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A model of a particle in finite space is developed and the properties that the particle may possess under this model are studied. The
possibility that particles attract each other due to their own wave nature is discussed. The assumption that the particles are
spatially confined oscillations (SCO) in the medium is used. The relation between the SCO and the refractive index of the
medium in the idealized universe is derived. Due to the plane wave constituents of SCOs, the presence of a refractive index
field with a nonzero gradient causes the SCO to accelerate. The SCO locally changes the refractive index such that another
SCO is accelerated towards it, and vice versa. It is concluded that the particles can attract each other due to their wave nature
and an inverse-square-type acceleration emerges. The constant parameter in the inverse-square-type acceleration is used to
compare with the gravitational constant GN , and the possibility of non inverse-square-type behavior is preliminary discussed.

1. Introduction

It is generally accepted in modern physics that there are four
known fundamental interactions: gravitation, electromagne-
tism, the weak, and the strong interaction. In the 1960s,
Glashow [1], Salam [2], and Weinberg [3] gave a theory of
electroweak unification that has been experimentally verified
(Hasert et al. [4, 5], Arnison et al. [6, 7], etc). In modern
times, the standard model of particle physics is a theory
based on the description of three interactions except for
gravitation. In 2012, experiments at the large hadron collider
(LHC) confirmed the existence of the Higgs boson (Aad
et al. [8]), indicating that all particles described by the Stan-
dard Model were confirmed to exist. But the Standard Model
still has difficulties in explaining some phenomena, for
example, it does not explain the existence of dark matter
and dark energy at all, and it neither describes gravitation
nor mass.

There exist some theories that try to unify the Standard
Model and general relativity, such as quantum gravity. These

approaches have not yet lead to significant progress. Rather
than seeking a model that incorporates dark matter particles
that have not been experimentally verified (Kroupa [9, 10]),
another approach is to improve our gravitational theory.
A modification of gravitational theory has been proposed
by Milgrom [11] to explain the phenomena not compati-
ble with Newtonian mechanics in astronomy (Milgromian
Dynamics, MOND).

In 2020, Stadtler et al. [12] proposed the spatially con-
fined oscillation (SCO) model of particles in an idealized
universe based on the wave nature of matter and tried to
use it to study the gravitational problem. This concept is
an extension of an earlier article (Schmid and Kroupa
[13]), specifically it extends the concept of a spheron, i.e.,
standing spherical wave, to a generalised spatially confined
oscillation. In the SCO model of particles, the particle is
considered as a superposition of standing waves, where the
waves are considered as propagating perturbations of the
medium filling in the idealized universe. The medium in this
idealized universe can be considered to be an ideal classical
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physical medium. The propagation speed of the wave in the
medium is cs. In the theory, an SCO is accelerated by being
affected by a refractive index field, nref , with a nonzero
gradient.

For gravitation, Newton’s law of universal gravitation
has a good accuracy in weak gravitational fields, at low
speeds, and at long distances, especially in astronomical
measurements, and it is an inverse-square law. In this
contribution, we will discuss the possibility of spontaneous
mutual attraction between SCOs from the SCO mechanism
and try to develop an inverse-square-type (1/r2-type, r is
the distance) attraction model. Then, we will study the
possible properties of the SCO under this model.

In Section 2, the SCO model and the equations of
motion of the SCO are presented in detail. The relation
between the refractive index and the properties of the
medium itself, such as pressure and density in fluid dynam-
ics, are introduced. In Section 3, we try to find an expression
for the refractive index field of the medium through the
equation of motion of an SCO so that the SCO has an
inverse-square-type acceleration. In Section 4, we construct
SCO models and combine them with fluid dynamics to
study refractive index changes spawned by an SCO and we
search for an inverse-square-type acceleration. A model is
found for the superposition of multiple-spherical standing
waves and an inverse-square-type acceleration is obtained.
The possibility of non-inverse-square-type behavior is pre-
liminarily discussed. Section 5 provides a summary and
outlook for the further research.

2. Theoretical Basis

2.1. Model of SCO and the Equation of Motion. Stadtler et al.
[12] gave the full definition of an SCO. Here is an introduc-
tion to the SCO model and the equation of motion.

The SCO model for a particle means that the particle is
assumed to be a spatially confined oscillation. It is a primi-
tive particle as it only carries energy and is not associated
with other properties like spin, charge, etc. Waves superim-
posed into this kind of periodic oscillation can be interpreted
as the propagation of a spatially confined perturbation in a
homogeneous, isotropic medium with the propagation speed
cs, i.e., a mechanical wave, such as a fluctuation in pressure
or density. In a more general case, this oscillating field of
an SCO, ρðx, tÞ, can have a more complex relation with
the density field Dðx, tÞ and the pressure field Pðx, tÞ of the
medium. In this contribution, we consider one intuitive
case: The oscillatory field of the SCO is proportional
to the density field or pressure field of the medium, i.e.,
Dðr, tÞ = αDρðr, tÞ or Pðr, tÞ = αPρðr, tÞ with αD and αP
being constants. Here, x is the 3-dimensional spatial coor-
dinate and t is the time coordinate. The SCO can transfer
energy through the medium.

If the oscillation satisfies the wave equation (to make the
computations tractable we limit the discussion here to the
classical wave equation which is valid only for a constant
cs. We relax this by considering the relative change in cs,
δcs/cs ≪ 1, in order to assess if two SCOs might attract each
other as a consequence of the changed refractive index with-

out ensuring full consistency of the SCO solution of the wave
equation. A self-consistent analysis will need to take into
account solitons (e.g., Rajaraman [14]).)

∂2ρ x, tð Þ
∂t2

= c2s∇
2ρ x, tð Þ, ð1Þ

The Fourier transformation can be used to obtain the
plane-wave superposition representation of the oscillation

ρ x, tð Þ = Re
ð
d3kA kð Þeik⋅x−iωt

� �
: ð2Þ

Here, ω is the time frequency of the oscillation and the
nondispersive relation ω = csjkj = csk holds. k is the wave
vector of a plane wave with jkj = 2π/λ = k. It expresses
the wavelength λ and direction of motion of a plane wave.
AðkÞ is a function of k.

In the description of [12], a single plane wave remains a
solution of the wave equation, Equation (1), after the active
Lorentz transformation. Thus after the active Lorentz trans-
formation, an oscillation as a whole still can be expressed as
a superposition of plane waves. This means that the SCO
remains the solution of the wave equation and could explain
why special relativity arises due to the wave nature of matter
particles.

