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In the present work, we have studied the differential scattering cross-section for ground states of charmonium and bottomonium
in the frame work of the medium-modified form of quark-antiquark potential and Born approximation using the nonrelativistic
quantum chromodynamics approach. To reach this end, quasiparticle (QP) Debye mass depending upon baryonic chemical
potential (μb) and temperature has been employed, and hence the variation of differential scattering cross-section with
baryonic chemical potential and temperature at fixed value of the scattering angle (θ=90o) has been studied. The variation of
differential scattering cross-section with scattering angle θ (in degree) at fixed temperature and baryonic chemical potential has
also been studied. We have also studied the effect of impact parameter and transverse momentum on differential scattering
cross-section at θ = 90o.

1. Introduction

Quantum chromodynamics (QCD) is one among the most
important theories which well describes the strong interaction
occurring at the subatomic level. Since the cross-section is an
important key that paves a way of communication between
the real world of the experiment and idealized theoretical
models. In the high-energy physics, the term cross-section is
used to specify the interaction of elementary particle quantita-
tively. Cross-section may also be thought of as the area within
which the reaction among the elementary particle takes place.
Theoretical predictions for the cross-section of the oppositely
lepton pairs in pp collisions are accurate up to the next-to-
leading order (NLO) and next-to-next-leading order (NNLO)
in electroweak and perturbative quantum chromodynamics
(PQCD) [1–4], respectively. Precise measurements of the dif-
ferential cross-section at LHC for the Drel-Yan process (end
up with conformal test for the standard model in the perturba-
tive regime) is an important test for the standard model in the

perturbative frame. ATLAS [5–7] and CMS [8–10] recently
measured the single and double cross-section.

Inclusive quarkonia production in pp collisions is at
ffiffi
s

p
=5:02TeV. Both the perturbative and nonperturbative fact
of QCD can be studied easily in high-energy hadronic colli-
sion by considering the quarkonia production [11, 12]. The
main consequence of scattering process in hadronic collision
is to produce quarkonia. In such process, the momentum
transfer should be two times the mass of heavy quark, and
hence it can describe under perturbative calculations. But
on the other hand, the binding energy of quarkonia comes
under the nonperturbative process as it account for large dis-
tance scales and soft momentum scales. Various properties
of the quark-gluon plasma (QGP) in nucleus-nucleus
collision at different energy scales and that of cold matter
nuclear effect appearing in AA collision could be investi-
gated by the quarkonium production measurement [12,
13]. The quarkonium production can be described by
various approaches. One of the most important countering
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problems in the QCD is to fully understand the production
mechanism of the heavy quarkonia since after the discovery
of J/ψ in 1973. According the colored singlet model, the
quarkonium states are colorless, and they possesses the same
Jpc quantum number [14–23].

Production of J/ψ and ψð2sÞ cross-section at high PT was
underestimated by the leading order (LO) calculation in
colored singlet model by one order of magnitude [24], and this
problem was overcome by considering the next-to-leading
order (NLO) correction, but this result would not be still able
to reduce the gap between color singlet model (CSM) and
experimental measurements [25–27]. Thereafter the nonrelativ-
istic QCDmodel came into existence, which includes both color
singlet and color octet studies [28, 29], describing production
cross-section at all PT values but fails to explain the polarization
[30–45]. Finally, studies [46–51] solved this countering problem
via production of pairs of quarkonia, as the cross-section could
be easily interpreted. This quarkonium pair production forbid
the feed down of excited C-even states which are very crucial
in the single quarkonia production. This typically makes the
interpretation of polarization very difficult and hence to com-
pare the data. The double parton process has a significant role
for understanding the new physics, e.g, multijets and gave a
pave for the transverse momenta of partons. Several new phys-
ics phenomenon have been studied by keeping in view of dou-
ble parton process such as 4-jets by AFS [52], UA2 [53], CDF
[54], and ATLAS [55] collaborations; γ + 3 jets by the CDF
[56] and Do [57, 58] collaborations; W + 2jets [59] and Y + Y
[60] by CMS collaborations; J/ψ +W [61], Z+open charm
[62], and Y+open charm [63] by the LHCb collaborations.
Quarkonia pairs are independently produced by different par-
tonic interaction in the frame work of double parton process
could by estimated by the formula [64–66].

