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We carry out the Hawking temperature of a 2 + 1-dimensional circularly symmetric traversable wormhole in the framework of the
generalized uncertainty principle (GUP). Firstly, we introduce the modified Klein-Gordon equation of the spin-0 particle, the
modified Dirac equation of the spin-1/2 particle, and the modified vector boson equation of the spin-1 particle in the wormhole
background, respectively. Given these equations under the Hamilton-Jacobi approach, we analyze the GUP effect on the
tunneling probability of these particles near the trapping horizon and, subsequently, on the Hawking temperature of the
wormbhole. Furthermore, we have found that the modified Hawking temperature of the wormhole is determined by both
wormbhole’s and tunneling particle’s properties and indicated that the wormhole has a positive temperature similar to that of a
physical system. This case indicates that the wormhole may be supported by ordinary (nonexotic) matter. In addition, we
calculate the Unruh-Verlinde temperature of the wormhole by using Kodama vectors instead of time-like Killing vectors and

observe that it equals to the standard Hawking temperature of the wormhole.

1. Introduction

Black hole and wormbhole solutions are the most popular and
fascinating solutions of Einstein general relativity as well as
modified gravitational theories. Theoretically, the black hole
consists of a singularity in the center and an event horizon
that surrounds this singularity, but the wormhole consists
of two mouths and a throat connecting them. Also, the
mouths of a wormhole open into two different regions of
the same space-time or different two space-times in the pres-
ence of an exotic matter called phantom violating the energy
conditions [1, 2]. However, it has been shown that a worm-
hole can be formed without an exotic matter; i.e., it can be
supported by ordinary matter not violating energy condition
[3-12]. Furthermore, a wormhole space-time is topologically
similar to a black hole except for the nature of their horizon.
This situation arises from the fact that the wormhole horizon
is characterized by a temporal outer trapping horizon while
the black hole horizon is characterized by a future spatial

trapping region [13]. Thus, thanks to its throat, it is believed
that a wormhole allows a traveler to both directions.

After the seminal papers of Hawking [14-16], the ther-
modynamic properties of the these cosmological objects have
been a great interest. From these thermodynamical proper-
ties, especially, thermal radiation of a black hole, named as
Hawking radiation, is calculated by various methods. From
these methods, the Hamilton-Jacobi method, based on quan-
tum tunneling process of a particle, is the most popular
method [17-27]. By using the Hamilton-Jacobi approach,
Hawking radiations of a number of black holes as quantum
tunneling process of a point particle have been investigated
in the literature [28-40]. Recently, it has been also showed
that Elko (dark) particles which are spin-1/2 fermions of
mass dimension one and dual-helicity eigen spinors of the
charge conjugation operator are emitted at the expected
Hawking temperature from black holes and strings [39, 40].
These studies show that Hawking radiation depends only
on the black hole’s properties. On the other hand, when the
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thermodynamic properties of a black hole are examined in
the context of the GUP which is based on the existence of a
minimal observable length that is a characteristic of the
candidate theories of quantum gravity, it is seen that the
modified Hawking temperature is up to the properties of
both the black hole and the tunneled particle [41-62]. Fur-
thermore, in the presence of the GUP effect, it was observed
that the particles with spin (spin-0, 1/2, and 1) are differently
tunneled from a black hole, and therefore, they caused
completely different Hawking temperatures [63-68]. How-
ever, while the black hole thermodynamic is intensively stud-
ied in the literature, there are few studies that deal with
thermodynamic properties of wormholes [69-78]. The exis-
tence of a trapped horizon would allow the use of semiclassi-
cal approaches such as the Hamilton-Jacobi approach based
on the tunneling of particles for investigation of the thermo-
dynamic properties of a wormhole. Thus, studies investigat-
ing the temperature of a wormhole by quantum mechanical
tunneling process of the spinning particles show that the
temperature of the wormholes is not related to the properties
of the tunneling particles [79-81]. Moreover, according to
our knowledge, the thermodynamic properties of wormholes
have not yet been analyzed in the context of quantum gravity.
Therefore, we will look into the Hawking temperature of the
2 + 1-dimensional static traversable wormhole via quantum
mechanical tunneling of the massive spin-0, spin-1/2, and
spin-1 particles in the context of GUP.

