 , λ

R
1 , �λ

R
2

D ���T̂ pAR , sR, λR
�� �

× pAR , θR, ϕR, λR, �λ
R
3

D ���T̂ sA,mAj i
=〠

λR

AA→R,3
mA ,λR ,�λ

R
3
θR, ϕRð ÞAR→1,2

λR ,λ
R
1 ,�λ

R
2
θR1 , ϕ

R
1

� 	

=〠
λR

HR→1,2
λR1 ,�λ

R
2
D∗sR
λR ,λ

R
1 +�λ

R
2
ϕR1 , θ

R
1 , 0

� 	
×HA→R,3

λR ,�λ
R
3
D∗sA
mA ,λR+�λ

R
3
ϕR, θR, 0ð Þ:

ð22Þ

Note that the angles entering the decay amplitude depend
on the phase space variables describing the decay, denoted col-
lectively as Ω.

Now, let us consider the A⟶ Sð⟶1, 3Þ, 2 decay chain.
Its associated amplitude is, following Equation (22),

AA⟶S,2⟶1,2,3
mA ,λ

S
1,�λ

S
2,�λ

S
3

Ωð Þ =〠
λS

H S⟶1,3
λS1,�λ

S
3

D∗sS
λS ,λ

S
1+�λ

S
3
ϕS1, θ

S
1, 0

� 	
×HA⟶S,2

λS ,�λ
S
2

D∗sA
mA ,λS+�λ

S
2
ϕS, θS, 0ð Þ:

ð23Þ

Helicity values and angles denoted by the S superscripts
are defined specifically for the A⟶ Sð⟶1, 3Þ, 2 decay
chain: the definition of the final particle spin states for this
decay chain is different from that used for the R intermediate
state one.

To write the total amplitude of the A⟶ 1, 2, 3 decay,
amplitudes associated with different intermediate states must
be summed coherently to properly include interference
effects. The summing can be performed only if the definition
of the final particle spin states is the same across different
decay chains. Since helicity systems are specific to each decay
chain, they must be rotated to a reference set of spin states,
for each final particle. Various solutions to match the final
particle spin states have been proposed [2–5], but none
addressed the problem in full generality for generic multi-
body decays. In the following, we derive the correct matching
of the final particle spin states requiring that, for any decay
chain, the final particle states are defined by the same Lorentz
transformations relatively to the decaying particle spin states.

The definition of the helicity states used to express the
helicity amplitudes (Equations (22) and (23)) is given rela-
tively to the A particle spin states (SA reference system) by
a sequence of Lorentz transformations. Once a conventional
definition of the jsA,mAi state overall phase is chosen (see

4 Advances in High Energy Physics



Section 2), the helicity states are fully specified by the Lorentz
transformation sequence, overall phase included. Therefore,
to relate different helicity state definitions, it is mandatory
to refer back to the initial SA reference system; i.e., it is not
possible to relate the two systems via a direct transformation.
To stress this essential point, let us consider the two helicity
systems for particle 1 defined by the R and S decay chains,
SHH,R
1 and SHH,S

1 , respectively. Suppose we find a rotation R̂
such that R̂SHH,S

1 = SHH,R
1 and we rotate the jpS1, s1, λS1i states

applying the Wigner D-matrix associated with that rotation.
However, this does not guarantee that the spin state phase
definition is the same between SHH,R

1 and R̂SHH,S
1 systems,

since they are defined with respect to SA by different Lorentz
transformation sequences: for a fermion, the two may differ
by an overall 2π rotation changing the relative sign among
spin states by Equation (3).

The correct way to proceed is to define a reference spin
system for the final particle from the initial system SA and
relate each helicity system to this one by applying a sequence
of rotations which turn the Lorentz transformation sequence
defining the helicity state into that specifying the reference
one. The reference and the helicity systems are different rest
frames of the final particle, so no boosts need to be applied.
Any spin system can be chosen as the reference one, and
we will choose canonical states reached from SA being the
simplest possibility.

We illustrate the method explicitly deriving the rotation
sequences transforming the helicity systems of the A⟶ 1,
2, 3 decay final particles, for R and S intermediate state decay
chains, to their canonical systems reached from SA. Starting
from particle 1, the helicity system SHH,R

1 is defined from SA
by the sequence (see Equation (A.4)):

SHR = L −pARz
� �

R 0,−θR,−ϕRð ÞSA, ð24Þ

SHH,R
1 = L −pR1 z

� �
R 0,−θR1 ,−ϕ

R
1

� 	
SHR , ð25Þ

in which SHR is the R helicity system reached from SA. The
canonical system of particle 1 derived from SHR , following
Equation (A.1) by decomposing the Lorentz boost, is

SHC,R
1 = R ϕR1 , θ

R
1 , 0

� 	
L −pR1z
� �

R 0,−θR1 ,−ϕ
R
1

� 	
SHR = R ϕR1 , θ

R
1 , 0

� 	
SHH,R
1 ,

ð26Þ

so that the rotation RðϕR1 , θR1 , 0Þ from SHH,R
1 to SHC,R

1 systems
“undoes” the helicity rotation Rð0,−θR1 ,−ϕR1 Þ, acting in the
particle 1 rest frame. The spin states jpR1 , s1, μR1 i defined by
the SHC,R

1 system Lorentz transformation are expressed in
terms of the helicity states jpR1 , s1, λR1 i as in Equation (A.7):

R̂ ϕR1 , θ
R
1 , 0

� 	
pR1 , s1, λR1
�� E

=〠
μR1

Ds1
μR1 ,λ

R
1
ϕR1 , θ

R
1 , 0

� 	
pR1 , s1, μR1
�� �

:

ð27Þ

Now, let us consider the canonical system of particle 1
SCC,R1 derived from the R canonical system SCR , defined follow-
ing Equation (A.1):

SCR = L −pAR
� �

SA = R ϕR, θR, 0ð ÞL −pARz
� �

R 0,−θR,−ϕRð ÞSA,
ð28Þ

SCC,R1 = L −p′R1
� 	

SCR = R ϕ′R1 , θ′
R
1 , 0

� 	
L −pR1 z
� �

R 0,−θ′R1 ,−ϕ′
R
1

� 	
SCR ,

ð29Þ
in which primed quantities indicate that the particle 1
momentum used to build the SCC,R1 system is different from
the one defining the SHC,R