In this present paper, we studied the differential scattering
cross-section for the ground state of quarkonia (i.e, J/ψ and
Y), in the presence of temperature, baryonic chemical potential
(μb), and the scattering angle (θ). To carry out this, we use the
Born approximation for calculating the scattering amplitude
and differential scattering cross-section. For calculating the dif-
ferential scattering cross-section, the potential we consider is
the medium-modified form of Cornell potential (Here, we take
only the Yukawa term and neglect the other terms of the poten-
tial). Differential scattering cross-section mainly define the
probability of finding the particle in a certain area, and hence
scattering angle θ plays a major role while studying the quarko-
nium production.

The manuscript organized in the following manner. In the
Section II, we provide an outline for the quark-antiquark
potential. Section III deals with the Debye mass depending
upon temperature and baryonic chemical potential. Section
IV deals with formulation of differential scattering cross-
section using nonrelativistic limit of quantum field theory. In
Section V, we briefly discussed about the result and conclusions
of this present work.

2. Medium-Modified Form of Cornell Potential

Since from [67], it has been seen that there is also nonpertur-
bative calculations at deconfinement temperature instead of

the perturbative and ideal gas behavior according to thermody-
namical studies of the QCD. Following [67], one cannot drops
the string tension arising between the quark-antiquark pairs
above the critical temperature Tc. Medium modification to
the quark-antiquark potential provides a reliable way to study
the fate of the quarkonia. Here, the quark-antiquark potential
has been corrected which embodied the medium effect [68].
In [69, 70], the authors assume that the string is melting, keep-
ing in view that there is phase transition from the hadron mat-
ter to the quark-gluon plasma. Accordingly, the potential has
been modified to study the deconfined state of matter. Also,
at vanishing baryon density, there is cross-over rather than a
phase transition. These indications come from the lattice stud-
ies. Bound state solutions of both relativistic and nonrelativistic
wave have attracted more intention from the last decades.

The energy of these bound states is negative due to the
fact that the energy of the quark-gluon plasma is less than
the potential energy [71]. Schrodinger equation accounts
for the nonrelativistic wave, whereas for the relativistic wave
Klein-Gordan and Dirac equation are of utmost important
[72–79]. There are various potentials that have been used
to study the quarkonia bound states like Hulthen, Poschl
Teller, Eckart, and Coulomb potential, and these are studied
using special techniques AEIM, SUSYQM, and NU methods
[80–90]. In the present work, we preferred to work with the
Cornell potential which has both Coulombic as well as string
part [91, 92], and here, we take only the Coulombic part of
the said potential. This is because of the fact that the mass
of quarkonia mQ ≥ λQCD, small velocity of the bound states
pushes to understand these phenomenon in terms of nonrel-
ativistic potential model.

In case of finite temperature QCD, we employ the ansatz
that the medium modification enter in the Fourier transform
of heavy quark potential V(k) as [93].

~V kð Þ = V kð Þ
ε kð Þ , ð1Þ

where εðkÞ is dielectric permittivity which is obtained from
the static limit of the longitudinal part of the gluon self-
energy.

ε kð Þ = 1 + πL 0, k, Tð Þ
k2

� �
≡ 1 + m2

D T , μbð Þ
k2

� �
: ð2Þ

V(k) is the Fourier transform of the Cornell potential
given as

V kð Þ = −
ffiffiffi
2
π

r
α

k2
−

4σffiffiffiffiffiffi
2π

p
k4

: ð3Þ

Substituting the value of Equations (2) and (3) in
Equation (1), and solving using inverse Fourier transform,
we get the medium-modified potential depending upon ‘r’
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[94–98].