The active Lorentz transformation has physical signifi-
cance. An inhomogeneous medium has a varying propaga-
tion speed field csðx, tÞ, or refractive index field nref ðx, tÞ =
cs,0/csðx, tÞ, where cs,0 is considered to be the propagation
speed possessed by the homogeneous ambient medium.
When a plane wave propagates in an inhomogeneous
medium, the effect on the plane wave due to changes in
the refractive index can be described by the active Lorentz
transformation.

As described by [12], the gradient of propagation speed
experienced by the SCO can be considered constant when
the scale of the SCO is much smaller than the spatial scale
over which the change of the propagation speed is apparent.
Without loss of generality, set the centre of the SCO at the
origin of the spatial coordinates. Then the propagation speed
around the SCO is expanded as

cs xð Þ = cs 0ð Þ+∇cs xð Þjx=0 ⋅ x + O xj j2À Á
= cs,0 + cs′ ⋅ x + O xj j2À Á

,
ð3Þ

where cs′ is in the direction of increase in propagation speed.
The Lorentz transformation along the n direction and in

time coordinate can be written as

x′ x, tð Þ = γ x ⋅ n − βcstð Þn + x − n x ⋅ nð Þ, cst ′ x, tð Þ
= γ cst − βx ⋅ nð Þ:

ð4Þ
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Here, γ is the Lorentz factor, β = v/cs. And γ = 1/ffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p

. This coordinate transformation can also be written
in matrix form for convenience as

γ −βγnT

−βγn I + γ − 1ð ÞnnT

" #
cst

x

 !
= R γ, nð Þ

cst

x

 !
=

cst ′

x′

 !
,

ð5Þ

where I is the 3 × 3 identity matrix, nT is the transpose of the
vector n, and Rðγ, nÞ is the Lorentz transformation matrix
and represents the Lorentz transformation along the n-
direction with Lorentz factor γ which contains information
about the velocity of the transformation.

The plane wave is affected by the propagation speed field
csðx, tÞ with nonzero gradient ∇csðxÞ as it passes through an
inhomogeneous medium. According to the derivation of
[12], the differential equation of the time rate of change of
the wave vector is:

k
:

tð Þ = −k tð Þcs′: ð6Þ

This indicates that as time evolves, the wave vector k will
tend to be directed in the direction of decreasing propaga-
tion speed, i.e., the direction of increasing refractive index
of the medium. A plane wave remains a solution to the wave
equation, Equation (1), after the Lorentz transformation.
According to Equation (2), this means that a plane wave
(i.e., a constituent of the SCO) undergoes the following
transformation:

ei k⋅x−kcs,0tð Þ ⟶ ei k⋅x ′−kcs,0t ′ð Þ: ð7Þ

Since with the description in [12], the amplitudes and
phase offsets of all plane wave constituents remain the same,
so that the function AðkÞ remains the same in the integra-
tion over the frequency domain and only the exponential
term, i.e., wave part shown in Equation (7), is transformed.

The active Lorentz transformation will keep the form of
the plane wave unchanged, so the wave vector of the plane
wave constituent satisfies the following relation:

k′ ⋅ x − k′cs,0t = k ⋅ x′ − kcs,0t ′: ð8Þ

Equation (4) is then used to replace x′ and cs,0t ′, so that
the representation of the wave vector, k′, of the plane wave
after the Lorentz transformation by k is obtained. k′ is
represented as

k′ = γ′ tð Þ k ⋅ e′ − β′ tð Þk
h i

e′ + k − e′ k ⋅ e′
� �

,

k′ = γ′ tð Þ k − β′ tð Þk ⋅ e′
h i

:

ð9Þ

Here, k′ is the wave number after the transformation
and k′ = jk′j. The forms γ′ðtÞ = cosh ðcs′tÞ and β′ðtÞ =
tanh ðcs′tÞ with c′s = jc′sj are used. e′ is the unit direction

vector of the gradient of propagation speed, i.e., c′s = c′se′.
A point to note is that the transformation of the wave vector,
according to Equation (6), indicates that the active Lorentz
transformation is in the direction of the decrease in the
propagation speed, i.e., the −e′ direction. Since the speed of
propagation of a plane wave under a nonzero gradient field,
i.e., c′s ≠ 0, will be related to the time of its motion in the
medium, the Lorentz transformation is therefore also related
to time.

The SCO can be represented as a superposition of plane
waves. When it is in the inhomogeneous medium as a whole
and undergoes the Lorentz transformation, we have

ρ x, tð Þ = Re
ð
d3kA kð Þeik⋅x−ikcs,0t

� �

⟶ Re
ð
d3kA kð Þeik ′ ⋅x−ik′cs λ tð Þ½ �t

� �
= ρ′ x, tð Þ:

ð10Þ

That means a new representation of the same SCO can
be obtained. In the description of [12], λðtÞ is the trajectory
of the centre of the SCO. From here on we use the move-
ment of the centre of SCO to represent the movement of
the SCO as a whole.

Now according to Equation (9) we can replace the k′
and k′ of ρ′ðx, tÞ in Equation (10) by k and k so that we
get the form of the time and space coordinates after going
through an inhomogeneous medium and the active Lorentz
transformation. That means

x′ x, tð Þ = γ′ tð Þ x ⋅ e′ + β′ tð Þcs λ tð Þ½ �t
n o

e′

+ x − e′ x ⋅ e′
� �

, cs,0t ′ x, tð Þ
= γ′ tð Þ cs λ tð Þ½ �t + β′ tð Þx ⋅ e′

n o
:

ð11Þ

Comparing with Equation (4), it can be seen that the
direction of the spatial coordinate transformation under
the influence of inhomogeneous medium is −e′. In the
transformation of the time coordinate, a new factor cs½λðtÞ�/
cs,0 is added to the time term of t ′: γ′ðtÞcs½λðtÞ�t/cs,0, because
the propagation speed is no longer constant in the inhomoge-
neous medium. The above transformation in Equation (11) is
written in matrix form as

γ′ tð Þ β′ tð Þγ′ tð Þe′T

β′ tð Þγ′ tð Þe′ I + γ′ tð Þ − 1
h i

e′e′T

2
64

3
75 cs λ tð Þ½ �t

x

" #

= R γ′ tð Þ,−e′
h i cs λ tð Þ½ �t

x

" #

=
cs,0t ′

x′

0
@

1
A:

ð12Þ
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After the above description, we can now introduce the
equation of motion of the SCO derived in [12]. The initial
SCO can be represented as a Lorentz transformation of a
stationary SCO:

ρinit x′, t ′
� �

= ρstat x″ x′, t ′
� �

, t″ x′, t ′
� �h i

: ð13Þ

Here, ρinit is the oscillation field of the initial SCO, ρstat is
the oscillation field of the stationary SCO. The initial SCO
can have a nonzero initial velocity, so a representation of
the initial SCO can be obtained by performing a Lorentz
transformation on a stationary SCO.