1 system, being determined from

SCR instead of SHR . The momenta pR1 and p′
R
1 differ by the addi-

tional rotation RðϕR, θR, 0Þ used in the definition of SCR :

p′R1 = R ϕR, θR, 0ð ÞpR1 , ð30Þ

and the rotation Rð0,−θ′R1 ,−ϕ′
R
1 Þ used to align p′R1 to the z

-axis can be decomposed into Rð0,−θR,−ϕRÞ, rotating p′
R
1 into

pR1 , times Rð0,−θR1 ,−ϕR1 Þ, with the helicity rotation aligning pR1
with the z-axis:

R 0,−θ′R1 ,−ϕ′
R
1

� 	
= R 0,−θR1 ,−ϕ

R
1

� 	
R 0,−θR,−ϕRð Þ: ð31Þ

Applying the above decomposition, along with its
inverse,

R ϕ′R1 , θ′
R
1 , 0

� 	
= R ϕR, θR, 0ð ÞR ϕR1 , θ

R
1 , 0

� 	
, ð32Þ

to Equation (29) and using the systems defined in Equations
(25) and (26), we obtain

SCC,R1 = L −p′R1
� 	

L −pAR
� �

SA

= R ϕ′R1 , θ′
R
1 , 0

� 	
L −pR1 z
� �

R 0,−θ′R1 ,−ϕ′
R
1

� 	
× R ϕR, θR, 0ð ÞL −pARz

� �
R 0,−θR,−ϕRð ÞSA

= R ϕ′R1 , θ′
R
1 , 0

� 	
L −pR1 z
� �

R 0,−θR1 ,−ϕ
R
1

� 	
× L −pARz

� �
R 0,−θR,−ϕRð ÞSA

= R ϕR, θR, 0ð ÞR ϕR1 , θ
R
1 , 0

� 	
SHH,R
1 = R ϕR, θR, 0ð ÞSHC,R

1 :

ð33Þ

The rotation RðϕR, θR, 0Þ from SHC,R
1 to SCC,R1 systems

“undoes” the helicity rotation Rð0,−θR,−ϕRÞ, still acting in
the particle 1 rest frame. The spin states jpR1 , s1, νR1 i defined
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by the SCC,R1 system are expressed in terms of the states jpR1 ,
s1, μR1 i as

R̂ ϕR, θR, 0ð Þ pR1 , s1, μR1
�� �

=〠
νR1

Ds1
νR1 ,μR1

ϕR, θR, 0ð Þ p′R1 , s1, νR1
��� E

:

ð34Þ
Finally, the system SCC,R1 has to be related to our reference

system, the canonical system of particle 1 reached directly
from SA:

SC,A1 = L −pA1
� �

SA, ð35Þ

which differs from SCC,R1 by

SC,A1 = L −pA1
� �

L pAR
� �

L p′R1
� 	

SCC,R1 : ð36Þ

The transformation Lð−pA1 ÞLðpARÞLðp′
R
1 Þ is equivalent to

a rotation, called the Wigner rotation, indicated generically
as a Euler rotation RðαW,R

1 , βW,R
1 , γW,R

1 Þ, in which the associ-
ated Euler angles do not have a simple algebraic expression
but can be easily computed. The value of the Euler angles
can be calculated as follows: the Wigner rotation matrix is
found from multiplying the three matrices associated with
each Lorentz boost; the unit vectors describing the rotated
system are simply the columns of the Wigner rotation
matrix; finally, Euler angles are computed using Equation
(B.4). Explicit axis-angle expressions for the composition of
two Lorentz boosts are reported in Ref. [7]. The canonical
spin states jpA1 , s1,m1i defined by the SC,A1 coordinate systems

are expressed in terms of the states jp′R1 , s1, νR1 i as

R̂ αW,R
1 , βW,R

1 , γW,R
1

� 	
p′R1 , s1, νR1
��� E

=〠
m1

Ds1
m1,νR1

αW,R
1 , βW,R

1 , γW,R
1

� 	
pA1 , s1,m1
�� �

:
ð37Þ

The different Lorentz transformations applied starting
from the initial SA system down to the final SC,A1 one, for R
intermediate states, are graphically summarised in Figure 1,
along with the definition of the many spin states involved
in the writing of the helicity amplitude.

Combining Equations (27), (34), and (37), the relation
between particle 1 canonical spin states defined by the SC,A1
system and particle 1 helicity states defined by the SHH,R

1 sys-
tem, those expressing the decay amplitude (Equation (22)), is

R̂ αW,R
1 , βW,R

1 , γW,R
1

� 	
R̂ ϕR, θR, 0ð ÞR̂ ϕR1 , θ

R
1 , 0

� 	
pR1 , s1, λR1
�� E

=〠
μR1

Ds1
μR1 ,λ

R
1
ϕR1 , θ

R
1 , 0

� 	
×〠

νR1

Ds1
νR1 ,μR1

ϕR, θR0ð Þ〠
m1

Ds1
m1,νR1

� αW,R
1 , βW,R

1 , γW,R
1

� 	
pA1 , s1,m1
�� �

:

ð38Þ
The transformation sequence for particle 2 is almost iden-

tical to that for particle 1, but for the Lorentz boost involving
its momentum, thanks to the use of the opposite-helicity states
we introduced in Section 3. The sequence of helicity rotations
is indeed the same as for particle 1, since particle 2 opposite-
helicity states are defined by the same helicity rotation
specifying particle 1 helicity states (see Equation (18)). The
relation between particle 2 canonical spin states (SC,A2 system)
and particle 2 opposite-helicity states (SOHH,S

2 system) is thus
the same as Equation (38) apart from the Wigner rotation:

R αW,R
2 , βW,R

2 , γW,R
2

� 	
= L −pA2

� �
L pAR
� �

L p′R2
� 	

: ð39Þ

For particle 2, the advantage of using our proposed defi-
nition for two-particle product helicity states (Equation (12))
instead of the usual one (Equation (6)) is evident: in the latter
case, two rotations must be performed, one corresponding to
the helicity rotation and one for the inversion.