V r, T , μbð Þ = 2σ
m2

D T , μbð Þ − α

� � exp −mD T , μbð Þrð Þ
r

−
2σ

m2
D T , μbð Þr + 2σ

mD T , μbð Þ − αmD T , μbð Þ:

ð4Þ

3. The Debye Mass with Baryonic-Chemical
Potential from a Quasiparticle Picture of
Hot QCD

In studies of the quantum mechanical properties of the quar-
konia, Debye mass has played a significant role. Generaliza-
tion of the Debye mass has been made from the quantum
electrodynamics (QED) to QCD because of the non-
Abelian nature of the QCD. In QCD, the Debye mass
obtained is gauge invariant and nonperturbative, whereas
the temperature dependent leading order Debye mass is per-
turbative and is known from a long time ago [99, 100]. The
Debye mass can also be defined as the pole static quark
propagator [101] instead of limit p⟶ 0 in the gluon self-
energy. Authors in [101, 102] also calculated Debye mass
for the NLO in QCD using Polyakov loop correlator match-
ing with HTL result.

Several studies have been devoted to include all the inter-
action present in the hot QCD equation of states (EoS) in
terms of the quasipartons. Some of them include effective
mass models, effective mass models with Polyakov loop,
PNJL, NJL model, and effective fugacity model [103–107].

To understand the nonideal behavior of the quark-gluon
plasma near the cross-over region, quasiparticle model has
played eminent role. The interacting system of massless
quarks and gluons is considered as the massive system in
quasiparticle (QP) model [107]. In our present calculation,
we use the quasiparticle model to study the quarkonia prop-
erties. All the interaction effects could be related to the Zq,g
term in the distribution function of the quasipartons.

In our calculation, we use the Debye mass mD for full
QCD case which is

m2
D Tð Þ = g2 Tð ÞT2 Nc

3 ×
6PolyLog 2, zg

Â Ã
π2

 !
+

N̂ f

6 ×
−12PolyLog 2,−zq

Â Ã
π2

 !" #
,

ð5Þ

N̂ f = Nf +
3
π2 〠

μ2q
T2

 !
, ð6Þ

and we also know that, the quark chemical potential is equal
to

μq =
μb
3 , ð7Þ

where ðμqÞ defined the quark chemical potential and ðμbÞ is
baryonic chemical potential. Introducing the value of N̂ f in

the Equation (5), we get the full expression of quasiparticle
Debye mass in terms of temperature and baryonic chemical
potential.

m2
D T , μbð Þ = T2 Nc

3 Q2
g

� �
+

Nf

6 + 1
2π2

μ2b
9T2

� �� �
Q2

q

� �
: ð8Þ

Here, gðTÞ is the QCD running coupling constant, Nc
= 3 is the number of color, and Nf is the number of flavor.

The function PolyLog½2, z� having form, PolyLog½2, z� =
∑∞

k=1ðzk/k2Þ and zg is the quasi-gluon effective fugacity and
zq is quasi-quark effective fugacity.

f g,q =
zg,q exp −βpð Þ

1 ± zg,q exp −βpð ÞÀ Á : ð9Þ

These distribution functions are isotropic in nature.
These fugacities have been introduced the all interaction
effects present within the baryonic chemical potential. Both
zg and zq have a very complicated temperature dependence
and asymptotically reach to the ideal value unity [108].
The temperature dependence zg and zq fit well to the form
given below,

zg,q = aq,g exp −
bg,q
x2

−
cg,q
x4

−
dg,q
x6

� �
: ð10Þ

Here, x = T/Tc and a, b, c, and d are fitting parameters,
for both EOS1 and EOS2. Here, EoS1 is the Oðg5Þ hot
QCD and EoS2 is the Oðg6 ln ð1/gÞÞ hot QCD EoS in the
quasiparticle description [94, 106], respectively. Where Qg
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Figure 1: The variation of differential scattering cross-section as a
function of theta after considering the values of charmonium and
bottomonium masses at constant temperature and μb.
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and Qq are the effective charges given by

Q2
g = g2 Tð Þ 6PolyLog 2, zg

Â Ã
π2 , ð11Þ

Q2
q = g2 Tð Þ−12PolyLog 2,−zq

Â Ã
π2 : ð12Þ

In our present analysis, the temperature and baryonic
chemical potential dependent quasiparticle Debye mass,
mQP

D in full QCD with Nf = 3 have been employed to study
the differential scattering cross-section of the ground states
of quarkonia.