The SCO, after being affected by the inhomogeneous
medium, can be expressed as a Lorentz transformation of
the initial SCO.

ρfinal x, tð Þ = ρinit x′ x, tð Þ, t ′ x, tð Þ
h i

: ð14Þ

Here, ρfinal is the oscillation field of the SCO after being
affected by the inhomogeneous medium, i.e., the final state
of the SCO. Then according to Equation (5) and Equation
(12), the transformation from the final state SCO to the
stationary SCO can be represented by the matrix (vice versa)
as follows:

R γ, n½ �R γ′ tð Þ,−e′
h i cs λ tð Þ½ �t

x

( )
= R γ, n½ �

cs,0t ′

x′

0
@

1
A

=
cs,0t″

x″

0
@

1
A:

ð15Þ

R½γ′ðtÞ,−e′� expresses the transformation matrix
between the final state and initial SCO, along the direction
of the decrease in the propagation speed, i.e, −e′. And the
information on speed is expressed by γ′ðtÞ. R½γ, n� expresses
the transformation matrix between the stationary and initial
SCO. The initial SCO possesses (compared to the stationary
SCO) motion along the n direction. And the information
on speed is expressed by γ. The transformation from the
initial SCO to the final state SCO can also be expressed
as a combination of one Lorentz transformation and one
rotation, as shown by the concept of Thomas-Wigner
rotation in [15, 16]:

cs,0t″

x″

 !
=

1 0
0 O θð Þ

" #
R γnew, nnewð Þ

cs λ tð Þ½ �t
x

" #
:

ð16Þ

Here, OðθÞ is the spatial rotation matrix with the rota-
tion angle θ. An introduction of Thomas-Wigner rotation
is also given in [12]. After Thomas-Wigner rotation, the
new Lorentz transformation is along the nnew-direction
with the new Lorentz factor γnew. After comparing the
matrix R½γ, n�R½γ′ðtÞ,−e′� in Equation (15) with the matrix

Rðγnew, nnewÞ in Equation (16), nnew and γnew have the
following expressions:

γnew tð Þ = γγ′ tð Þ 1 − ββ′ tð Þ n ⋅ e′
� �h i

,

nnew tð Þ =
βγn + βγ γ′ tð Þ − 1

� �
n ⋅ e′
� �

− γγ′ tð Þβ′ tð Þ
h i

e′
βnew tð Þγnew tð Þ :

ð17Þ

Here, γnew contains information on the magnitude of the
transformation velocity and nnew indicates the direction of
the transformation velocity. Since the Lorentz transforma-
tion acts on the whole reference system, γnew and nnew
describe the velocity of the SCO.

Since nnew is a unit direction vector, we can define the
relative velocity vector as βnewðtÞ = βnewðtÞnnewðtÞ. Then
we do the time differentiation for βnewðtÞ and obtain

β
:

new tð Þ = −cs′+ βnew tð Þ cs′ ⋅ βnew tð Þ
h i

: ð18Þ

This result can be extended to the propagation speed
field with varying gradient, i.e., c′s ⟶ c′s½λðtÞ�. And it is
also possible to translate the above result in Equation (18)
into an expression for acceleration aðtÞ

a tð Þ = −cs λ tð Þ½ �cs′ λ tð Þ½ � + 2cs λ tð Þ½ �βnew tð Þ cs′ λ tð Þ½ � ⋅ βnew tð Þ
h i

:

ð19Þ

Observing Equation (19), we find that the SCO has an
acceleration that is related to its own velocity, and to the
propagation speed field. If the gradient of the propagation
speed field is zero, then the SCO will have a constant veloc-
ity. In other words, an SCO will acquire an acceleration in a
changing propagation speed field, i.e., in a refractive index
field.

To derive the result of Equation (19) the following
relation was used:

β
:

new tð Þ = d v tð Þ/cs λ tð Þ½ �f g
dt

= a tð Þ
cs λ tð Þ½ � −

cs λ tð Þ½ �βnew tð Þ cs′ tð Þ ⋅ βnew tð Þ
h i

cs λ tð Þ½ � :

ð20Þ

Up to now, we have obtained the equation of motion of
the SCO as a whole in a propagation speed field or refractive
index field with a nonzero gradient. Stadtler et al. [12] also
point out that the SCO follows a geodesic equation such that
the refractive index field can alternatively be interpreted as a
space-time distribution in general relativity.

2.2. Derivation of Refractive Index in Fluid Dynamics. The
idealized universe in the SCO model is filled with ideal clas-
sical physical matter, and we can assume that this matter
possesses the properties of a compressible fluid. The wave
is therefore defined as the propagation of perturbation in a
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fluid. Since the nondispersive relation ω = jkjcs is used, the
phase velocity of a plane wave is equal to the group velocity.
And the group velocity is the speed of propagation of the
energy and information. So we need to study the propaga-
tion speed of a plane wave in the fluid. The expression of
the phase velocity in an inhomogeneous medium has been
described by Simaciu et al. [17]. Here is an introduction of
this expression.

The wave changes the density and pressure of the fluid
medium locally. And the motion of waves in an ideal fluid
can be approximated as an adiabatic process. According to
Landau and Lifshitz in [18], changes in the pressure and
density of the medium affect the phase velocity of the plane
wave. This means that the oscillation of pressure and density
itself affects the phase velocity of nearby plane waves and
causes a nonzero gradient in the local propagation speed
field. The SCO itself is an oscillation with small magnitude
compared to the idealized universe, so applying the settings
in [18], the SCO causes small changes in ambient density
D0 and ambient pressure P0 in the idealized universe with

Ptot x, tð Þ = P0 + P x, tð Þ,
Dtot x, tð Þ =D0 +D x, tð Þ:

ð21Þ

Here, Ptot and Dtot represent the pressure and density of
the local medium after being affected by the SCO. P0 and D0
represent the pressure and density of the medium in equilib-
rium in the idealized universe without a perturbation. P and
D satisfy P≪ P0 and D≪D0.