SA, |sA , mA

S C
R , |sR, mR SH

R , | sR, 𝜆R

SC1 , |s1, m1 S CC
1 , s1, ν

R
1 S HC

1 , s1, 𝜇
R
1 SHH

1 , s1, λRλRλ1

L (−pA
1 )

L (−pA
R

p
R

p ) L(−pA
RR z) R (0, −𝜃R, −𝜙R)

L (−p′ R1 )
L (−pR

1 )
L(−pR

1 z) R(0 , −𝜃
R
1 , −𝜙

R
1 )

R (𝜙R
1 , 𝜃R1 , 0)R(𝜙R, 𝜃R , 0)R (𝛼W,R W,R W,R

1 , 𝛽1 , 𝛾
1

)

Figure 1: Graphical summary of the spin state definitions associated with the decay amplitude for final particle 1 and intermediate state R.
The solid lines indicate the Lorentz transformation sequence involved in the writing of the helicity amplitude. Once a conventional choice for
jsA,mAi initial A particle spin states is set, all the other spin states are completely specified by their Lorentz transformation sequence.
Momentum labels of spin states have been suppressed to avoid cluttering the notation.
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For particle 3, the spin rotation to its canonical system is
much simpler since only one helicity rotation has to be
“undone,” with no Wigner rotation needed since a single
direct boost from particle A to particle 3 rest frames is
involved, leading to

pA3 , s3, λR3
�� E

=〠
m3

Ds3
m3,λ

R
3
ϕR, θR, 0ð Þ pA3 s3,m3

�� �
: ð40Þ

The final particle spin rotations are introduced in the
decay amplitudes as follows. The amplitude for R intermedi-
ate states we are interested in is

AA→R,3→1,2,3
mA ,m1,m2,m3

Ωð Þ = pif gm1,m2,m3h jT̂ sA,mAj i, ð41Þ

in which the final particles state

pif g,m1,m2,m3j i = s1,m1j i ⊗ s2,m2j i ⊗ s3,m3j i ð42Þ
is the product of the canonical spin states reached from the
SA system for each final particle.

For the sake of clarity, we consider amuch simpler example:
the case of a single rotation on a single particle state. Suppose we
know the transition amplitude Aλ = hs, λjT̂jii between a given
initial state jii and a final state js, λi, but we would like to
express the amplitude with respect to some rotated spin states:

R̂ α, β, γð Þ s, λj i =〠
m

Ds
m,λ α, β, γð Þ s,mj i: ð43Þ

To this end, we write the transition amplitude for the
rotated states introducing the js, λi states as a set of intermedi-
ate states:

Am = s,mh jT̂ ij i =〠
λ

s,mh jR̂ α, β, γð Þ s, λj i s, λh jT̂ ij i

=〠
λ

Ds
m,λ α, β, γð ÞAλ,

ð44Þ

in which the rotation operator R̂ðα, β, γÞ acts as a transition
operator between the final particle spin states. Note the parallel
with Equation (11): the Wigner D-matrix is indeed the repre-
sentation of the rotation applied.

Generalising the case of a single rotation for a single par-
ticle, the amplitude for R intermediate states (Equation (41)),
expressed for the final particle canonical state (Equation
(42)) in terms of the amplitude for helicity states (Equation
(22)), becomes

AA⟶R,3⟶1,2,3
mA ,m1,m2,m3

Ωð Þ =  〠
λR1 ,μR1 ,νR1

Ds1
m1,νR1

αW,R
1 , βW ,R

1 , γW,R
1

� 	
Ds1
νR1 ,μR1

� ϕR, θR, 0ð ÞDs1
μR1 ,λ

R
1
ϕR1 , θ

R
1 , 0

� 	
×  〠

λR2 ,μR2 ,ν
R
2

Ds2
m2,νR2

αW,R
2 , βW,R

2 , γW,R
2

� 	
Ds2
νR2 ,μR2

� ϕR, θR, 0ð ÞDs2
μR2 ,λ

R
2
ϕR1 , θ

R
1 , 0

� 	
×〠

λR3

Ds3
m3,λ

R
3
ϕR, θR, 0ð Þ ×AA⟶R,3⟶1,2,3

mA ,λ
R
1 ,�λ

R
2 ,�λ

R
3

Ωð Þ:

ð45Þ

The amplitude for S intermediate states can be written
analogously, taking into account the different decay topolo-
gies (interchanging particle 2 and 3 roles):

AA⟶S,2⟶1,2,3
mA ,m1,m2,m3

Ωð Þ = 〠
λS1,μS1,ν

S
1

Ds1
m1,νS1

αW,S
1 , βW,S

1 , γW,S
1

� 	
Ds1
νS1,μ

S
1

� ϕS, θS, 0ð ÞDs1
μS1,λ

S
1
ϕS1, θ

S
1, 0

� 	
×〠

λS2

Ds2
m2,λ

S
2
ϕS, θS, 0ð Þ × 〠

λS3,μS3,ν
S
3

Ds3
m3,νS3

� αW ,S
3 , βW,S

3 , γW,S
3

� 	
Ds3
νS3,μ

S
3
ϕS, θS, 0ð ÞDs3

μS3,λ
S
3

� ϕS1, θ
S
1, 0

� 	
×AA⟶S,2⟶1,2,3

mA ,λ
S
1,�λ

S
2,�λ

S
3

Ωð Þ:
ð46Þ

Finally, the total decay amplitude is obtained summing
the amplitudes associated with each intermediate state:

AA⟶1,2,3
mA ,m1,m2,m3

Ωð Þ =〠
i

AA⟶Ri ,3⟶1,2,3
mA ,m1,m2,m3

Ωð Þ +〠
j

A
A⟶Sj ,2⟶1,2,3
mA ,m1,m2,m3 Ωð Þ

+〠
k

AA⟶Uk ,1⟶1,2,3
mA ,m1,m2,m3

Ωð Þ,

ð47Þ
in which the amplitude for U intermediate states can be writ-
ten similarly as for R and S states.

For a generic multibody decay, the generalisation of the
method for the matching of the final particle spin states is
straightforward. Each final particle helicity state must be
rotated “undoing” all the helicity rotations applied along its
decay chain, in reversed order. One additional Wigner rota-
tion is needed, describing the difference between the direct
boost defining the particle canonical state and the boost
sequence applied along its decay chain.