4. Formulation of Differential Scattering Cross-
Section Using Nonrelativistic Limit of
Quantum Field Theory (QFT)

In the nonrelativistic limit, the QFT equation for the S-
matrix is reduced to the Lippmann-Schwinger equation for
the scattering amplitude. The Lippmann-Schwinger equa-
tion is equivalent to the Schrodinger equation. In nonrelativ-
istic quantum mechanics, the first order Born
approximation of the elastic scattering amplitude is given
by the Fourier transform of the potential. Correspondingly,
the potential is given as inverse Fourier transform of the
scattering amplitude.

In classical scattering theory, the essential countering
problem is as follows: (a) to measure the impact parameter
and (b) to calculate the scattering angle. But in the quan-
tum scattering theory, the solution to the Schrodinger

equation paves a good way to understand the scattering
process for the proper wave function. Here, quantum
description of scattering of nonrelativistic particles of mass
m1 and m2 has been considered. For simplicity, we con-
sider the case of elastic scattering. The interacting potential
between particles is supposed to be time independent, and
obviously time independent Schrodinger equation with the
wave function has been used to obtaine the scattering
amplitude formula, for the calculation of differential scat-
tering cross-section.

−
ℏ2

2m1
∇2
1 −

ℏ2

2m2
∇2
2 +V r!1, r

!
2

� �" #
ψ r!1, r

!
2

� �
= ETψ r!1, r

!
2

� �
,

ð13Þ

where ET is the total energy of the system, and this body
problem can be reduced into a one-body problem, and
then the Schrodinger equation will be

−
ℏ2

2μ∇
2 +V r!

� �" #
ψ r!
� �

= ETψ r!
� �

: ð14Þ

Now, we have to find wave function by solving Equa-
tion (14). And this is obtained by complex calculations
using green function as following:

ψ r!
� �

=Φinc r!
� �

−
μ

2πℏ2
ð
eik r!− r!′j j
r! − r!′
��� ���V r!′

� �
ψ r!′
� �

d3r′, ð15Þ
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Figure 2: The variation of J/ψ differential scattering cross-section as a function of μb at different values of temperature (a) and as a function
of T/Tc at different values of baryonic chemical potential (b).
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where ψð r!Þ is the wave function after scattering. To find
scattering amplitude, we will apply asymptotic limit on
Equation (15) and will compare this wave function to the
wave function in asymptotic limit that is discussed below
for asymptotic limit is

ψ r, θð Þ ≅ A eikz + f θ,Φð Þ e
ikr

r

� �
: ð16Þ

The wave function in asymptotic limit after scattering
will contain an unscattered plane wave plus a scattered
spherical wave. We consider A = 1 because it does not
contribute in dσ/dπ.

k r! − r!′
��� ��� = kr − k

!
r!′, ð17Þ

1
r! − r!′
��� ��� =

1
r
, ð18Þ

ψ r!
� �

=Φinc r!
� �

−
μ

2πℏ2
ð
ei kr−k

!
r
!′

À Á
r

V r!′
� �

ψ r!′
� �

d3r′,

ð19Þ

ψ r!
� �

=Φinc r!
� �

−
μ

2πℏ2
eikr

r

ð
e−ikr ′V r!′

� �
ψ r!′
� �

d3r′:

ð20Þ

Now, compare it with

ψ r!
� �

=Φinc r!
� �

+ f θ,Φð Þ: ð21Þ

So, scattering amplitude is

f θ,Φð Þ = −
μ

2πℏ2
ð
e−i k

!
r!′V r!′
� �

ψ r!′
� �

d3r′: ð22Þ

Now, using first order Born approximation, then the
above expression is

f θ,Φð Þ = −
μ

2πℏ2
ð
eiq

! r!′V r!′
� �

d3r′: ð23Þ

Now, we consider the spherically symmetric potential,

f θ,Φð Þ = −
μ

2πℏ2
ð
eiq

! r!′V rð Þr2 sin θdrdθdΦ: ð24Þ

This is the modified form of Born approximation
mainly not necessarily at low energy. But the simplest form
of spherical symmetry amplitude after complete solution
we get,

f θ,Φð Þ ≅ −
2mQ�Q

qℏ2

ð∞
0
rV rð Þ sin qrdr: ð25Þ
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Figure 3: The variation of Y differential scattering cross-section as a function of μb at different values of temperature (a) and as a function of
T/Tc at different values of baryonic chemical potential (b).
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The angular dependence of f is carried by q,

q = 2k sin θ

2 : ð26Þ

We consider the r-dependence of the medium-
modified Cornell potential Equation (4) for the calculation
of differential scattering cross-section, we consider only
Yukawa term and neglect the constant term of the Equa-
tion (4) then we get,

