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In this paper, we adopt the Verlinde hypothesis on the origin of gravity as the consequence of the tendency of systems to increase
their entropy and employ the Tsallis statistics. Thereinafter, modifications to the Newtonian second law of motion, its gravity, and
radial velocity profile are studied. In addition, and in a classical framework, the corresponding cosmology and also its ability in

describing the inflationary phases are investigated.

1. Introduction

The study of the relation between thermodynamics and grav-
ity has a long history [1-7]. On the one hand, Gibbs shows
that gravitational systems are not extensive [1], a conclusion
in agreement with the Bekenstein entropy of black holes [2],
which is a nonextensive entropy. On the other, it seems that
all gravitational systems satisfy the Bekenstein entropy
bound expressed as [8]
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where A = 47R* and R denote the area of the system bound-
ary and its radius, respectively, and k (Boltzmann constant).
Using this entropy and Clausius relation, one can show that
the Einstein gravitational field is in fact a thermodynamic
equation of state [9]. This amazing result is valid in various
gravitational and cosmological setups which lead to notable
predictions about the behavior of cosmos and gravitational
systems [10-30]. Motivated by the Gibbs work [1], the non-
extensivity of the Bekenstein entropy, and based on the
long-range nature of gravity [31], recently, the use of nonex-
tensive statistical mechanics (based on possible generaliza-
tions of Gibbs entropy) has been proposed to model and
study some phenomena such as the cosmic evolution [32-
39], black holes [40-49], and Jeans mass [50, 51].

In order to find the probable thermodynamic aspects of
gravity, Verlinde describes it as the implication of the ten-
dency of systems to increase their entropy [52], an astonish-
ing approach which attracts investigators to itself [53-65]. In
the framework of generalized entropies, the Verlinde hypoth-
esis leads to significant implications on the cosmic evolution
[35, 66-68], Newtonian gravity [69], Jeans mass (as a stability
criterion) [70], and also gravitational systems [71-76].
Indeed, the differences between generalized entropies and
the Bekenstein entropy, originated from the nonextensive
viewpoint, can (i) describe the universe inflationary phases
[32-34, 39], (ii) relate Padmanabhan emergent gravity sce-
nario to the Verlinde hypothesis [32], and (iii) propose an
origin for the MOND theory [69].

Based on the Verlinde hypothesis [52], the entropy
change of a system increases as

AS=2m % Ax, 2)

when the test mass m has distance Ax =#h/mc= A, (reduced
Compton wavelength) with respect to the holographic screen
(boundary of system). This screen consists of N degrees of
freedom calculated by
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in agreement with Eq.(1) and thus Sg; = N/4 [2]. Following
[55, 56], we assume Ax =#A, from now, and use the Unruh
temperature [7]

1 ha
T: _, 4
21T ¢ ( )
to get [55, 56]
AS dS AA
F=T—=T—— =ma, (5)
Ax dA Ax

as the net force that source M applies to particle m, which
finally brings it acceleration a. Indeed, this result is available
if # =1/8m leading to Ax = A_/8m, to get Eq. (5). Now, com-
bining A = 47R* and Eq. (3) with

1
E= ENT:MCZ, (6)

and using Eq. (5), one easily reaches at Newtonian gravity

a=GRM. 7)

It is also useful to mention that it seems there is a deep
connection between generalized entropies and quantum
gravity scenarios, and indeed, quantum aspects of gravity
may also be considered as another motivation for consider-
ing generalized entropies [77, 78]. Tsallis entropy is one of
the generalized entropy measures which leads to acceptable
results in the cosmological and gravitational setups [32, 36,
40, 47, 49]. In fact, there are two Tsallis entropies [40, 47,
49]. One of them has been proposed by Tsallis and Cirto
[40] which is confirmed by the multifractal structure of hori-
zon in quantum gravity [78] and modifies Eq. (1) as S ~ A% (8
is a free unknown parameter [77]).