For an adiabatic process, the phase velocity of the plane
wave and the pressure and density of the medium have the
following relation:

cs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Ptot
∂Dtot

� �
S

s
: ð22Þ

The S refers to the adiabatic process. It follows from
Equation (22) that the speed of propagation is determined
by the pressure and density of the medium. In addition the
changes in density and pressure are related as follows:

P =D
∂Ptot
∂Dtot

� �
S

: ð23Þ

Next, we need to find a function of Ptot with respect to
Dtot, or Dtot with respect to Ptot. For this purpose, we first
assume that the medium is an ideal gas. So the relation
between pressure and density in an ideal gas can be used,

Ptot = P0
Dtot
D0

� �γS
,

Dtot =D0
Ptot
P0

� �1/γS
:

ð24Þ

Here, γS is the adiabatic exponent with 1 < γS < 2. In the
case when P0 ≫ Pðx, tÞ and D0 ≫Dðx, tÞ, the first-order
expansion of Equation (24) can be written as

Ptot = P0 1 + D
D0

� �γS
= P0 1 + γS

D
D0

+ O
D
D0

����
����
2

 !" #
,

Dtot =D0 1 + P
P0

� �1/γS
=D0 1 + 1

γS

P
P0

+ O
P
P0

����
����
2

 !" #
:

ð25Þ

Thismeans that P0 + ðγSP0D/D0Þ/≈P0 + P andD0 + ðD0P/
γSP0Þ ≈D0 +D. Thus, we can obtain the relation: γSP0/D0 ≈
P/D. Now applying Equation (22) and Equation (23) we can
see that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γSP0/D0

p
≈ cs,0. The result here is cs,0, which is the

constant part of the propagation speed, because this result is
only related to the constants γS, P0, and D0.

Now, we apply Equation (24) to Equation (22) to get the
expression for the speed of propagation.

cs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γSP0
D0

D0 +D
D0

� �γS−1
s

= cs,0 1 + D
D0

� �γS−1/2
,

cs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γSP0
D0

P0 + P
P0

� �γS−1/γS
s

= cs,0 1 + P
P0

� �γS−1/2γS
:

ð26Þ

The expression with pressure in Equation (26) applies a
deduction of Equation (24)as

Dtot
D0

= Ptot
P0

� �1/γS
⟶

Dtot
D0

� �γS−1
= Ptot

P0

� �γS−1/γS
: ð27Þ

Using Equation (26), we can also define the refractive
index field nðx, tÞ caused by the oscillation

n x, tð Þ = cs,0
cs x, tð Þ = 1 + D

D0

� �1−γS/2
,

n x, tð Þ = cs,0
cs x, tð Þ = 1 + P

P0

� �1−γS/2γS
:

ð28Þ

Here, the representation of the refractive index field can
be obtained by using either the pressure or density expres-
sion of the ideal gas. These two representations of the refrac-
tive index field in Equation (28) are equivalent. Because the
oscillation of an ideal gas causes both the density and pres-
sure of the medium to change, they are the two expressions
of an oscillation.

Returning to the equation of motion of SCOs and
applying Equation (26) or Equation (28) to Equation (19),
as long as we know the initial velocity vector or βnewð0Þ of
SCO 2, we can express the acceleration of SCO 2 by the
oscillation field of SCO 1. Because the effect of SCO 1 on
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the propagation speed field or refractive index field can now
be represented entirely by the oscillation field itself.

3. Refractive Index Field for the
Inverse-Square-Type Acceleration of
Two SCOs

We start to consider the case where the 2 SCOs are attracted
to each other. First of all a simplification of Equation (19) is
needed because here we only consider the inverse-square-
type behavior like the Newtonian gravitation-type accelera-
tion, which holds at a small velocity of the SCOs. So, we
consider the case where the two SCOs are initially stationary
and that βnew ≪ 1, i.e., the problem remains in the small
velocity regime. We use SCO 1 as a reference system and
observe the motion of SCO 2. It can be assumed that the
effect of SCO 2 on the local propagation speed field is so
small that the acceleration possessed by SCO 1 is also small
and can be ignored. This means that SCO 2 is a probe. We
can use the spherical coordinate system. Thus, the accelera-
tion in Equation (19) simplifies to

a rð Þ = −cs rð Þ dcs rð Þ
dr = −

1
2
dc2s rð Þ
dr = c2s,0

n3ref rð Þ
dnref rð Þ

dr : ð29Þ

Here, the radial component of a is used because the
motion of both SCOs follows a straight line connecting the
centres of both and acceleration is independent of angle
components. The time component t of the acceleration a is
not involved in the differential operation, so only r, the
distance between the centres of the two SCOs, needs to be
considered. For convenience, the derivation will be made
by using the propagation speed field csðrÞ rather than the
refractive index field nref ðrÞ, but it is always possible to con-
vert the result to be expressed in terms of the refractive index
field by csðrÞ = cs,0/nref ðrÞ.

The question we are pondering is the following: can SCO
2 have an attractive inverse-square-type acceleration like the

Newtonian gravitation-type, −GM/r2, where G > 0 is a con-
stant and M > 0 is a variable associated with SCO 1? If the
answer is yes, then the propagation speed csðrÞ should satisfy
the relation

−
GM
r2

= −cs rð Þ dcs rð Þ
dr : ð30Þ

We can therefore derive the expression for csðrÞ as

GM
r2

= cs rð Þ dcs rð Þ
dr ⟶

GM
r2

dr = csdcs ⟶ cs rð Þ

= h1 −
2GM
r

� �1/2
⟶ nref rð Þ = cs,0 h1 −

2GM
r

� �−1/2
:

ð31Þ

Here, h1 > 0 is a constant. For convenience we can set
h1 = c2s,0. Thus, if SCO 1 causes the local propagation speed

to become csðrÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 − 2GM/r

p
= cs,0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM/c2s,0r

q
, then

SCO 2 will have a inverse-square-type acceleration. This
result is also the reason why we introduced the refractive
index of an inhomogeneous medium in fluid dynamics,
i.e., Section 2.2. We will try to find a propagation speed field
that is equal to or approximates the result in Equation (31)
in the next section.

The refractive index obtained in Equation (31) is illus-
trated in Figure 1. According to Equation (31), under the
condition that the propagation speed is a real value, the
value of r should be taken as r > 2GM/c2s,0. That is, only when
the distance between SCO 1 and SCO 2 is greater than 2G
M/c2s,0, can Equation (31) be used to describe the acceleration
of SCO 2. The refractive index of the medium is high in the
region close to the centre of the SCO, which means that the
propagation speed is low. The refractive index in the region
far from the centre of the SCO tends to be closer to 1.