5. Effects of an Incorrect Matching of the Final
Particle Spin States on Decay Distributions

We stress the need for a correct matching of the final particle
spin states by considering the consequences an incorrect
matching can have. We first present a general discussion of
the observable effects one can introduce in the decay distri-
butions, and even in the simple case, the incorrect matching
just introduces a relative phase among spin states belonging
to different decay chains. Then, we present a numerical study
in which we compare the method for the matching of the
final particle spin states presented in this article to the one
employed in Refs. [2, 3]: we show that the latter is not correct
since it breaks rotational invariance.

We first discuss the general case of a particle A decay to
fi = 1, ::, ng final state particles, passing through two inter-
mediate states R and S. The associated amplitudes are
denoted as AR

mA ,fmig and AS
mA ,fmig. Let us suppose that, due

to an incorrect matching of the final particle spin state defini-
tion, a phase difference exp ½iψðΩÞ� is introduced between
the two amplitudes. Since the definition of the spin systems
depends on the phase space variables, the incorrect phase will
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be in general function of the decay phase space. The effects of
such a phase are in a certain sense analogous to the phase
effects seen in interferometry experiments: in that case, the
phase difference between particles following different paths
is a physical effect produced by a difference in energy poten-
tial felt by the particle; in our case, it is an unnatural effect
caused by an incorrect definition of spin states among differ-
ent decay chains (the analogue of paths). Also, the mere
change of sign of fermion states under 2π angle rotations is
observable, being measured in neutron interferometry [8, 9].

The polarised decay rate for definite initial mA and final
spin projections fmig (see Equation (B.5) of Appendix C) is

pmA , mif g Ωð Þ = AR
mA , mif g + exp iψ Ωð Þ½ �AS

mA , mif g
��� ���2

= AR
mA , mif g

��� ���2 + AS
mA , mif g

��� ���2
+ 2 Re exp −iψ Ωð Þ½ �AR

mA , mif gA
S∗
mA , mif g

h i
:

ð48Þ

The incorrect phase affects the decay rate modifying the
interference terms between different decay chains, changing
their functional form in terms of phase space variables. In
an amplitude fit to experimental data, it means that fit
parameters depending on interference effects between differ-
ent decay chains can be biased due to the incorrect phase
space dependence introduced. Note that the incorrect phase
also affects the unpolarised decay rate: there is no guarantee
that the sum over the spin states mitigates its effect.

A numerical study illustrating these kinds of unnatural
effects is performed on the decay distributions of the three-
body Λ+

c → pK−π+ decay obtained from its helicity ampli-
tudes. The three-body decay phase space is described by 5
degrees of freedom: two “Dalitz” two-body invariant masses
and three angles describing the orientation of the decay with
respect to the A reference system SA, called orientation angles
in the following. For theΛ+

c → pK−π+ decay, they can be cho-
sen to bem2

pK− ,m2
K−π+ , the cosine of the proton polar angle in

the SΛ+
c
system, cos θp, the proton azimuthal angle, ϕp, and

the signed angle between the plane formed by the proton
and the Λ+

c quantisation axis and the plane formed by the
kaon and the pion, named χ.

We test a property of the decay distributions following
from rotational invariance, which must be satisfied irrespec-
tive of the amplitude model considered: for zero Λ+

c polarisa-
tion, the orientation angle distributions cos θp, ϕp, χ must be
uniform. Indeed, in the absence of a polarisation vector,
nothing specifies a direction in the SΛ+

c
system. This property

provides a necessary test for the correctness of an amplitude
model: if the model produces anisotropic orientation angle
distributions for zero polarisation, it is wrong, violating rota-
tional invariance.

We consider Λ+
c → pK−π+ helicity amplitudes written

closely following the three-body ones described in Section 4
(details specific to the Λ+

c → pK−π+ decay are reported in
Appendix D) applying two different methods for matching
proton spin states among different decay chains: the one pre-

sented in this article and the one employed for the amplitude
analyses [2, 3]. For the Λ+

c → pK−π+ case, the latter method
consists in applying a single rotation to the proton states
aligning their quantisation axes to a reference one, which
are defined as the direction opposite to the momentum of
the particle recoiling against the proton in the proton rest
frame. Taking the K∗ð⟶K−π+Þ decay chain as the refer-
ence, the rotation applied to the proton helicity states is

R̂ 0, βR
p , 0

� 	
pRp , 1/2, λp
��� E

= d1/2
λp′ ,λp

βR
p

� 	
pRp , 1/2, λp′
��� E

, ð49Þ

with angles

cos βΛ∗

p = p̂pK∗ ⋅ p̂pK− , cos βΔ∗

p = p̂pK∗ ⋅ p̂pπ+ , ð50Þ

for the Λ∗ð→ pK−Þ and Δ∗++ð→ pπ+Þ decay chains,
respectively.

For the numerical study, we consider a Λ+
c → pK−π+

amplitude model consisting of three resonance states, one
per decay channel. The detailed specification of the helicity
couplings and resonance descriptions employed is reported
in Appendix D. The code reproducing the amplitude model
is based on a version of the TensorFlowAnalysis package [10]
adapted to five-dimensional phase space three-body amplitude
fits [11]; this package depends on the machine learning frame-
work TensorFlow [12] and the ROOT package [13].

The phase space distributions are described by a set of
five millions Monte Carlo pseudodata generated according
to the two amplitude models for zero polarisation. We stress
that the two amplitude models only differ by the proton spin
matching method.

The distributions associated with the method presented
in this article are shown in Figure 2: the orientation angle dis-
tributions are precisely isotropic, given the accuracy allowed
by the large pseudodata sample.

The distributions associated with the spin matching
method used in Refs. [2, 3] are shown in Figure 3: the orien-
tation angle distributions are evidently anisotropic, also fea-
turing a step in the ϕp distribution. This method is thus
incorrect, leading to an amplitude model violating rotational
invariance. Moreover, it is important to note that the invari-
ant mass distributions are different for the two methods:
therefore, an incorrect spin matching can also affect Dalitz
plot analyses, in which orientation angles are integrated over
the decay rate, as in spin-zero meson decays or when the
polarisation of the decaying particle is not considered.

To conclude, we discuss why the matching method of
Refs. [2, 3] is not correct. The proton spin rotations (Equa-
tion (49)) ensure that the definition of the proton quantisa-
tion axis is the same among different decay chains.
Therefore, the proton states can differ among different decay
chains by a rotation of the orthogonal axes (Equation (2)) or
by the sign of the proton state (Equation (3)), which intro-
duce an incorrect phase difference among decay chains. This
is exactly the case considered at the beginning of this section.
Indeed, the decay distributions associated with single reso-
nances are the same for the two matching methods (up to
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an irrelevant normalisation factor) (Figure 3), since the
phase difference exp ½iψðΩÞ� cancels for single resonance
decay rates. However, the incorrect phase affects the decay
distributions of the full amplitude model, which includes
interference effects among different decay chains, as in
Equation (48).