V rð Þ = 2σ
m2

D

− α

� � exp −mDrð Þ
r

−
2σ
m2

Dr
: ð27Þ

Now, we used Equation (25) (scattering amplitude for-

mula) for the above potential Equation (27) to calculate
the differential scattering cross-section, and hence the
result of differential scattering cross-section is shown
below,

dσ
dΩ

= f θ, μbð Þj j2 = 2σ
m2

D

− α

� �2 mq

m2
D + 10 sin θ/2ð Þð Þ2

" #2
+

2mqσ

m2
D 10 sin θ/2ð Þð Þ2

" #2
:

ð28Þ

We also calculate the differential scattering cross-
section in terms of impact parameter and momentum
transfer which is described below,

b = a
2 cot θ2 : ð29Þ

b (GeV)

mc = 1.5 GeV

mb = 4.5 GeV

Temp = 250 MeV and  = 90o
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(b)

Figure 5: The variation of differential scattering cross-section as a function of μb at fixed values of temperature and theta (a) and as a
function of T/Tc at fixed value of μb and theta (b) after considering the values of charmonium and bottomonium masses.

 Scattering angle 

Scattered wave 

K’

k

scattered = inc + spherically scatteredPlane wave

Figure 4: This figure shows the interaction of scattered wave and plane wave with the potential V(r).
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After considering the semiclassical consideration, for
H-atom like problem (z1e = z2e ≈ 1), the value of a is

a = z1z2e
2

mv2
: ð30Þ

So, after considering the Equation (30), the Equation
(29) is changed into the Equation (31), i.e,

sin θ

2 =
mq cos θ/2ð Þ
2P2

T sin θ/2ð Þ : ð31Þ

Impact parameter (fm)

J/ (mC = 1.5 GeV)

(mb = 4.5 GeV)

b = 500 MeV, Temp = 300 MeV, PT = 5 GeV and  = 90o

7 8 9 10 11 12 13

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Figure 7: The variation of differential scattering cross-section as a
function of impact parameter after considering the values of
charmonium and bottomonium masses.
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Figure 8: Variation of the differential scattering cross-section with
the transverse momentum (PT) at μb = 500MeV, θ=90o, and
impact parameter b = 5 fm and temperature T = 150MeV.
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Figure 6: The variation of J/ψ differential scattering cross-section as a function of impact parameter at different values of temperature (a)
and at different values of baryonic chemical potential (b).
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Now, put the value of Equation (31) into the Equation
(28), then the differential scattering cross-section is con-
verted into the Equation (32) in terms of impact parameter
and momentum transfer.

dσ
dΩ

= f θ, μbð Þj j2 = 2σ
m2

D

− α

� �2 mq

m2
D + 10mq cos θ/2/2bP2

T

Â Ã2
( )2

+
2mqσ

m2
D 10mq cos θ/ 2ð Þð Þ/2bP2

T

Â Ã2
( )2

:

ð32Þ

5. Results and Conclusions

In the present paper, we have studied the differential scattering
cross-section for quarkonium ground states, i.e, charmonium
(J/ψ state) and bottomonium (Y state) using Nonrelativistic
limit of quantum field theory (QFT). Figure 1 shows the vari-
ation of differential scattering cross-section as a function of
theta for different masses of the quarkonia (for J/ψ = 1:5GeV
and for Y = 4:5GeV). It has been seen from Figure 1 that the
variation of differential scattering cross-section for Y is greater
than that of J/ψ at T = 250MeV and μb = 500MeV. It has been
also observed that if the value of θ increases, the separation
between the differential scattering cross-section of Y and J/ψ
is decreased. This is because of the fact, with the increase in
the values of θ, the probability of finding the particle (J/ψ
and Y) decreases.