60

n_ref (r)

50

40

30

20

10

0
1.0 1.2 1.4 1.6

Radial distance r
1.8 2.0

c_
s,
0 /
c_
s 

Figure 1: This figure shows the relation between refractive index and radial distance to the centre of SCO 1: nref ðrÞ = cs,0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ðh1 − 2GM/rÞp

.
With cs,0 = 1, h1 = 1, GM = 1/2.
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4. Testing SCO Models

Now we consider the construction of the SCO model.
According to Section 2.1, the SCO should be a solution to
the 3-dimensional spatial wave equation, Equation (1), so
the simplest model of a stationary SCO would be a spherical
standing wave. Without loss of generality, using the spheri-
cal coordinate system with the centre of SCO 1 as the origin,
ρðr, tÞ as the oscillation field of SCO 1, we have

ρ r, tð Þ = A0 sin krð Þ cos kcs,0tð Þ
r

: ð32Þ

Here, A0 is the factor of amplitude and is constant. k is
the wave number. In this case, SCO 1 is an oscillating field
centred at the origin, with a period of 2π/kcs,0 and a maxi-
mum amplitude of jA0j. Figure 2 illustrates the shape of a
single spherical standing wave.

However, it is straightforward to construct a more gen-
eral form. One SCO can be modeled as a superposition of
different spherical standing waves,

ρ r, tð Þ = 〠
k=kmax

k=kmin

A kð Þ sin krð Þ cos kcs,0tð Þ
r

= 〠
n=N

n=1

A nð Þ sin n · k′r
� �

cos n · k′cs,0t
� �

r
:

ð33Þ

In the model described by Equation (33), we assume that
the frequencies (and therefore wave numbers) of plane
waves that make up the SCO in this idealized universe are
quantized by k = n · k′. Furthermore, we assume that kmax =

N · k′ where k′ is a unit wave number that can change, N
and n are positive integers. In our setting, the summation
starts at n = 1, which means that kmin = k′. By using the
unit wave number k′, we can replace kmin and kmax with
positive integers. In the absence of further settings, AðkÞ,
kmin, and kmax fully characterize a particular SCO. Finally,
this also means that AðkÞ, k′, and N can fully characterize
a particular SCO. AðkÞ is now a function of the wave
number k. These settings will facilitate subsequent calcula-
tions. We will use the model of Equation (33) directly for
the rest of the study.

4.1. Superposition of Multiple-Spherical Standing Waves. For
the local propagation speed field under the influence of SCO
1: a superposition of multiple-spherical standing waves like
Equation. (33), we first consider the case where αDρðr, tÞ
represents the density fluctuation Dðr, tÞ.
4.1.1. General Form of Acceleration of the Superposition of
Multiple-Spherical Standing Waves. Substituting the oscilla-
tion field ρðr, tÞ from Equation (33) to Equation (26), we
obtain

cs r, tð Þ = cs,0 1 + D r, tð Þ
D0

� � γ−1ð Þ/2

= cs,0 1 + 〠
n=N

n=1

αDA nð Þ sin nk′r
� �

cos nk′cst
� �

D0r

2
4

3
5

γ−1ð Þ/2

:

ð34Þ

The plane wave propagation speed in the region around
SCO 1 oscillates with time and space.

In the case βnew ≪ 1, SCO 2 will be accelerated under the
influence of SCO 1. Notice that the propagation speed is

1.0

Oscillation 𝜌
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Figure 2: This figure shows the oscillation (Equation (32)) of a single spherical standing wave centred at the origin of the coordinates at time
t = 0, with A0 = 1, k = 1, cs,0 = 1. Here any axis through the centre of the SCO can be taken as the x-axis, and due to spherical symmetry this
oscillation is of this shape in any direction.
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now time dependent. Using Equation (29) and Equation
(34), after the expansion we have:

a r, tð Þ = 1 − γSð Þc2s,0
2 1 + D r, tð Þ

D0

� �γS−2 D r, tð Þ
D0

� �

= 1 − γSð Þc2s,0
2 1 + γS − 2ð ÞD r, tð Þ

D0
+ O

D r, tð Þ
D0

����
����
2

" #( )

Á D r, tð Þ
D0

� �

= 1 − γSð Þc2s,0
2 1 + γS − 2ð Þ 〠

n=N

n=1

2
4

Á
αDA nð Þ sin nk′r

� �
cos nk′cs,0t
� �

D0r
+ O

D r, tð Þ
D0

����
����
2

 !35

× 〠
m=N

m=1

αDA mð Þmk′ cos mk′r
� �

cos mk′cs,0t
� �

D0r

2
4

−
αDA mð Þ sin mk′r

� �
cos mk′cs,0t
� �

D0r2

3
5:

ð35Þ

Note the multiplication of the summation terms in
Equation (35). Here we have used

f = 〠
n=N

n=1
F nð Þ,

g = 〠
n=N

n=1
G nð Þ,

f · g = 〠
n=N

n=1
F nð Þ

" #
〠
m=N

m=1
G mð Þ

" #
,

ð36Þ

where FðnÞ and GðnÞ are arbitrary functions of n, f , and g
are their summations, respectively. m is a positive integer.

Observing Equation (35), we find that the acceleration of
SCO 2 varies in direction and magnitude with time. We
want a time-independent inverse-square-type acceleration,
so it is needed to eliminate the time-dependence of the
acceleration.

To this end, we consider the time average of the acceler-
ation haðr, tÞit . This means that we integrate the acceleration
over a time period and divide it by the length of this time
period.

a r, tð Þh it =
Ð i+1ð ÞT
iT a r, tð ÞdtÐ i+1ð ÞT

iT dt
: ð37Þ

Here, T is a complete time period of aðr, tÞ and i ≥ 0 is
an integer. The time average is time independent.

Multiplying the summation terms in Equation (35)
together reveals that only terms with factor cos2ðnk′cs,0tÞ
can survive after time averaging, i.e., for the terms with
m = n. The reason for this lies in the setting of the unit wave
number k′ in Equation (33) so that if m ≠ n, any term in the
Equation (35) with factor cos ðnk′cs,0tÞ cos ðmk′cs,0tÞ is
time-varying periodically. Further, 2π/k′cs,0 is always a
multiple of the period T of the above factor and can therefore
be used for the time-averaging calculation. For m ≠ n, the
time average of the term with factor cos ðncs,0tÞ cos ðmcs,0tÞ
results in zero. So the time averaged acceleration is then

a rð Þh it ≈
1 − γSð Þ γS − 2ð Þc2s,0α2D

4D2
0

〠
n=N

n=1

Á
A2 nð Þnk′ sin 2nk′r

� �
2r2 −

A2 nð Þ sin2 nk′r
� �

r3

2
4

3
5:
ð38Þ

With the use of hcos2ðtÞit = 1/2. If we want to find a
inverse-square-type acceleration, we need to study the func-
tion AðnÞ. Different AðnÞ can affect the form of the
acceleration.

