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In this paper, we present a type D, nonvanishing cosmological constant, vacuum solution of Einstein’s field equations, extension of
an axially symmetric, asymptotically flat vacuummetric with a curvature singularity. The space-time admits closed time-like curves
(CTCs) that appear after a certain instant of time from an initial space-like hypersurface, indicating it represents a time-machine
space-time. We wish to discuss the physical properties and show that this solution can be interpreted as gravitational waves of
Coulomb-type propagate on anti-de Sitter space backgrounds. Our treatment focuses on the analysis of the equation of geodesic
deviations.

1. Introduction

Closed time-like curves constitute one of the most intriguing
aspects of general relativity. The first solution of the field
equations admitting closed time-like curves (CTCs) is the
Gödel rotating Universe [1]. It represents a rotating universe
and is axially symmetric, given by

ds2 = dr2 + dz2 + sinh2r − sinh4r
� �

dθ2 + 2
ffiffiffi
2

p
sinh2rdθdt − dt2

ð1Þ

The coordinates are in the ranges 0 ≤ r <∞, −∞ < z <∞,
and −∞ < t <∞, and θ is periodic. For some r > r0, the met-
ric function, gθθ = sinh2r − sinh4r, becomes negative. The
circle defined by r > r0 and t = 0 = z will be time-like every-
where. This condition is fulfilled when r > r0 = ln ð1 + ffiffiffi

2
p Þ

which is the condition for the existence of CTCs in the Gödel
space-time because one of the coordinates θ ∈ ½0, 2π� is peri-
odic. The next one is the van Stockum space-time [2], which
predates the Gödel solution and was shown later to have
CTCs [3]. Examples of space-time admitting CTCs including

NUT-Taub metric [4–7], Kerr and Kerr-Newman black hole
solution [8–10], Gott time-machine [11], Grant space-time
[12], Krasnikov tube [13], Bonnor’s metrics [14–19], and
others [20–36]. Space-time with causality violating curves is
classified as either eternal or true time-machine space-
times. In eternal time machine space-time case, CTCs always
preexist. In this category would be [1] or [2] (see also, Refs.
[23, 25, 27, 32, 36]). A true time machine space-time is the
one in which CTCs evolve at a particular instant of time from
an initial space-like hypersurface in a causally well-behaved
manner satisfying all the energy conditions with known type
of matter fields. In this category, the Ori time machine space-
time [37] is considered to be most remarkable. But the matter
sources satisfying all the energy conditions are of unknown
type in this space-time. Most of the timemachine models suf-
fer from one or more drawbacks. For space-time admitting
CTCs, the matter-energy sources must be realistic, that is,
the stress-energy tensor must be of a known type of matter
fields, which satisfy all the energy conditions. Many space-
time model, for examples, traversable wormholes [38, 39]
and warp drive models [40–43] violate the weak energy con-
dition (WEC), which states that TμνU

μUν ≥ 0 for a time-like
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tangent vector field Uμ, that is, the energy-density must be
nonnegative. Some other space-times admitting CTCs violate
the strong energy condition (SEC) (e.g., Refs. [44–47]), which
states that ðTμν − 1/2gμνTÞUμUν ≥ 0. In addition, some solu-
tions do not admit a partial Cauchy surface (initial space-like
hypersurface) (e.g., Refs. [1, 48]) and/or CTCs come from
infinity (e.g., Refs. [11, 12]). In addition, there is a curvature
singularity in some solutions admitting CTCs [3, 35, 48–53].

In literature, only a handful of solutions of Einstein’s field
equations with the stress-energy tensor in [1, 33, 34] and type
N Einstein space-time in [30] have a negative cosmological
constant. In this work, we try to construct a type D Einstein
space-time with a negative cosmological constant which
was not studied earlier. The cosmological constant plays a
vital role in explaining the dynamics of the universe. A tiny
positive cosmological constant neatly explains the late-time
accelerated expansion of the universe. Indeed, our universe
is observed to be undergoing a de Sitter (dS) type expansion
in the present epoch. For a negative cosmological constant,
space-time is labelled as an anti-de Sitter (AdS) space. The
AdS space has been a subject of intense study in recent times
on account of the celebrated AdS/CFT correspondence [54],
which provides a link between a quantum theory of gravity
on an asymptotically AdS space and a lower-dimensional
conformal field theory (CFT) on its boundary.