6. Conclusions

We presented the general expression of helicity amplitudes
for generic multibody particle decays characterised by multi-
ple decay chains. We demonstrated the importance of a pre-
cise specification of spin states for correct writing of helicity
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Figure 2: Phase space decay distributions for the Λ+
c → pK−π+ amplitude models written using the proton spin matching method presented

in this article. “Model” refers to the full Λ+
c → pK−π+ amplitude model distributions, while “D,” “L,” and “K” labels indicate the distributions

associated with single Δ∗++,Λ∗, K∗ resonance contributions.
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amplitudes, proposing an original method to match the final
particle spin states among different decay chains, applicable
to any multibody decay topology.

To this end, we reviewed the definition of spin states
in quantum mechanics, with a particular attention to their
phase specifications, and the helicity formalism, consider-
ing a simpler definition of two-particle helicity states than

the standard one. The proposed method to match the final
particle spin states was obtained requiring that, for any
decay chain, the final particle states are defined by the
same Lorentz transformations relatively to the decaying
particle spin states, by applying a sequence of rotations.
Helicity amplitudes were explicitly written for three-body
decays.
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Figure 3: Phase space decay distributions for the Λ+
c → pK−π+ amplitude models written using the proton spin matching method used in

Refs. [2, 3]. “Model” refers to the full Λ+
c → pK−π+ amplitude model distributions, while “D,” “L,” and “K” labels indicate the distributions

associated with single Δ∗++,Λ∗, K∗ resonance contributions.
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We discussed the consequences of an incorrect phase
introduced between amplitudes describing different interme-
diate states on the decay distributions, showing that they pro-
duce observable effects on the decay distributions via
interference terms. We also tested numerically our spin
matching method against the one used for the amplitude
analyses [2, 3], in the case of Λ+

c → pK−π+ decay amplitudes.
We showed how the latter leads to amplitude models violat-
ing rotational invariance while the first does not. This incor-
rect behaviour follows from a wrong phase introduced
between spin states among different decay chains.

Appendix

A. Spin in Relativistic Processes

Here, we review the description of relativistic processes
involving particles with spin, which is complicated by the
impossibility of a covariant definition of the spin operators
[14]. Indeed, a set of spin operators Ŝ is well defined only
when acting on states describing particles at rest, so that a dif-
ferent set of spin operators has to be defined for each particle
to express their spin states.

To describe processes involving spins of particles in rela-
tive motion, the definition of spin states must be linked to
their relative kinematics. We will discuss the case of multi-
body particle decays, for which the spin states of daughter
particles will be referred relatively the mother A particle
states, defined in a given A rest frame reference system SA,
by specifying a sequence of Lorentz transformations.

Following Ref. [14], we consider active Lorentz transfor-
mations on the physical system: particle momenta are
boosted and rotated, while the reference coordinate system
ðT , X, Y , ZÞ stays unchanged and the spatial directions spec-
ify the spin coordinate systems (the set of spin operators) of
daughter particles in their rest frame. Particle momenta
therefore define the spin coordinate system assigned to a
given particle via the sequence of Lorentz transformations
applied. To keep track of the Lorentz transformations
applied, the following notation is used: a reference system S
′ defined in terms of another S system by applying the
Lorentz transformation Λ to the momenta expressed in the
S system is indicated as S′ =ΛS.

The choice of the spin coordinate system for particle B
moving with momentum pAðBÞ in SA is ambiguous, since B
particle rest frames obtained by Lorentz transformations dif-
fering by rotations around pAðBÞ represent the particle spin
with different spin states. In this article, we consider the def-
inition of the spin coordinate system for a particle at rest
from that of a reference system in relative motion, while in
Ref. [14], it is the spin coordinate system of the moving refer-
ence frame to be defined from that of the particle at rest. The
two approaches are equivalent, but we adopt the first being
more suitable for the case of particle decays, in which the ini-
tial spin coordinate system is given for the mother, rather
than the daughter particles. Note that the time in the particle
B frame is uniquely defined by the boost connecting different
rest frames, its definition considered implicitly in the follow-

ing. There are two main choices of spin coordinate systems in
literature [14]:

(i) The canonical system SCB is the spin coordinate system
obtained from SA by doing a Lorentz boost L½−pAðBÞ�

SCB = L −pA Bð Þ
 �
SA: ðA:1Þ

The canonical coordinate system is physically deter-
mined by the A momentum in the B particle rest frame
pBðAÞ requiring its direction to be opposite to that of pA
ðBÞ in the A coordinate system:

pBxi Að Þ
pB Að Þ = −

pAXi
Bð Þ

pA Bð Þ : ðA:2Þ

(ii) The helicity system SHB consists in choosing the parti-
cle spin quantisation axis to be opposite to the pBðAÞ
direction. The function atan2ðy, xÞ ∈ ½−π, π� com-
putes the signed angle between the x-axis and the
vector having components ðx, yÞ. The helicity system
for pAðBÞ having polar and azimuthal angles θ and ϕ
in the SA system

cos θ =
pAZ Bð Þ
∣pA Bð Þ ∣

� 

,

ϕ = atan2 pAY Bð Þ, pAX Bð Þ� � ðA:3Þ

is obtained by applying an Rð−ψ,−θ,−ϕÞ Euler rotation,
defined in Appendix B, aligning pAðBÞ with the z-axis,
followed by a boost Lð−pAðBÞZÞ:

SHB = L −pA Bð ÞZ� �
R −ψ,−θ,−ϕð ÞSA: ðA:4Þ

With this definition, the particle spin states are described
in terms of the helicity states jpAðBÞ, s, λi introduced in Sec-
tion 2. The angle ψ, associated with a rotation around pAðBÞ,
determines the choice of the orthogonal spin coordinate axes.
The orthogonal axes can be chosen arbitrarily but once
defined must be consistently specified to avoid introducing
phase differences, as shown in Section 2. Their definition is
that it is better visualised as a passive rotation Rðϕ, θ, ψÞ
applied on the ðX, Y , ZÞ coordinate system. If there are parti-
cles other than A and B involved in the process, their
momenta will provide a physical definition of the orthogonal
axes, since they will change under the ψ angle rotation.