The second one has recently been calculated in [49] by
relying on statistical properties of degrees of freedom distrib-
uted on the holographic screen. The result is compatible with
a detailed study in the framework of quantum gravity [47].
This case proposes an exponential relation between the hori-
zon entropy and its surface, and we will focus on it in this
paper. In the next section, modifications to the Newtonian
second law of motion and also Newtonian gravity is derived
by using the Tsallis entropy. Its implications on the radial
velocity are also addressed. In the third section, after evaluat-
ing the Tsallis modification to the gravitational potential, we
adopt the approach of paper [79] and find out the corre-
sponding Friedmann first equation in a classical way in
which a test mass is located on the edge of the universe,
namely apparent horizon [79]. The possibility of obtaining
an accelerated universe is also debated in this section. A sum-
mary of the work is presented in the last section.
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2. Tsallis Gravity and Dynamics

Employing the Tsallis statistics, it has been recently shown
that Eq. (1) is modified as [49]

1

g = g lexp (L= )S) ~ 1, (8)

in full agreement with quantum gravity calculations [47].
Here, g is a free parameter evaluated from other parts of
physics and also observations, and Eq. (1) is recovered when
q =1[31, 47, 49]. In the nonextensive scenarios, Eq. (6) takes
the form [35, 80]

1
E= _—_NT=MdJ, (9)
5-3¢q

which approaches Eq. (1) at the appropriate limit of g = 1.
Now, following the recipe which led to Eq. (5), one can
use Eq. (8) to find

ds) AA 2+38)Mcn
FT = Td—jﬂ =ma exp (8%), (10)

where 6 =1 — g is the Tsallis second law of motion. Clearly,
Eq. (5) is recovered whenever § =0, and therefore, this
approach claims the net force F! that source M applies to
m depends on M. In order to obtain the above result, we used
Spe = N/4 [2],and N = ((5 — 3q)Mc?)/T. Of course, since the
relation F =ma works very well (classical regime), one can
deduce that § is very close to 0 meaning that the exponential
factor may have nonsensible effects in the classical regime.

The modified form of Eq. (7), called Tsallis gravity, is also
obtained as

M R}
aT:GqF exp <8R—g>, (11)

where R2 = Gh/c*n = I/m, I, denotes the Planck length, and
G, =((5-34)/2)G in full agreement with [35]. In order to
have a comparison between the Tsallis second law of motion
and also the Tsallis gravity and those of Newton, let us write

FT d

T _PG)

a’l I
" =(5-3q) exp (F)’

where d=8((2+38)Mc*m)/2h and 1=6R2. As a crucial
point, one should note that, for an event, the sign of a and
a’ should be the same (the predictions of different theories
about the value of accelerations should address the same
motion meaning that both of a” and a should have the same
sign). It leads to this limitation g < 5/3 meaning that & > -2/5.
Thus, [ and d can be negative.

Now, let us compare Eq. (11) with the results of [55] and
[56] where authors employ different entropies in the

(12)
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framework of the Verlinde theory and address two modifica-
tions for the Newtonian gravity. Unlike Eq. (11) of [11], the
modified gravity obtained in [55] (Eq. (17)) diverges at large
distances (R > 1). Of course, both of them claim that the
gravitational force between the source M and test particle
m can vanish for some points on their interface line, a prop-
erty incompatible with the Newtonian gravity and experi-
ence. From Eq. (11), one can easily see that the obtained
gravitational force does not diverge at large distances where
it will be ignorable. Thus, it seems that this equation is a more
reliable modification to the Newtonian gravity compared
with those of [55, 56].

2.1. Velocity Profile. For a circular motion at radius r with
velocity v, and thus acceleration (v*/r)(=a’) obeying Eq.
(11), one reaches

v=y/ 3 e ( : ) (13)

r 2r2

which implies that we should have g < 5/3 to get real values of
velocity.