The purpose of the paper is investigate the modified
Hawking temperature of the 2 + 1-dimensional wormhole
by using the Hamilton-Jacobi approach in the context of
the GUP. Hence, in the following section, using the modified
Klein-Gordon equation, we calculate the tunneling probabil-
ity of the scalar particle and, subsequently, the modified
Hawking temperature of the wormhole. In this section, we
also derive the Unruh-Verlinde temperature by using the
Kodama vector instead of time-like Killing vector and com-
pare it with the standard Hawking temperature derived by
quantum tunneling process. In Sections 2.2 and 2.3, for the
modified Dirac equation that describes spin-1/2 Dirac parti-
cle and for the modified vector boson equation that describes
spin-1 vector boson particle, respectively, we obtain the mod-
ified temperature of the wormhole by the same procedure for
the scalar particle. In Section 3, we summarized the results.

2. Hawking Temperature of the 2 + 1
-Dimensional Traversable Wormhole

Despite significant studies, the quantum nature of gravity
continues to hide its mystery, and this is still one of the most
important problems of theoretical physics. Recently, the
interest in developing theories for understanding the nature
of gravity in lower dimensions is growing, because lower
dimensional theories are both mathematically simple and
help to stimulate new insights into its higher dimensional
counterparts by generating new ideas. In particular, several
2 + 1-dimensional gravity models have been built up that
guide to the understanding of the problems encountered in
their 3 + 1-dimensional counterparts [82-88]. On the other
hand, in the Planck scale, a minimal length appears naturally
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in the suitable candidate theories for the quantum gravity
such as string theory, loop quantum gravity theory, and non-
commutative geometry [89-93]. Furthermore, to analyze the
effect of the quantum gravity on a curved space-time back-
ground, 2+ 1 dimension satisfies a simplicity with respect
to 3 + 1 dimension.

The general form of the 2+ 1-dimensional circularly
symmetric traversable wormhole space-time is given as fol-
lows [94-97]:

ds? =X (g - drt - r2d¢2, (1)

o
1= (b(r)ir)

where b(r) and f(r) are the shape and the redshift functions,
respectively. To represent a wormhole via Equation (1), there
are some constraints known as flare-out conditions on the f(r)
and b(r) functions: to guarantee the absence of a horizon, the
redshift function, f(r), must be taken as finite values everywhere.
At the throat, i.e,, 7 = ry, where ry, is the radius of the throat, the
shape function, b(r), must be obeyed the conditions b(ry,) = ry,
and b'(ry,) < 1. Also, the shape function must be obeyed b
(r) <r for r>ry and b(r)/r — 0 in the limit |r| — 0.

In this study, we will use the Kodama vector, K*, to calcu-
late the surface gravity [98-100]. The Kodama vector lies in
the (¢ —r) plane, and its definition is given as follows:

1
K%= —¢"0,R, (2)

Vh

where / is the determinant of the metric tensor h,, of the 1
+ 1-dimensional plane, &? is the 1+ 1-dimensional Levi-
Civita tensor, and R is radial function [98-100]. For this
purpose, the 2 + 1-dimensional traversable wormhole met-
ric (Equation (1)) can be rewritten as follows:

ds* = hydx"dx® - r*d¢?,  (a,b=0,1), (3)
where x? = (t,7) and h,, = (1,—(r/(r = b(r)))) is the metric
of the two-dimensional space. Here, we consider the zero-
redshift case, i.e, f(r) =0. Thus, the components of the

Kodama vector for the 2+ 1-dimensional traversable
wormhole metric (Equation (3)) are as follows:

K”:( 1—@,0,0). (4)

Furthermore, using the Kodama vector, the energy of a
particle can be defined as follows:

E=-K"3,8, (5)

where S is the action function of a particle [98-100]. On
the other hand, the radius of trapping horizon is deter-
mined by the following way [78, 101, 102]:

h*9 rd,r =0. (6)
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Hence, using Equation (6), we calculate the radius of the trap-
ping surface as 7'y, = b(r,,) which means that the radius of trap-
ping horizon is equal to the radius of the throat, ie., 1y, =y,

This result exhibits that the radius of the trapping hori-
zon of the static traversable wormhole overlaps with the
radius of its throat. Using this fact, we aim to investigate
the quantum mechanical effects near the trapping horizon
by using the Hamilton-Jacobi approach in the context of
GUP. To do so, we use the modified Dirac, Klein-Gordon,
and vector boson equations.

2.1. Tunneling of Scalar Particle from the Wormhole. To clar-
ify the quantum gravity correction to the tunneling of the
scalar particle from the wormhole, we start by writing the
modified Klein-Gordon equation given as follows:

120,0'® + h?0,0'D + 2ah"9,0' (aiafqb)
N (7)
+ M (1 - 2aMg) @ =0,

where @ and M, are the modified wave function and mass of
the scalar particle, respectively, and also, the GUP parameter,
«, is defined as « = rxo/MIzJ in terms of M, (Planck mass) and a
dimensionless parameter, a«, The upper limit for «, is
reported as 10*' [103-105]. By using the wormhole back-
ground in Equation (1), the modified Klein-Gordon equation
is rewritten in the following form:

IO KD o’ ’'d
2 v 4 I i
h 57 o5 +2ah”C(r) 572 (C(r) ar2>
20 3 [10°®\ .,  0*D (8)
e \raw) e

+ Mg (1 - 2aMg)D =0,

where C(r) =1 - (b(r)/r). Furthermore, the modified wave

function of the scalar particle, @(t, r, ¢), is defined as
D(t,1,¢$) = A exp (% S(t,, (/))) , 9)

where A is a constant and S(¢,7, ¢) is the classical action
function. When inserting Equation (9) into Equation (8),
we get the modified Hamilton-Jacobi equation as follows:

oS\’ aS\* 1 /3S\* _, 2a/3S\*
(@) -c() - = (5) -5 ()
+2a [Mg—(:(rf(gfﬂ =0,

where the higher order terms of % are neglected. The action
function, S(t, 1, ¢), can be separated by means of the Kodama
vector [98-100] in which the Kodama vector for the worm-
hole background is K’ = (1/C,0,0) and also, the energy of
the tunneling particle, E, is described by the Kodama vector

(10)

as E = —/C(0S/0t). Accordingly, by using the separation of
variable method, the action is written by the following form:

S(t,r,gb):—J dt+jo+ W(r) +k, (11)

E
VE(r)

where k is a complex constant and j is the angular momen-
tum of the particle. In this context, the modified Hamilton-
Jacobi equation is reduced to the radial trajectory, W(r):

E? = C(r) (MG + j2r?)
W)= / <)

where the signs +/— represent to the outgoing particle and
ingoing particle, respectively. Also, the abbreviation A is

1+aAldr, (12)

A COPME =7 - [B-Co e Pn)
C(r)[E* - C(r) (Mg + j*17)]

In the near trapping horizon limit, C(r)=(r—r,)a,
where a is a constant and it is

a= - , (14)

where the prime denotes the derivative with respect to r. Because
of the flare-out conditions, we see that the constant a should be
positive, i.e.,, a > 0. In that case, W, (r) are calculated as

_E 3a 7
Wi(r’h)=iln’; [1+ 7<M3+ r_z)] (15)

h

Then, the scalar particle tunneling probabilities from the
trapping horizon are

Pay=exp [, (1) (16)
P, —exp {—%Imw_(r)] . (17)

Thus, the tunneling probability is

P out *—TE
= , 18

_2
T'=¢ #HmS _

in

where T is Hawking temperature. Consequently, the modified
Hawking temperature of the scalar particle, TXC, is obtained as
follows:

KG TH

T 1+ (Bar2) (M2 + (112))]

3« 7
:TH{1+ —<M2+ —)}
2 O

(19)



where Ty is the usual Hawking temperature of the wormhole
and it is explicitly given by

ha
H= g (20)

Since a is positive, the usual Hawking temperature of the
wormhole, T, also positive. This result shows that we can
take the wormhole as a physical system; ie., it may be sup-
ported by an ordinary (nonexotic) matter. In the previous
studies, it was emphasized that the Hawking temperature of
a wormhole should be negative due to the exotic matter that
supports it. In these studies, the trapping horizon of the
wormhole is considered in the past outer trapping region
[73, 80, 81]. However, our result indicates that the wormhole
may be supported by an ordinary (nonexotic) matter. In
addition, our result shows that the trapping horizon of the
wormhole is represented by a future outer trapping region
[106, 107]. Moreover, according to Equation (19), we can
say that the standard Hawking temperature is higher than
the modified Hawking temperature. In that case, the mass
and angular momentum of the tunneling scalar particle play
an important role in determining the thermodynamic proper-
ties of the wormbhole, as in scalar particle tunneling from both
2+1- and 3+ 1-dimensional black holes in the presence of
the GUP effect [49, 52, 54, 55, 63, 65-68].

In this point, it is important to emphasize that the stan-
dard Hawking temperature of the wormhole given in Equa-
tion (20) can be derived in the context of Unruh-Verlinde
approach [108, 109]. In the standard Verlinde formulation,
Unruh-Verlinde temperature is defined in the following
expression [109-111]:

h
TUnruh = % e(Dnavzx(D’ (21)

where n“ is a unit vector and @ is the modified Newtonian
potential given in terms of metric tensor, g*¥, and time-like
Killing vector, Eﬂ, as [112]

Q= % In (—g’“’fﬂfv). (22)

As indicated in [110], the Unruh-Verlinde temperature
calculated using Equation (21) is zero. However, if we use
the Kodama vector instead of the time-like Killing vector in
Equations (21) and (22), we find a nonzero Unruh-
Verlinde temperature. Thus, we obtain the Unruh-Verlinde
temperature of the 2 + 1-dimensional traversable wormhole
as follows:

rh

which is consistent with Equation (20). According to this
result, both standard Hawking temperature and the Unruh-
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Verlinde temperature are nonvanishing at the throat of the
2 + 1-dimensional traversable wormhole and are equal to
each other. Furthermore, this situation shows that a Kodama
observer measures a different temperature value than a Kill-
ing observer.

2.2. Tunneling of Massive Dirac Particle from the Wormhole.
The modified 2 + 1-dimensional Dirac equation by using the
GUP relations is given by the following way:

i0°(x)0, ¥ + i (x) (1 — apsg ) 0, ¥

- % (1 + ahzajaj - ocy(z))‘i’
. .. 24
+ il (x)0,; (ajaflp) 24

— ot ()T, 1+ ah’9,0) - ) ¥ =,

where ¥ is the modified Dirac spinor, g, is the mass of the
Dirac particle, 6#(x) are the space-time-dependent Dirac
matrices, and I',(x) are spin affine connection for spin-1/2
particle [63, 65-67, 113]. Using Equation (1), the nonzero
spinorial affine connection is derived in terms of Pauli matri-
ces as follows:

I,=-./C(r)o'd*. (25)

1
2

To get the tunneling probability of the massive Dirac par-
ticle from the wormhole, we use the following ansatz:

- j A(t, 1,
¥ (x) =exp <% S(t,, (/5)) (BE: . :Z; > , (26)

where A(t, 7, ¢) and B(t, r, ¢) are the functions of space-time

coordinates [113]. Substituting Equations (25) and (26) into

Equation (24), we obtain the following coupled equations
oS (1-aug)os

for the leading order in # and a:
B|i\/C(r)(1 - apig) 5= + ~——=— +iaC(r)** 95)°
o) 5r r 0¢ or