Figures 2 and 3 show that the variation of differential
scattering cross-section as a function of μb (a) at different
values of temperature and as a function of temperature (b)
at different values of μb at fixed value of θ = 90o for the J/ψ
and for Y , respectively. It has been seen that the differential
scattering cross-section as a function of μb and temperature
is decreases exponentially. If we increase the values of tem-
perature (b), then variation of differential scattering cross-
section is also decreased. With the increase in the values of
baryonic chemical potential μb (b), the variation of differen-
tial scattering cross-section is decreased but the effect of μb is
smaller as compared to the temperature which can be seen
from of Figures 2(b) and 3(b), respectively.

Figure 4 shows the interaction of plane wave with the
potential V(r), after interaction, the plane wave scattered
spherically. The interacting potential between particles is
considered as time independent potential given in Equation
(27), and here, we use time independent Schrodinger equa-
tion to calculate the differential scattering cross-section
expression which is given in Equation (28).

Whereas, Figure 5 shows the variation of differential scat-
tering cross-section as a function of baryonic chemical poten-
tial at fixed value of θ = 90o and temperature (T = 250MeV)
(a) and (b) as a function of T/Tc for the fixed value of μb and
θ (i.e., μb = 500MeV and θ = 90o) and for mass mJ/ψ = 1:5
GeV and mY = 4:5GeV, respectively. It has been clearly seen
from Figure 5 that the variation of differential scattering
cross-section of Y is greater than in comparison to J/ψ because
mass of Y is greater than as compared to J/ψ.

Figure 6 shows the variation of differential scattering cross-
section for the fixed value of transverse momentum PT = 5
GeV and θ = 90o as a function of impact parameter at different
values of temperature and fixed baryonic chemical potential
μb = 500MeV (a) and at different values of the baryonic chem-
ical potential and fixed temperature T = 300MeV (b). Also, dif-
ferential cross-section of the quarkonium production is
decreased with impact parameter. In the case of impact
parameter, the variation of differential scattering cross-section
is also decreased with the increase of temperature and baryonic
chemical potential.

Figure 7 shows the variation of differential scattering cross-
section for the fixed values of the temperature (T = 300MeV),
baryonic chemical potential (μb = 500MeV), transverse
momentum (PT = 5GeV), and θ = 90o with impact parameter
for charmonium (mJ/ψ = 1:5GeV) and bottomonium
(mY = 4:5GeV) masses. It has been clearly seen from
Figure 4, that the variation of differential scattering cross-
section of J/ψ is greater than in comparison to Y with respect
to impact parameter.

Finally, Figure 8 shows how the differential scattering cross-
section varies with the transverse momentum at μb = 500MeV,
θ = 90o, b = 5 fm, and T = 150MeV. It has been also observed
that there is strong decrease in the differential cross-section with
the transverse momentum for higher masses, and same
behavior of deferential scattering cross-section is observed like
impact parameter.

Usually, the scales one encounters are PT , mQ, mQλ, and
mQλ

2, where PT , mQ, and λ are the transverse momentum,
heavy quark mass, and heavy quark-antiquark pair relative
velocity in the quarkonium rest frame (λ2 is 0.1 for bottomo-
nium and 0.3 for charmonium). For moderate and high
transverse momentum, PTk2mQ is the established and most
successful theory that describes quarkonium production and
decays in nonrelativistic QCD [34, 38], and this theory is very
useful for showing the accurate description of this kind of
purpose.

In recent years, different phenomenological approaches
have been proposed to describe the modification of the pro-
duction cross-section of moderate and high transverse
momentum quarkonia. Theoretical guidance on the relative
significance of the various nuclear effects in the currently
accessible transverse momentum range can be very useful.

Finally, we have concluded that the probability of
finding the particle (charmonium mJ/ψ = 1:5GeV and bot-
tomonium mY = 4:5GeV) depends upon the scattering
angle (θo), temperature (T/Tc), and baryonic chemical
potential μb. Although the baryonic chemical potential
shows small effect in comparison to the temperature.
Moreover, differential scattering cross-section shows the
strong decrease with increase in the impact parameter as
well as in the transverse momentum. This work might
be helpful in understanding the process of quarkonia pro-
duction under different parameters such as temperature,
and baryonic chemical potential. It is also useful to inves-
tigate the scattering rates of quarkonia. It would also pro-
vide a large amount of information regarding the internal
structure of the colliding particles.
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