On the other hand, if one assumes the mass m in the
gravitational field of source M feels the force GM mir?, then
using (10), we can write

GMmir* = F', (14)
yields
d
GM/r = v* exp (V—:), (15)

for a = (v?/r), finally leading to

G
V= Tm —dr (16)

if we expand exp (dr/v?) as 1 + (dr/v*). For a constant d, this
approximation is valid when radial acceleration (v*/r) is
small. Indeed, in this manner, the dr term leads to an increase
in the velocity of particle m, compared with the Newtonian
case for which v* = (Gm/r), if d < 0.

3. A Tsallis Cosmology

In order to find the Friedmann first equation correspond-
ing to the obtained Tsallis gravity, we follow the classical
viewpoint fully described in [79]. The series expansion
exp (IIr*) = Y32 " Inlr*" leads to

exp (I/r* = I
J‘#d?’z Z JWCZT’=—

IOZO: I
r&nl(2n+ 1)
(17)

combined with Eq. (11) to help us in calculating Tsallis

3
gravitational potential as
G M ln
=-1 . 18
¢(r) r r;) n!(2n +1)r2n (18)

Considering a test particle on the edge of a flat FRW
universe, and following the recipe of [79], this equation
leads to

B 871Gq &
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in which p is the cosmic fluid density and H denotes the
Hubble parameter, and we used the fact that the apparent
horizon is located at r=1/H. Moreover, the standard
Friedmann first equation [79] is recovered at the desired
limit of g=1 (or equally, § =0(||I=0)).

3.1. Accelerated Universe. Bearing the fact that the Hubble
parameter decreases during the cosmic evolution in mind,
rewriting Eq. (19) as

H’ _ 8nG, "
Zﬁo((lnHZ")/(n!(2n+1)))_ 3 P (20)

and keeping terms up to the H* term in LHS (the first correc-
tive term to the standard cosmology (H* = (87G,/3)p) due to
Tsallis gravitational potential), one easily reaches at

3 32nG,l
H2:21<1i 1- 9‘1p>. (21)

In order to have real solutions for H?, this equation
claims that there is a maximum bound on the density of cos-
mic fluid as p,, . =9/327G, | at which the universe feels a de-

Sitter phase with H = /3721 when 1>0. As the universe
expands, p decreases, and when p =0, the positive branch
experiences again the primary de-Sitter phase (H = v/3/I for
1> 0), but forever, while the universe expansion rate vanishes
for the negative solution. In fact, the vacuum solution (p = 0)
of the above Friedmann first equation is an inflationary uni-
verse for the positive branch and a Minkowski universe for
the negative branch.

4. Summary

In the framework of the Verlinde hypothesis on the origin of
gravity, we employed the recently proposed Tsallis entropy
[47, 49] to find its implications on the Newtonian dynamics
(second law of motion) and gravity. The velocity profile in
a circular motion has also been analyzed. Finally, adopting
the classical approach to get the Friedmann first equation
described in [79], the corresponding cosmology was achieved
after finding the Tsallis gravitational potential. The obtained
modified Friedmann first equation (20) includes a complex
function of H.



Since the Hubble parameter decreases during the cosmic
evolution, and because the standard Friedmann first equa-
tion (H*=(87nG/3)p) has notable achievements, we only
focused on the first corrective term due to the Tsallis gravita-
tional potential (i.e., we only hold terms up to H* in writing
Eq. (21)). We saw that, in some situations and depending
on the value of §, the resulting equation addresses the (anti)

\/3m/281; and H = /3n/8;,

depending on p. It also admits an upper bound on the energy
density of cosmic fluid of order of ((1,°G™1)/((2 +38)8)) ~
((10%1)/((2+38)8)). We also obtained that there are two
branches for the assumed approximation. Whenever p =0,
the positive branch, depending on the value of §, guides us
to an eternal (anti) de-Sitter phase, and the negative branch
addresses a Minkowskian fate for the universe.

de-Sitter universes with H =
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