+B[imas (“)Z aC(r) 0 (as>2 L@ (as 3}

or \0¢ r %E r3

S o ag, (9S\? 28\ 2
+A[§ +.‘40(1_“Mo)+r_20(%> + oy C(r) 7) =0,

0 (1-aug)os »

A|=iy/C(r)(1 —0‘.‘43)5 T %

/C(r)3S (0S\* aC(r)dS (3S\*> «a [0S\’
A EG) ) @)

N s\ * S\
+B|:at _[’10(1_06#3)_ ‘X:Zlo (a¢) —auOC(r)<ar) :| =0.

(27)
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Thus, we obtain the modified Hamilton-Jacobi equation
describing the massive Dirac particle for vanishing determi-
nant of the coefficient matrix of A(t,r, ¢) and B(t, 1, ¢):

(5 <o) -+ 3
¢

e 8 -0

where the terms with higher order a parameter are neglected.
Afterwards, using Equation (11), the radial trajectory of the
tunneling Dirac particle, W + (r), is found as

\/E2 = C(r) (ug + jI?)
W+ (r) =ij o) 1+ay]dr, (29)

where y is calculated as

E*(2u3C(r) - E?)

C(r) [E2 - C(r) (15 +j2/r2)] ’ (30)

X:

Under the near trapping horizon condition,C(r) = (r — r,,)a
and W + (r) are obtained as

Wi(rh):iin§[1+g<3yg—é>]. (31)

5

Using Equations (16) and (18), the modified Hawking tem-
perature of the Dirac particle, TR, is obtained as follows:

"= (g3 06 2l
(32)

where Tyis the usual Hawking temperature in Equation
(20). This result indicates that the modified Hawking tem-
perature of the Dirac particle is completely different from
that of the scalar particle. In addition, it depends on the
properties of the Dirac particle as well as the throat radius
of the wormhole, as in the Dirac particle tunneling from
black holes and strings when the GUP effect is taken into
account [46-48, 50, 61-63, 65-68]. In the absence of the
GUP effect, the modified Hawking temperature reduces to
the standard one.

2.3. Tunneling of Massive Vector Boson from the Wormbhole.
The 2+ 1-dimensional modified massive vector boson
equation is

5
iB(x)00 ¥ + i (x) (1 - am2) 0, + iah® B (x)9, (ajafai/)
- % (1 + (xhzajaj - amg)‘f’
— i (x)2H (1 +al?0,0) - amg) ¥ =0,
(33)

where Wand m, are the modified wave function and mass
of the vector boson, respectively [64, 67]. Also, the f#(x)
and 2* connection coefficients for spin-1 are given as

B(x)=ct(x) @I +1®0*(x), (34)

Z,(x)=T,(x)®I+1®T,(x), (35)

respectively [114, 115]. To analyze the Hawking tempera-
ture of the wormhole in the framework of GUP via
tunneling of the spin-1 vector boson particle, we use the
following ansatz for the wave function [114, 115]:

(tr¢)

- i B

¥(x) =exp <ﬁ S(t,r, </>)> E z; . (36)
(tr¢)

Then, using Equations (25), (34), and (36), the modi-
fied massive vector boson equation is simplified to the
three coupled differential equations:

)G )
_iamg\/ﬁ(ﬂg n \/6—(7)21

A PEE)

m(Z)GS]

+i(xC(r)m<$)3—(x7%

+A §+7m0(1—¢xmé) +ocm—g % ’
ot 2 2r2 \ 0¢

a0 (5]

+ B




+ 2 <§>3} +A[—z’ C(r)g + ;g—;

L (2] o

e PR et

—iaC(r)/C(r) ( > ] { - VC(r) gf
) ) )]

+B [—mo(l —amy) — am,C(r) <ar>

+D

oL w2 6

, oS a [0S\’
+ iamg C(’)EJ’F(%)]