Note that any choice of the ψ angle is valid, even if the
two used in the literature are ψ = 0 and ψ = −ϕ. In the rest
of the paper, the simplest choice ψ = 0 will be employed for
the definition of helicity states.

A simple relation holds between helicity and canonical
systems: the boost L½−pAðBÞ� can be decomposed as

L −pA Bð Þ
 �
= R ϕ, θ, 0ð ÞL −pA Bð ÞZ� �

R 0,−θ,−ϕð Þ, ðA:5Þ
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so that

SCB = R ϕ, θ, 0ð ÞSHB : ðA:6Þ

The relation between canonical jpAðBÞ, s, λi and helicity
jpAðBÞ, s, λi spin states, which are both defined in particle B
rest frames, is given by the Wigner D-matrix (introduced in
Appendix B) representing the active rotation from the heli-
city to the canonical system:

R ϕ, θ, 0ð Þ pA Bð Þ, s, λ�� �
=〠

m

Ds
m,λ ϕ, θ, 0ð Þ pA Bð Þ, s,m�� �

:

ðA:7Þ
Note that both canonical and helicity states are defined

relatively to the given reference system SA: canonical and
helicity states defined starting from different reference sys-
tems differ by the so-called Wigner and Wick rotations,
respectively [14]. When considering a chain of spin reference
systems linked by canonical or helicity transformations, as in
the case of multibody particle decays, the relation among spin
states defined in the first and the last systems depends on the
whole sequence of transformations. This fact has physical
consequences, the most famous being the Thomas precession
[15, 16]; in Section 4, we show how it is important to take into
account the whole sequence of transformations for a correct
definition of decay amplitudes.

B. Euler Rotations and Their Representation on
Spin States

Here, we introduce Euler rotations and their representation
on spin states, in nonrelativistic quantum mechanics, follow-
ing the conventions of Ref. [17]. We consider an active rota-
tion on a physical system described by a reference coordinate
system ðx, y, zÞ. The rotation is described by introducing a
new coordinate system ðx′, y′, z′Þ which is rotated with
respect to the reference one together with the physical sys-
tem. A generic rotation of a physical system can be described
by means of Euler rotations, which, in the z − y − z conven-
tion for the rotation axes, are defined as

R α, β, γð Þ = Rz αð ÞRy βð ÞRz γð Þ = e−iαS∧z e−iβS∧y e−iγS∧z , ðB:1Þ

in which rotations are expressed with respect to the original
axes ðx, y, zÞ. The three Euler angles α, β, γ can be computed
from the unit vectors describing the rotated system in the
terms of the original coordinates as

α = atan2 z′y, z′x
� 	

∈ −π, π½ �, ðB:2Þ

β = arccos z′z
� 	

∈ 0, π½ �, ðB:3Þ

γ = atan2 y′z , −x′z
� 	

∈ −π, π½ �: ðB:4Þ

The action of a Euler rotation on spin states js,mi associ-
ated with the spin coordinate system ðx, y, zÞ is

R̂ α, β, γð Þ s,mj i = 〠
s

m′=−s
Ds
m′ ,m α, β, γð Þ s,m′�� E

, ðB:5Þ

in which the Wigner D-matrices Ds
m′,mðα, β, γÞ are

Ds
m′ ,m α, β, γð Þ = s,m′ R α, β, γð Þj js,m

D E
: ðB:6Þ

The Wigner D-matrices of index s are spin s representa-
tions of the SUð2Þ group. Following Equation (B.1), the
Wigner D-matrices can be factorised as

Ds
m′ ,m α, β, γð Þ = s,m′

D ��e−iαS∧z e−iβS∧y e−iγS∧z s,mj i
= e−imαdsm′ ,m βð Þe−im′γ,

ðB:7Þ

in which the Wigner D-matrix elements are real combina-
tions of trigonometric functions of β and their analytical
expression is reported in Ref. [17]. Wigner D-matrices have
many properties following from those of the rotation group;
for the purpose of this article, we report

Ds
m′ ,m α, β, γð Þ =Ds

m,m′ γ,−β, αð Þ, ðB:8Þ

D∗s
m′ ,m α, β, γð Þ =Ds

m′ ,m −α, β,−γð Þ: ðB:9Þ

The inverse rotation from the final coordinate system ðx′,
y′, z′Þ to the initial one ðx, y, zÞ follows from Equation (B.1):

R−1 α, β, γð Þ = R−1
z γð ÞR−1

y βð ÞR−1
z αð Þ = eiγS∧z eiβS∧y eiαS∧z

= R −γ,−β,−αð Þ,
ðB:10Þ

and the Wigner D-matrix representation on js,mi states is
Ds

m′,mð−γ,−β,−αÞ. This definition of inverse Euler rotation
allows undoing step by step the three rotations comprising the
Euler rotation. The usual inverse Euler rotation, given in terms
of the positive β angle, inverts the rotation following a differ-
ent path, which can introduce additional 2π rotations leading
to inequivalent trajectories in the SUð2Þ group representing
spin. This issue is relevant for fermion states, as mentioned
in Section 2.

As a practical example, let us consider the inverse of a
rotation of angle θ around the y-axis, Rð0, θ, 0Þ, which can
be chosen to be Rð0,−θ, 0Þ or Rðπ, θ, πÞ. The Wigner D
-matrix representing R̂ð0,−θ, 0Þ on a spin 1/2 state is

D1/2
m′ ,m 0,−θ, 0ð Þ = d1/2

m′ ,m −θð Þ =
cos

θ

2
sin

θ

2

−sin
θ

2
cos

θ

2

0
BB@

1
CCA,

ðB:11Þ
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while that representing R̂ðπ, θ, πÞ is

D1/2
m′ ,m π, θ, πð Þ = e−iπ m+m′ð Þd1/2

m′m −θð Þ

=
−cos

θ

2
−sin

θ

2

sin
θ

2
−cos

θ

2

0
BBB@

1
CCCA = −D1/2

m′ ,m 0, θ, 0ð Þ,

ðB:12Þ

which has the opposite sign with respect to the first matrix.