If the oscillation represents a pressure perturbation then

a rð Þh it ≈
γS − 1ð Þc2s,0α2P

4γ2SP2
0

〠
n=N

n=1

Á
A2 nð Þnk′ sin 2nk′r

� �
2r2 −

A2 nð Þ sin2 nk′r
� �

r3

2
4

3
5:
ð39Þ

Although the sine term is still present in Equation (38)
or Equation (39), the superposition with function AðnÞ will
cancel out the fluctuation caused by the sine term within a
space interval. We will show this below.

4.1.2. General Form of Total Energy of the Superposition of
Multiple-Spherical Standing Waves. Now, we start to con-
sider the total energy of the SCO. As a solution to the wave
equation Equation (1), the energy density ε of the SCO
described by Equation (33) can be expressed as

ε r, tð Þ = μ

2
∂ρ r, tð Þ

∂t

� �2
+ c2s,0 ∇ρ r, tð Þ½ �2

( )

= 〠
n=N

n=1
εn r, tð Þ + 〠

m,n=N

n≠m;m,n=i
εn,m r, tð Þ:

ð40Þ
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where

ϵn r, tð Þ = μc2s,0A
2 nð Þ

n2k′2 sin2 nk′r
� �

sin2 nk′cs,0t
� �

2r2

2
4

+
n2k′2 cos2 nk′r

� �
cos2 nk′cs,0t

� �
2r2

+
sin2 nk′r
� �

cos2 nk′cs,0t
� �

2r4

−
nk′ sin 2nk′r

� �
cos2 nk′cs,0t

� �
2r3

3
5:

ð41Þ

Here, μ is a constant and has units related to the unit
of ρ. μ is used to keep the result of ε in the unit of
energy density and μ > 0. n and m are positive integers.
∑m,n=N

n≠m;m,n=iϵn,mðr, tÞ contains all terms that do not have

the factor cos2ðnk′cs,0tÞ or sin2ðnk′cs,0tÞ, which also means
that these terms will disappear if we take the time average of
the total energy later, since hsin ðnk′cs,0tÞ cos ðmk′cs,0tÞit =
hsin ðnk′cs,0tÞ sin ðmk′cs,0tÞit = hcos ðnk′cs,0tÞ cos ðmk′cs,0tÞit
= 0 and the time factor is not involved in the volume integral
for the total energy. The full expression of ϵn,mðr, tÞ is in
Appendix A.

The energy density Equation (40) is time- and space-
dependent. The total energy E of the SCO is obtained
through volume integration of the energy density:

E =
ð
V
ϵ r, tð ÞdV : ð42Þ

Since the total energy of an unbounded spherical stand-
ing wave is infinite, we need to limit the boundaries. The
point that a SCO has boundaries was also presented by
Stadler et al. in [12]. Furthermore, for the single spherical
standing wave with wavelength λ, only integrals in the range
of multiples of half wavelength can make the total energy
time-independent. For consistency of the derivation, we set
the boundary of the SCO 1 to be w times the half wavelength
of the spherical standing wave in advance. Here w is a posi-
tive integer, λ/2 = π/k is the half wavelength. Now, for the
SCO model of superposition of multiple spherical standing
waves described in Equation (33), we choose to integrate to
wπ/k′, as this is the multiple of the half spatial periods
(i.e., the half wavelengths) of all spherical standing wave
components in the superposition. The total energy will be

ESCO tð Þ = 4π
ðwπ/k′
0

〠
n=N

n=1
ϵn r, tð Þ + 〠

n≠m
ϵn,m r, tð Þ

" #
r2dr

= π2μw 〠
n=N

n=1
n2k′A2 nð Þc2s,0 + 4π

ðwπ/k′
0

〠
n≠m

ϵn,m r, tð Þ
" #

r2dr:

ð43Þ

Observing Equation (43), we find that the total energy is
still time-dependent. In order to obtain an expression of the
total energy for the SCO that does not vary with time, we
need to take the time average of the total energy, which
means that the time-dependent terms are cancelled out. So
we get

ESCOh it = π2μw 〠
n=N

n=1
n2k′A2 nð Þc2s,0: ð44Þ

Therefore, the total energy of the SCO is related to the
summation of the n2A2ðnÞ terms. If we apply the mass-
energy equivalence relation, E =Mc2, to the total energy
obtained in Equation (44), then a definition of the mass of
the SCO in this idealized universe can be given

MSCO = π2μw 〠
n=N

n=1
n2k′A2 nð Þ: ð45Þ

In order to find the inverse-square-type acceleration, we
need to consider the function AðnÞ. In the following we will
show that there is a form of AðnÞ that allows SCO 2 to have a
inverse-square-type acceleration.

4.1.3. Search for Inverse-Square-Type Acceleration. Return-
ing to Equation (38) or Equation (39), in order to obtain
an inverse-square-type acceleration, the superposition term
must satisfy

〠
n=N

n=1

A2 nð Þnk′ sin 2nk′r
� �

2r2 −
A2 nð Þ sin2 nk′r

� �
r3

2
4

3
5 = b

r2
,

ð46Þ

where b is a parameter independent of n and the distance
r between SCO 1 and SCO 2. The new form of Equation
(46) can be obtained after using the transformation sin2
ðnk′rÞ = 1 − cos ð2nk′rÞ/2 and y = 2k′r:

〠
n=N

n=1

A2 nð Þny sin nyð Þ
2 − A2 nð Þ + A2 nð Þ cos nyð Þ

� �
= by

k′
= b′y:

ð47Þ

Here, we let b′ = b/k′. Observing Equation (47), if
we let

g yð Þ = 〠
n=N

n=1
A2 nð Þ cos nyð Þ − A2 nð ÞÂ Ã

, ð48Þ

then

−
y
2

dg yð Þ
dy

� �
= 〠

n=N

n=1
A2 nð Þ · ny2 · sin nyð Þ, ð49Þ
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so Equation (47) can be rewritten as

−
y
2

dg yð Þ
dy

� �
+ g yð Þ = b′y: ð50Þ

Solving this ordinary differential Equation (50), we
get

g yð Þ = 2b′y + dy2, ð51Þ

where d is another parameter independent of n and the
distance r. Looking at Equation (48) and Equation (51),
one finds that in one length period, i.e., y ∈ ð0, 2πÞ or
r ∈ ð0, π/k′Þ, gðyÞ in Equation (51) can be expanded by
a Fourier series for gðyÞ in Equation (48) if N ⟶∞.
The general expression of the Fourier series of gðyÞ is
as follows:

g yð Þ = a0
2 + 〠

n=N

n=1
an cos nyð Þ + bn sin nyð Þ½ �, ð52Þ

with

a0 =
1
π

ð2π
0
g yð Þdy,

an =
1
π

ð2π
0
g yð Þ cos nyð Þdy,

bn =
1
π

ð2π
0
g yð Þ sin nyð Þdy:

ð53Þ

Compare with Equation (48) and Equation (52), the
condition that gðyÞ does not contain sine terms can be
used to derive the relation between d and b′. It leads to

1
π

ð2π
0

2b′y + dy2
� �

sin nyð Þdy = −4b′
n

−
4dπ
n

= 0, ð54Þ

so d can be expressed in terms of b′ as

d = −
b′
π
: ð55Þ

Up to now, gðyÞ has been fully expressed by b′ as

g yð Þ = 2b′y − b′y2
π

: ð56Þ

This relation holds for y ∈ ð0, 2πÞ, i.e., r ∈ ð0, π/k′Þ.
Since we only consider the effective range of the inverse-
square-type acceleration, the spatial range of integration
required for the total energy of SCO 1 also can be chosen
as ð0, π/k′Þ, which means that w = 1. According to Section
3, in order to enable the existence of inverse-square-type
acceleration, there exists a lower bound on r as the distance
between SCO 1 and SCO 2, i.e., r > 2GM/c2s,0, where G is a

constant and M is a variable related to SCO 1. Here we will
use the mass of SCO 1, MSCO, to represent M. A discussion
of the lower bound will proceed in Section 4.1.6, now we
focus on the upper bound of r, i.e., π/k′.

We can now obtain a representation of AðnÞ by the
Fourier series:

A2 nð Þ = 1
π

ð2π
0

2b′y − b′
π
y2

 !
cos nyð Þ = −

4b′
πn2

: ð57Þ

Since the energy expression of the general form in Equa-
tion (44) requires the use of A2ðnÞ, the condition A2ðnÞ ≥ 0
should always be satisfied, so there must be b′ ≤ 0 and there-
fore b ≤ 0. We therefore obtain a representation of the func-
tion AðnÞ at which the local propagation speed field induced
by SCO 1 will cause SCO 2 to acquire a inverse-square-type
acceleration in the range r ∈ ð2GM/c2s,0, π/k′Þ. The AðnÞ is
given as

A nð Þ = 2
n

ffiffiffiffiffiffiffi
−b
πk′

s
: ð58Þ

An SCO with a function AðnÞ according to Equation
(58) is shown in Figure 3.

For large N, the SCO will have a shape as shown in
Figure 4.

It can be seen from Figure 4 that the central peak of the
oscillation will become higher and the rest of the secondary
peaks will be smoothed out.

Taking this result Equation (58) back to equation Equa-
tion (47) and Equation (38), we get an acceleration for the
case of the density oscillation

a rð Þh it ≈
1 − γSð Þ γS − 2ð Þc2s,0α2D

8D2
0r

3 〠
n=N

n=1

Á A2 nð Þny sin nyð Þ
2 − A2 nð Þ + A2 nð Þ cos nyð Þ

� �

= 1 − γSð Þ γS − 2ð Þc2s,0α2Db
4D2

0r
2 :

ð59Þ

Thus, an inverse-square-type acceleration is obtained if
the conditions that the adiabatic exponent γS ∈ ð1, 2Þ and
b < 0 hold. According to the description of the adiabatic
exponent in Section 2.2, as long as the medium is an ideal
gas, it needs to satisfy the condition that 1 < γS < 2, so
when b < 0 there is a attractive acceleration, i.e., SCO 2
always has an acceleration towards SCO 1.

Similarly, in the case of a pressure oscillation we have:

a rð Þh it ≈
γS − 1ð Þc2s,0α2Pb
4γ2SP2

0r
2 : ð60Þ
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In this case, an inverse-square-type acceleration also
exists as long as b < 0.

The upper bound of the distance r, i.e., π/k′, is suffi-
ciently long because k′ = kmin, which is the minimum wave
number and the maximum wavelength that a spherical
standing wave superimposed into the SCO 1 can have. Fur-
thermore, it can be assumed that the idealized universe in
which the SCO exists is spatially finite, such that the wave-
legth λ′ = 2π/k′ and the spatial scale of the universe is of
the same order. In this way, inverse-square-type acceleration
would exist on a large spatial scale.

From both representations of the acceleration, we find
that b is the only variable parameter apart from the distance

r. We will therefore use the parameter b to construct the
expression of mass in the idealized universe later.

The results in Equation (59) and Equation (60) can be
derived directly from Equation (46) and can be verified by
substituting the expression A2ðnÞ from Equation (57) into
them, this requires the use of the following mathematical
relations:

〠
∞

n=1

sin nrð Þ
n

= π − r
2 , r ∈ 0, 2π½ �,

〠
∞

n=1

cos nrð Þ
n2

= r2

4 −
πr
2 + π2

6 , r ∈ 0, 2π½ �:
ð61Þ
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Figure 3: This figure shows the oscillation ρðr, tÞ =∑n=5
n=1AðnÞ sin ðn · k′rÞ cos ðn · k′cs,0tÞ/r centred at the origin of the coordinates at time

t = 0 in the range r ∈ ð0, 2πÞ. With AðnÞ = 1/nk′, k′ = 1, cs,0 = 1. Oscillation ρ represents the oscillation of 5 spherical standing waves
superimposed. ρk=i is the oscillation of 5 individual spherical standing waves centred at the origin with AðnÞ and different wave number
k = nk′ = i, respectively.
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Figure 4: This figure shows the oscillation ρðr, tÞ =∑n=40
n=1 AðnÞ sin ðn · k′rÞ cos ðn · k′cs,0tÞ/r centred at the origin of the coordinates at time

t = 0 in the range r ∈ ð0, 2πÞ. With AðnÞ = 1/nk′, k′ = 1, cs,0 = 1. Oscillation ρ represents the oscillation of the 40 spherical standing waves
superimposed. This figure can be used to compare with the single spherical standing wave model in Figure 2.
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4.1.4. Possible Non Inverse-Square-Type Behavior. As stated
in the introduction, to explain the astronomical phenome-
non of mismatched Newtonian gravitation, Milgrom [11]
proposed a modification of the gravitation theory. In this
theory, objects with a low acceleration (in other words, it is
affected by a weak gravitation) would be subjected to a dif-
ferent gravitation than Newtonian gravitation. There exist
some expressions for the modified Newtonian acceleration
of gravitation, one effective form could be (Bekenstein and
Milgrom [19])

g = −
GNM
r2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
r

: ð62Þ

Here, GN is the gravitational constant. g is the gravita-
tional acceleration. a0 is a constant, and when a0 ≫GNM/r
(in other words, when r is very large for constant GN and
M), the 1/r term dominates the acceleration through gravita-
tion, i.e., this could be the MONDian regime. When a0 ≪
GNM/r (when r is very small for constant GN and M), the
1/r2 term dominates the acceleration through gravitation,
i.e., this is the Newtonian regime. Thus the MOND theory
expresses a non inverse-squared-type interaction.