2. Review of a Type D Vacuum Space-Time with
a Curvature Singularity and CTCs [51]

In Ref. [51], a type D axially symmetric, asymptotically flat
vacuum solution of the field equations with zero cosmo-
logical constant, was constructed. This vacuum metric is
as follow

ds2 = − cosh t coth t sinh2rdt2 + cosh2r sinh rdr2

+ csch rdz2 + sinh2r 2
ffiffiffi
2

p
cosh tdtdϕ − sinh tdϕ2

� �
:

ð2Þ

After doing a number of transformations into the
above metric, we arrive at the following

ds2 = cosh2r sinh rdr2 + csch rdz2 − sinh2r 2dtdϕ + tdϕ2
� �

:

ð3Þ

The Kretschmann scalar of the above metric is

K = RμνρσR
μνρσ = 12

sinh6r
: ð4Þ

For constant r, z, the metric (3) reduces to conformal
Misner metric in 2D

ds2 =Ω −2dtdϕ − tdϕ2
� �

, ð5Þ

where Ω = sinh2r is the conformal factor.

In the context of CTCs, the Misner space metric in 2D is
interesting because CTCs appear after a certain instant of
time from causally well-behaved conditions. The metric for
the Misner space in 2D [55] is given by

ds2Mis = −2dTdX − TdX2, ð6Þ

where −∞ < T <∞ but the coordinate X is periodic locally.
The metric (6) is regular everywhere as det g = −1 including
at T = 0. The curves T = T0, where T0 is a constant, are closed
since X is periodic. The curves T < 0 are spacelike, T > 0 are
time-like, while the null curves T = 0 form the chronology
horizon. The second type of curves, namely, T = T0 > 0, are
closed time-like curves. Therefore, the metric (2) or (3) is a
four-dimensional generalization of Misner space in curved
space-time. Note that the above space-time is the vacuum
solution of field equations, a Ricci flat, that is, Rμν = 0. Li
[56] constructed a Misner-like AdS space-time, a time-
machine model. Levanony and Ori [57] constructed a
three-, four-dimensional generalization of flat Misner space
metric.

In this paper, we extend the above Ricci flat space-time
(2) to the Einstein space-times of Petrov type D, which satisfy
the following conditions

Rμν =Λgμν, R = 4Λ,Λ < 0 orΛ > 0: ð7Þ

It is an anti-de Sitter-like space if Λ < 0 and de Sitter like
if Λ > 0. The extended space-time satisfies all the basic
requirements (see details in Ref. [30]) for a time machine
space-time except one, that is, this newmodel is not free from
curvature singularity.

3. Analysis of a Cosmological Constant
Vacuum Space-Time

Consider the following line element, a modification of the
metric (2) given by

ds2 = sinh2r −cosh t coth tdt2 + 2
ffiffiffi
2

p
cosh tdtdϕ − sinh tdϕ2

� �
+ dr2

α csch r sech2r + β2 tanh2r
� � + α csch r + β2 sinh2r

� �
dz2:

ð8Þ

Here, α is a positive constant, and β is real. The coordi-
nates are labelled x0 = t, x1 = r, x2 = ϕ, and x3 = z. The ranges
of the coordinates are

−∞ < t <∞,0 ≤ r <∞,−∞ < z <∞, ð9Þ

and ϕ is a periodic coordinate ϕ ~ ϕ + ϕ0, with ϕ0 > 0. The
metric is Lorentzian with signature ð−, + , + , + Þ and the
determinant of the corresponding metric tensor gμν,

det g = − cosh2r sinh4r cosh2t: ð10Þ
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Now, we have evaluated the Ricci tensor Rμν of the space-
time (8) as follows:

Rtt = 3β2 cosh t coth t sinh2r,

Rtϕ = Rϕt = −3
ffiffiffi
2

p
β2 cosh t sinh2r,

Rrr = −3β2 cosh2r
α csch r + β2 sinh2r

 !
,

Rϕϕ = 3β2 sinh2r sinh t,

Rzz = −3β2 α csch r + β2 sinh2r
� �

:

ð11Þ

The Ricci scalar is given by

Rμ
μ = R = −12β2: ð12Þ

Using the metric tensor components of the above space-
time, we have found that the Ricci tensor

Rμν = −3β2gμν μ, ν = 0, 1, 2, 3ð Þ, ð13Þ

and the Einstein tensor Gμν are

Gμ
v = 3β2 diag 1, 1, 1, 1ð Þ: ð14Þ

From the Einstein’s field equations Gμν +Λgμν = 0 and
from eq. (14), we have

3β2 = −Λ⇒ β = ±
ffiffiffiffiffiffiffiffi
−
Λ

3

r
,Λ < 0: ð15Þ

Thus, from the above analysis, it is clear that the space-
time considered by (8) is an example of the class of Einstein
space of anti-de Sitter-type and satisfies eq. (7) for a negative
cosmological constant. We have shown later that the space-
time possesses a curvature singularity at r→ 0.