C. Polarised Differential Decay Rate

The generic spin state of a statistical ensemble of particles is
defined by the associated density operator bρ [14]: given an
ensemble of spin states jψii occurring with probability pi,
the density operator is

bρ =〠
i

pi ψj ii ψh ji, ðC:1Þ

so that the expectation value of any operator X̂ can be
expressed as

X̂
� �

=〠
i

pi ψh jX̂ ψj ii = Tr bρX̂
 �
: ðC:2Þ

From the definition, Equation (C.1), follows that the den-
sity operator is Hermitian with a unit trace.

The decay rate of multibody decays A⟶ fi = 1, ::, ng for
definite spin eigenstates is the squared modulus of the transi-
tion amplitude between the A particle initial state jsA,mAi and
the final particle product state jfsig, fmigi = ⊗ ijsi,mii:

pmA , mif g Ωð Þ = sA,mAh jT∧ sif g, mif gj ij j2 = AmA , mif g Ωð Þ
��� ���2:

ðC:3Þ

Generic polarisation states are described by introducing
the density operators for the initial particle state ρ∧A and the
final particle states ρ∧fig, which are included in the decay rate
(Equation (C.3)) by inserting suitable identity resolutions,
obtaining

p ρ∧A, ρ∧ if g ;Ω
� 	

= tr ρ∧AT̂ρ∧ if gT∧†
h i

= 〠
mA ,mA

′
〠

mif g, mi
′f g
bρA
mA ,mA

′ bρ if g
mif g, mi

′f gAmA , mif g

� Ωð ÞA∗
mA
′ , mi

′f g Ωð Þ:
ðC:4Þ

D. Λ+
c → pK−π+ Amplitude Model

The Λ+
c → pK−π+ amplitude model is built closely following

the three-body helicity amplitudes described in Section 4,

with the identifications A↔ , Λ+
c , 1↔ p, 2↔ K−, 3↔ π+, R

↔Λ∗, S↔ Δ∗++, and U ↔ K∗. In this appendix, we report
the definition of the helicity amplitudes for the specific Λ+

c
→ pK−π+ decay case.

Starting from the decay chain Λ+
c → pK∗ð→ K−π+Þ, the

weak decay Λ+
c → pK∗ is described by

A
Λ+

c →pK∗

mΛ+c
,λp ,�λK∗

=H
Λ+

c →pK∗

λp ,�λK∗
D∗1/2
mΛ+c

,λp+�λK∗
ϕp, θp, 0

� 	
, ðD:1Þ

in which proton and K∗ helicities λp and �λK∗ are defined
in the proton helicity frame reached from the Λ+

c baryon
polarisation frame. For spin zero K∗ resonances, the angu-
lar momentum conservation relations (Equation (17))
allow two complex couplings corresponding to mp = ±1/2;
for higher spin resonances, four couplings are allowed,
corresponding to fmp = 1/2 ; �λK∗ = 0,−1g and fmp = −ð1/2Þ ;
�λK∗ = 0, 1g. The couplings are independent of each other
because of parity violation in weak decays. The strong decay
K∗ ⟶ K−π+ contribution is

AK∗⟶K−π+
�λK∗

=HK∗⟶K−π+

0,0 D∗JK∗
�λK∗ ,0

ϕK , θK , 0
� 	

R m2
K−π+

� �
,

ðD:2Þ

in which ϕK and θK are the kaon azimuthal and polar angles in
the K∗ opposite-helicity frame (obtained boosting to the K∗

rest frame after the rotation Rðϕp, θp, 0Þ). The function R

ðm2
K−π+Þ describes the nonnegligible mass width of the

Table 1: Helicity couplings and Breit-Wigner parameter values
employed in the numerical study in Section 5.

Parameter Value

K∗

H1/2,0 1

H1/2,−1 0:5 + 0:5i
H−1/2,1 i

H−1/2,0 −0:5 − 0:5i
m GeVð Þ 0.9

Γ GeVð Þ 0.2

Λ∗

H−1/2,0 i

H1/2,0 0:8 − 0:4i
m GeVð Þ 1.6

Γ GeVð Þ 0.2

Δ∗

H−1/2,0 0:6 − 0:4i
H1/2,0 0:1i
m GeVð Þ 1.4

Γ GeVð Þ 0.2
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intermediate state. The coupling HK∗⟶K−π+

0,0 can not be

determined independently of H
Λ+

c →K∗p
mp ,�λK∗

couplings; thus, it

is set equal to 1 and absorbed into the latter.
Considering the decay chain Λ+

c →Λ∗ð→ pK−Þπ+, the
weak decay Λ+

c →Λ∗π+ is described by

A
Λ+

c →Λ∗π+

mΛ+c
,λΛ∗

=H
Λ+

c →Λ∗π+

λΛ∗ ,0
D∗1/2
mΛ+c

,λΛ∗ ϕΛ∗ , θΛ∗ , 0ð Þ, ðD:3Þ

with λΛ∗ defined in the Λ∗ helicity system reached from the
Λ+

c reference frame. The angular momentum conservation
relations (Equation (17)) allow two helicity couplings, λΛ∗

= ±1/2, to fit for each resonance whatever JΛ∗ is. The strong
decay Λ+

c → pK− is described by

A
Λ∗→pK−

λΛ∗ ,λ
Λ∗
p

=H
Λ∗→pK−

λΛ
∗

p ,0
D∗JΛ∗
λΛ∗ ,λ

Λ∗
p

ϕΛ
∗

p , θΛ
∗

p , 0
� 	

R m2
pK−

� 	
,

ðD:4Þ

with λΛ
∗

p as the proton helicity in the system reached from the
Λ∗ helicity frame. Parity conservation in strong decays relates
the two helicity couplings corresponding to λΛ

∗

p = ±1/2 by

H
Λ∗→pK−

−λΛ∗p ,0
= −PΛ∗ −1ð ÞJΛ∗ −1/2HΛ∗→pK−

λΛ
∗

p ,0
, ðD:5Þ

in which PΛ∗ is the parity of the Λ∗ resonance and the proton
and kaon parities Pp = 1, PK = −1 have been inserted. They are
absorbed into H