1as ()(as>2_a 508

*BIT r ¢ r r 0¢

— iaC(r) \/““ ] 1;“’”0)
5 (ag) -3 (arﬂ

Equation (37) has nontrivial solutions for the coeffi-
cients A(t,r,¢), B(t,r,¢), and D(¢, 7, $) under the condi-
tion that the coeflicient matrix determinant is zero.
Hence, the modified Hamilton-Jacobi equation for the
massive vector boson particle becomes as follows:

(38)

) )o@ )

G E) @)
() -5 () < x (5) (o)
() oY ()]
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Using the method of separating the variable of the
classical action function, as in Equation (11), the radial
trajectory,W + (r), of the massive vector boson is written

as follows:
R

where Y is calculated as

m +]2/r2)

C()

[1+aY]dr, (40)

(SmOC(r) )

T cmE-co)m+ PR

(41)

Using the near trapping horizon condition, C(r)=
(r—ry)a, the integral expression in Equation (40) is
calculated as

_E a /9 7
Wt (r))=timn— |1+ = (-m? -], 42
+(ry) n[ +2(4mo h)} (42)

Hence, using Equations (16) and (18) for the vector boson
particle, the modified Hawking temperature becomes

T, = T ~Ty|1- = 2m2—£
T (a2) (9amd - )] T 2@ )
(43)

Here, T} is the usual Hawking temperature of the worm-
hole. As can be seen from Equation (43), the modified Hawking
temperature of the vector boson is different from that of the
both Dirac and scalar particles. And also, as a result of the
quantum gravity, the modified Hawking temperature depends
on the mass and the angular momentum of the vector boson
particle, as in the vector boson particle tunneling from a black
hole in the presence of the GUP effect [43-45, 64, 67, 68].

3. Concluding Remarks

In this work, in the framework of the quantum gravity, we
have investigated the Hawking temperature of the 2 +1
-dimensional traversable wormhole by using the quantum
tunneling processes of the spin-0 scalar, spin-1/2 Dirac, and
spin-1 vector boson particles, respectively. Some important
results deduced from this study can be listed as follows:

(i) We observe that due to the presence of a trapping
horizon, the Hamilton-Jacobi approach is found to
be useful in determining the thermal properties of
wormholes

(ii) As can be seen from Equation (20), the standard
Hawking temperature of the 2 + 1-dimensional tra-
versable wormhole is positively defined and depends
only on the wormhole properties. The positive tem-
perature indicates that a wormhole can be treated as
a physical system. This indicates that it may be sup-
ported by an ordinary (i.e., nonexotic) matter
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(iii) The Unruh-Verlinde temperature of the wormhole
was calculated by using the vector Kodama vector
instead of the time-like Killing vector. It is observed
that, at the throat of the wormhole, the Unruh-
Verlinde temperature is equal to the standard Haw-
king temperature. Also, both temperatures are non-
vanishing. Accordingly, it can be said that Kodama
and Killing observers detected a different tempera-
tures in the 2 + 1-dimensional traversable wormhole
background

(iv) This situation indicates that the reason why Kodama
and Killing observers measure different tempera-
tures is directly related to the geometric point of
view

(v) As a result in quantum gravity effect, the modified
Hawking temperatures caused by the tunneling of
the spin-0 scalar, spin-1/2 Dirac, and spin-1 parti-
cles, separately, are lower than the standard one,
and also, the modified Hawking temperature
depends on both the properties of wormhole and
tunneled particles. Moreover, for all the three types
of particles, angular momentum (orbital+spin)-
space-time geometry interaction appears as j*/r7 in
the context of the GUP, where j is the angular
momentum (orbital+spin) of the tunneling particle
and ry, is radius of the wormhole throat

(vi) Inthe context of GUP, of course, the tunneling prob-
ability of the spinning particles from the wormhole
is different from each other

Finally, as in black holes, similarly, it can be said that the
quantum mechanical tunneling processes of the relativistic
spinning particles play an important role in the investigation
of the thermodynamic properties of a wormhole in the pres-
ence of the quantum gravity effects.
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