An interesting property of the metrics (8) is that it
reduces to 2D Misner space metric [55] for constant r, z.
For that, we do the following transformations

t→ sinh−1t, ϕ→ ϕ +
ffiffiffi
2

p
+ 1

� �
ln t, ð16Þ

into the metric (8) (replacing β2 → −Λ/3), we arrive at the
following line element

ds2 = sinh2r −2dtdϕ − tdϕ2
� �

+ cosh2rdr2
α csch r − Λ/3ð Þ sinh2r� �

ð17Þ

+ α csch r −
Λ

3 sinh2r
� �

dz2: ð18Þ

For constant r = r0 > 0 and z = z0, the metric (17) becomes

ds2conf = sinh2r −2dtdϕ − tdϕ2
� �

=Ωds2Mis, ð19Þ

a conformal Misner space metric in 2D whereΩ is the confor-
mal factor. Therefore, the space-time admits CTC for t = t0
> 0 similar to the Misner space discussed earlier.

We check whether the CTCs evolve from an initially
space-like t = constant hypersurface (and thus t is a time
coordinate). This is determined by calculating the norm of
the vector ∇μt [37] (or alternately from the value of gtt in
the inverse metric tensor gμν). A hypersurface t = constant
is space-like when gtt < 0 at t < 0, time-like when gtt > 0 for
t > 0, and null gtt = 0 for t = 0. For the metric (8), we have

∇μt∇
μt = gtt = sinh t

sinh2r cosh2t
: ð20Þ

Thus, a hypersurface t = constant is spacelike for t < 0,
time-like for t > 0, and null at t = 0. We restrict our analysis
to r > 0; otherwise, no CTCs will be formed. Thus, the
space-like t = constant < 0 hypersurface can be chosen as ini-
tial hypersurface over which initial data may be specified.
There is a Cauchy horizon at t = t0 = 0 called the chronology
horizon, which separates the causal past and future in a past-
directed and future-directed manner. Hence, the space-time
evolves from a partial Cauchy surface (i.e., initial space-like
hypersurface) in a causally well-behaved, up to a moment,
i.e., a null hypersurface t = t0 = 0 and the formation of CTCs
takes place from causally well-behaved initial conditions. The
evolution of CTC is thus identical to the case of the Misner
space.

That the space-time represented by (8) satisfies the
requirements of axial symmetry is clear from the following.
Consider the Killing vector η = ∂ϕ having the normal form

ημ = 0, 0, 1, 0ð Þ: ð21Þ

Its covector form

ημ = sinh2r
ffiffiffi
2

p
cosh t, 0,− sinh t, 0

� �
: ð22Þ

The vector (22) satisfies the Killing equation ημ;ν +
ην;μ = 0. The space-time is axial symmetry if the norm of
the Killing vector ημ vanishes on the axis i.e., at r = 0 (see
[58, 59] and references therein). In our case

X = ∣ημη
μ∣ = ∣gϕϕ∣ = ∣ − sinh t sinh2r∣→ 0, ð23Þ

as r→ 0.
The metric has a curvature singularity at r = 0. We find

that the Kretschmann scalar is

K = RμνρσR
μνρσ = 8Λ2

3 + 12 α2
sinh6r

: ð24Þ
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We can see that the scalar curvature diverges at r→ 0,
which indicates that the space-time possesses a curvature sin-
gularity. In addition, the Kretschmann scalar becomes K →
8Λ2/3 for r→∞, indicating that the metric (8) is asymptot-
ically anti-de Sitter-like space radially [60].