Λ+
c →Λ∗π+

λΛ∗ ,0
couplings by setting

H
Λ∗→pK−

+1/2,0 = 1,HΛ∗→pK−

−1/2,0 = −PΛ∗ −1ð ÞJΛ∗−1/2: ðD:6Þ

Considering the third decay chain Λ+
c → Δ++∗ð→ pπ+ÞK,

the weak decay Λ+
c → Δ++∗K− is described by

A
Λ+

c →Δ∗K−

mΛ+c
,λΔ∗

=H
Λ+

c →Δ∗K−

λΔ∗ ,0
D∗1/2
mΛ+c

,λΔ∗ ϕΔ∗ , θΔ∗ , 0ð Þ, ðD:7Þ

with λΔ∗ defined in theΔ∗ helicity system reached from theΛ+
c

frame. The strong decay Δ++∗ → pπ+ amplitude is written as

A
Δ∗→pπ+

λΔ∗ ,λ
Δ∗
p

=H
Δ∗→pπ+

λΔ
∗

p ,0
D∗JΔ∗
λΔ∗ ,λ

Δ∗
p

ϕΔ
∗

p , θΔ
∗

p , 0
� 	

R m2
pπ+

� 	
, ðD:8Þ

with λΔ
∗

p defined in the proton helicity system reached from
the Δ∗ helicity frame. Helicity couplings are defined as for
the Λ∗ decay chain.

The decay amplitudes for each decay chain are obtained
as in Equations (22) and (23), to which the rotations needed
to match the proton spin state definitions must be applied, as
in Equations (45) and (46).

For the numerical study presented in Section 5, we con-
sider aΛ+

c → pK−π+ amplitude model consisting of three res-
onances, one per decay channel, with invariant mass
dependence described by relativistic Breit-Wigner functions,
characterised by mass and width parameters. We consider
the following spin-parity JP assignments: K∗ð1−Þ, Λ∗ð1/2−Þ,

and Δ∗ð1/2−Þ. The values of the complex couplings and
Breit-Wigner mass and width parameters employed in the
study are reported in Table 1: they are chosen in order to pro-
duce significant interference effects.

Data Availability

The articles used to support the findings of this study are
included within the article and are cited at relevant places
within the text as references.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

I thank Mikhail Mikhasenko and Alessandro Pilloni for the
critical review of the first version of the article, in particular
for pointing out the need of a Wigner rotation in the match-
ing of the final particle spin states. I thank my colleagues
Louis Henry, Fernando Martínez Vidal, Andrea Merli,
Nicola Neri, and Elisabetta Spadaro Norella for their interest-
ing discussions about the helicity formalism and its applica-
tion to baryon decays. This work was supported by the
ERC Consolidator Grant SELDOM G.A. 771642.

References

[1] M. Jacob and G. C. Wick, “On the general theory of collisions
for particles with spin,” Annals of Physics, vol. 7, no. 4,
pp. 404–428, 1959.

[2] R. Aaij, B. Adeva, M. Adinolfi et al., “Observation of J /ψp
resonances consistent with pentaquark states in Λ0

b → J /ψK −p
decays,” Physical Review Letters, vol. 115, no. 7, article 072001,
2015.

[3] R. Mizuk, R. Chistov, I. Adachi et al., “Observation of two reso-
nancelike structures in the π+χc1 mass distribution in exclusive
�B0 → K −χC1 decays,” Physical Review D, vol. 78, no. 7, article
072004, 2008.

[4] H. Chen and R.-G. Ping, “Coherent helicity amplitude for
sequential decays,” Physical Review D, vol. 95, no. 7, article
076010, 2017.

[5] M. Mikhasenko, M. Albaladejo, Ł. Bibrzycki et al., “Dalitz-plot
decomposition for three-body decays,” Physical Review D,
vol. 101, no. 3, article 034033, 2020.

[6] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley
Publishing Company, 1994.

[7] E. Gourgoulhon, Special Relativity in General Frames: From
Particles to Astrophysics, Springer, Berlin, Heidelberg, 2013.

[8] H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess,
and U. Bonse, “Verification of coherent spinor rotation of fer-
mions,” Physics Letters A, vol. 54, no. 6, pp. 425–427, 1975.

[9] S. A. Werner, R. Colella, A. W. Overhauser, and C. F. Eagen,
“Observation of the phase shift of a neutron due to precession
in a magnetic field,” Physical Review Letters, vol. 35, no. 16,
pp. 1053–1055, 1975.

[10] “TensorFlowAnalysis: a collection of useful functions and
example scripts for per-forming amplitude -ts using Tensor-
Flow,” https://gitlab.cern.ch/poluekt/TensorFlowAnalysis.

14 Advances in High Energy Physics

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis


[11] D. Marangotto, Amplitude analysis and polarisation measure-
ment Λ+

c of the baryon pK−π+ in final state for electromagnetic
dipole moment experiment, Università degli studi di Milano,
2020, https://cds.cern.ch/record/2713231.

[12] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: large-
scale machine learning on heterogeneous systems,” 2015,
https://www.tensorflow.org.

[13] R. Brun and F. Rademakers, “ROOT: an object oriented data
analysis framework,” Nuclear Instruments and Methods in
Physics Research, vol. A389, pp. 81–86, 1997.

[14] E. Leader, “Spin in particle physics,” Cambridge Monographs
on Particle Physics, Nuclear Physics and Cosmology, vol. 15,
2011.

[15] L. H. Thomas, “The motion of the epinning electron,” Nature,
vol. 117, no. 2945, p. 514, 1926.

[16] L. H. Thomas, “I. The kinematics of an electron with an axis,”
The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 3, no. 13, pp. 1–22, 2009.

[17] J. D. Richman, “An experimenter's guide to the helicity formal-
ism,” 1984.

15Advances in High Energy Physics

https://cds.cern.ch/record/2713231
https://www.tensorflow.org

	Helicity Amplitudes for Generic Multibody Particle Decays Featuring Multiple Decay Chains
	1. Introduction
	2. On Spin State Definition
	3. Helicity Formalism Revisited
	4. Helicity Amplitudes for Generic Multibody Particle Decays Featuring Multiple Decay Chains
	5. Effects of an Incorrect Matching of the Final Particle Spin States on Decay Distributions
	6. Conclusions
	Appendix
	A. Spin in Relativistic Processes
	B. Euler Rotations and Their Representation on Spin States
	C. Polarised Differential Decay Rate
	D. Λc+→pK−π+ Amplitude Model
	Data Availability
	Conflicts of Interest
	Acknowledgments