3.1. Classification and Physical Interpretation of the Space-
Times. Here, we first classify the space-time according to
the Petrov classification scheme and then analyze the effect
of local fields of the solution. We construct a set of null tetrad
ðk, l,m, �mÞ [61] for the space-time (8). Explicitly, these cov-
ectors are

kμ =
sinh rffiffiffi

2
p cosh tffiffiffiffiffiffiffiffiffiffiffi

sinh t
p , 0, −

ffiffiffi
2

p
+ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh t

p
, 0

� �
, ð25Þ

lμ =
sinh rffiffiffi

2
p cosh tffiffiffiffiffiffiffiffiffiffiffi

sinh t
p , 0,−

ffiffiffi
2

p
+ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh t

p
, 0

� �
, ð26Þ

mμ =
1ffiffiffi
2

p 0, cosh rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α csch r − Λ/3ð Þ sinh2r

q , 0, i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α csch r −

Λ

3 sinh2r
r0

B@
1
CA,

ð27Þ

�mμ =
1ffiffiffi
2

p 0, cosh rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α csch r − Λ/3ð Þ sinh2r

q , 0,−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α csch r −

Λ

3 sinh2r
r0

B@
1
CA:

ð28Þ
The set of null tetrad above is such that the metric tensor

for the line element (8) can be expressed as

gμν = −kμlν − lμkν +mμ �mν + �mμmν: ð29Þ

The vectors (25), (26), (27), and (28) are null vector and
orthogonal, except for kμl

μ = −1 and mμ �m
μ = 1.

We calculate the five Weyl scalars, of these only

Ψ2 = Cμνρσk
μmν �mρlσ = α

2 sinh3r
, ð30Þ

is nonvanishing, while the rest are vanish. Thus, the metric is
clearly of type D in the Petrov classification scheme.

We set up an orthonormal frame eðaÞ = feð0Þ, eð1Þ, eð2Þ,
eð3Þg, eðaÞ · eðbÞ ≡ eμðaÞe

ν
ðbÞgμν = ηab = diag ð−1,+1,+1,+1Þ, which

consists of three space-like unit vectors eðiÞ, i = 1, 2, 3 and one
time-like vector eð0Þ [62]. Notations are such that small Latin

indices are raised and lowered with Minkowski metric ηab,
ηab, and Greek indices are raised and lowered with metric
tensor gμν, gμν. The dual basis is eðiÞ = eðiÞ and eð0Þ = −eð0Þ.
These frame components in terms of tetrad vector can be
expressed as

k = 1ffiffiffi
2

p e 0ð Þ + e 2ð Þ
� �

, l = 1ffiffiffi
2

p e 0ð Þ − e 2ð Þ
� �

,m = 1ffiffiffi
2

p e 1ð Þ + ie 3ð Þ
� �

:

ð31Þ

In order to analyze the effect of local gravitational fields
of these solutions, we have used the equations of geodesic
deviation [25, 33, 52, 63–66] which in terms of orthonormal
frame eðaÞ are

€Z
ið Þ = −R ið Þ

0ð Þ jð Þ 0ð ÞZ
jð Þ, i, j = 1, 2, 3, ð32Þ

where eð0Þ = u is a time-like four-velocity vector of the free

test particles. We set here Zð0Þ = 0 such that all test particles
are synchronized by the proper time. From the standard def-
inition of the Weyl tensor and the Einstein’s field equation
for zero the stress-energy tensor, we get (see Eq. (4) in [66])

R ið Þ 0ð Þ jð Þ 0ð Þ = C ið Þ 0ð Þ jð Þ 0ð Þ −
Λ

3 δij, ð33Þ

where CðiÞð0ÞðjÞð0Þ ≡ eμðiÞu
νeρðjÞu

σCμνρσ are the components of

the Weyl tensor.
The only nonvanishing Weyl scalars are given by (30) so

that

C 1ð Þ 0ð Þ 1ð Þ 0ð Þ = −Ψ2 = C 3ð Þ 0ð Þ 3ð Þ 0ð Þ, C 2ð Þ 0ð Þ 2ð Þ 0ð Þ = 2Ψ2: ð34Þ

Therefore, the equations of geodesic deviation (32) take
the following form

€Z
1ð Þ = −R 1ð Þ

0ð Þ jð Þ 0ð ÞZ
jð Þ = − C 1ð Þ 0ð Þ 1ð Þ 0ð Þ −

Λ

3

� �
Z 1ð Þ

= Ψ2 +
Λ

3

� �
Z 1ð Þ,

ð35Þ

€Z
2ð Þ = −R 2ð Þ

0ð Þ jð Þ 0ð ÞZ
jð Þ = − C 2ð Þ 0ð Þ 2ð Þ 0ð Þ −

Λ

3

� �
Z 2ð Þ

= −2Ψ2 +
Λ

3

� �
Z 2ð Þ,

ð36Þ

€Z
3ð Þ = −R 3ð Þ

0ð Þ jð Þ 0ð ÞZ
jð Þ = − C 3ð Þ 0ð Þ 3ð Þ 0ð Þ −

Λ

3

� �
Z 3ð Þ

= Ψ2 +
Λ

3

� �
Z 3ð Þ:

ð37Þ

In the limit α→ 0, all the Weyl scalars including Ψ2 van-
ishes. In this limit, the space-time (8) becomes anti-de Sitter
(AdS) space. So the equations of geodesic deviation (35) in
this limit reduces to

€Z
ið Þ = Λ

3 Z ið Þ, ð38Þ
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with the solutions

Z ið Þ = aiτ + bi forΛ = 0,

Z ið Þ = ai cos
ffiffiffiffiffiffiffiffi
−
Λ

3

r
τ

 !
+ bi sin

ffiffiffiffiffiffiffiffi
−
Λ

3

r
τ

 !
forΛ < 0,

ð39Þ

where ai, bi, i = 1, 2, 3 are the arbitrary constants.
Again, in the limit Λ→ 0, that is, β→ 0, the only non-

vanishing Weyl scalars is Ψ2 given by (30). The space-time
(8) reduces to type D vacuum space-time of zero cosmologi-
cal constant with a curvature singularity which we discussed,
in detail in Ref. [51]. In this limit (Λ→ 0), the equations of
geodesic deviation (35) becomes

€Z
1ð Þ =Ψ2Z

1ð Þ, €Z 2ð Þ = −2Ψ2Z
2ð Þ, €Z 3ð Þ =Ψ2Z

3ð Þ, ð40Þ

with the solutions

Z 1ð Þ = c1 cosh
ffiffiffiffiffiffi
Ψ2

p
τ

� �
+ d1 sinh

ffiffiffiffiffiffi
Ψ2

p
τ

� �
,

Z 2ð Þ = c2 cos
ffiffiffiffiffiffiffiffiffi
2Ψ2

p
τ

� �
+ d2 sin

ffiffiffiffiffiffiffiffi
2Ψ2

p
τ

� �
,

Z 3ð Þ = c3 cosh
ffiffiffiffiffiffi
Ψ2

p
τ

� �
+ d3 sinh

ffiffiffiffiffiffi
Ψ2

p
τ

� �
,

ð41Þ

where ci, di, i = 1, 2, 3 are the arbitrary constants and Ψ2 ≠ 0.

4. Summary and Future Work

In this paper, we generalize a Ricci flat space-time [51] to the
case of nonvanishing cosmological constant solution in four-
dimensional curved space-time, still represent vacuum solu-
tions of the Einstein’s field equations are the generalization
of 2D Misner space metric. By introducing a cosmological
constant term into the metric components in the metric
[51], we have seen that for r = r0, and z = z0, where r0, z0
are constants, these space-times reduce to 2D conformal Mis-
ner space geometry. As discussed in Section 2, the Misner
space metric admits CTCs which appear after a certain
instant of time from causally well-behaved conditions. Thus,
the presented metrics as well as the one studied in [51] evolve
CTC from an initial space-like hypersurface at a certain
instant of time. Though causality violating space-times have
been studied extensively in the literature, few of them belongs
to true time-machine space-time (e.g., [24–26, 28, 31, 33, 34,
37]), and others in (e.g., [26, 51–53]) are lacking one or more
basic requirements for a true time-machine space-time. In
addition, many time-machine models mentioned in the
introduction violate one or more the energy condition. Our
space-time is the vacuum solution of Einstein’s field equa-
tions of nonzero cosmological constant. So all the energy
conditions are automatically satisfied, and the modified met-
rics would represent true time-machine space-time but lack-
ing the property of being free from curvature singularity.
Furthermore, we have analyzed the space-time and discussed
their physical properties. It was demonstrated that these

space-times can be understood as gravitational waves of
Coulomb-types which propagate on anti-de Sitter back-
grounds. A positive cosmological constant (Λ) plays an
important role in explaining the dynamics of the universe.
But in our case, however, it is negative. One can use this mod-
ified space-time as a model to study the quantum gravity in
connection to the quantum field theory. The dynamic stabil-
ity of the modified space-times is beyond the scope of this
work. Our motivation to further study this problem is to con-
struct a space-time metric which satisfies all criteria for a true
time-machine, like obeying the energy conditions, realistic or
known types of matter sources, singularity-free and evolves
CTCs from an initial space-like hypersurface in a causally
well-behaved manner after a certain instant of time.
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