We can also try to construct this kind of non-inverse-
square-type behaviour in the SCO model. For this purpose
we will modify Equation (46) to

〠
n=N

n=1

A2 nð Þnk′ sin 2nk′r
� �

2r2 −
A2 nð Þ sin2 nk′r

� �
r3

2
4

3
5 = b1

r
+ b2
r2
:

ð63Þ

b1 and b2 are constant values. This means that at very
small r (r≪ 1 in the unit system) the acceleration of SCO
2 is dominated by the 1/r2 term and at very large r (r≫ 1
in the unit system) the acceleration of SCO 2 is dominated
by the 1/r term. However a further derivation shows that
the 1/r term and the 1/r2 term cannot coexist in the interval
ð0, π/k′Þ. The detailed proof is in the Appendix B. At the
end, the 1/r dependency proposed here might be understood
as follows: when SCO 2 is sufficiently far from SCO 1, then
only a small fraction of its constituent plane waves are
refracted by SCO 1 such that the acceleration of SCO 2
towards SCO 1 becomes geometrically dependent on dis-
tance, i.e., a 1/r effect emerges.

4.1.5. Total Energy and Mass under the Inverse-Square-
Type Model. Substituting the result of AðnÞ in Equation
(58) back into Equation (44) and using w = 1, we obtain
a representation of the total energy of the SCO under this
model:

ESCOh it = −π2μc2s,0 〠
n=N

n=1
n2k′ · 4b

πn2k′

� �
= −4πμbNc2s,0: ð64Þ

The corresponding mass is expressed as:

MSCO = −4πμbN: ð65Þ

So the mass or energy of SCO 1 is related to the value
of b and number of spherical standing waves N that make
up SCOs. As mentioned in Section 4.1.3, b ≤ 0, which
ensures that the total mass MSCO is not negative.

4.1.6. Further Discussion of the Parameters. Observing Equa-
tion. (59) and Equation (60), we find that the acceleration
possessed by SCO 2 is related to the value of b. b is also
the only variable in these representations that can character-
ize SCO 1, i.e., only the value of b can be used to distinguish
between different SCO 1 s. The rest of the parameters are
global ambient values. Then, observing the expression of
energy in Equation (64) or mass in Equation (65), we find
that energy and mass are related to b as well as N .

In fact, the choice of b is completely free in the absence
of further settings, and b can be a constant or a variable
independent of the distance r. As stated at the beginning of
Section 4, without further settings AðkÞ, k′, and N can all
be used to characterize an SCO 1. Here, b represents the
contribution of AðkÞ via Equation (58).

The discussion of k′ is given in Section 4.1.3. It mainly
affects the effective range of inverse-square-type interactions
caused by the SCO. Since k′ can be chosen without affecting
the acceleration and total energy of the SCO, it is always
possible to choose a suitable k′ such that the interaction
between the SCOs is a long-range interaction.

Now, we also need to discuss the choice of N . According
to the derivation in Section 4.1.3, in order to satisfy the
Fourier series relation, N must tend to infinity. This means
that N can no longer be applied to characterize SCO 1, but
can be considered as a global parameter unrelated to a
particular SCO. According to the derivation in Section
4.1.5, to avoid the energy tending to infinity, we need to
absorb N . For this we can assume the constant μ = μ0/N in
the unit system. That is, let μ be numerically equal to 1/N
and μ0 be the unit value. In this way whether N tends to
infinity or not does not affect the total energy. Then we have

ESCOh it = −4πμ0bc2s,0,

MSCO = −4πμ0b:
ð66Þ

That is, the value b from the funtion AðkÞ characterizes
the energy and mass of SCO 1. Another option is to make
N a very large constant, which also prevents the energy of
the SCO from going to infinity and approximately gives
the above result in Equation (66). This is because the deriva-
tion of the Fourier series part in Section 4.1.3 would then
only hold approximately.

Since both acceleration and mass are known, a compar-
ison with Equation (30) and Equation (59) or Equation (60)
leads to an expression for G. In the range over which the
inverse-square-type acceleration is valid, we might be able
to compare G with the gravitational constant GN . For the
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case of density oscillations we have

−
GMSCO

r2
= 1 − γSð Þ γS − 2ð Þc2s,0α2Db

4D2
0r

2 ,

⟶G = 1 − γSð Þ γS − 2ð Þc2s,0α2D
16πμ0D2

0
:

ð67Þ

Similarly, for the case of pressure oscillations,

G = γS − 1ð Þc2s,0α2P
16πμ0γ2SP2

0
, ð68Þ

Since 1 < γS < 2 and μ > 0, the value of G is greater than
zero in both cases of oscillation, this means that the SCO
interactions in our model do lead to mutual attraction.
Furthermore, we find that G is indeed only related to the
constants of the ambient medium, such as ambient density,
ambient pressure, adiabatic exponent, etc. G is a universal
constant in this idealized universe.

Since G and MSCO are known, we can also obtain the
expression of the lower bound on the distance r between
SCO 1 and SCO 2 mentioned in Section 3. An inverse-
square-type acceleration exists only if the distance r > 2G
MSCO/c2s,0 with

2GMSCO

c2s,0
= γS − 1ð Þ γS − 2ð Þα2Db

2D2
0

, ð69Þ

for the case of density oscillation, and

2GMSCO

c2s,0
= 1 − γSð Þα2Pb

2γ2SP2
0

, ð70Þ

for the case of pressure oscillation.
Noting the upper bound on r derived in Section 4.1.3,

i.e., r < π/k′, we can obtain the relation

2GMSCO

c2s,0
< π

k′
, ð71Þ

which gives the upper bound on the choice of k′. For the
case of density oscillation, it is

k′ < 2πD2
0

γS − 1ð Þ γS − 2ð Þα2Db
: ð72Þ

And for the case of pressure oscillation, it is

k′ < 2πγ2SP2
0

1 − γSð Þα2Pb
: ð73Þ

Since both b and 1 − γS are negative, the upper bound on
k′ remains positive as well. The k′ neither impacts the mass
of the SCO nor is it a function of b. So the value of k′ can be
taken to be much smaller than this upper bound, which can
make the effective range ð2GMSCO/c2s,0, π/k′Þ of the inverse-
square-type interaction arbitrarily wide.

Furthermore, according to Section 2.2, the pressure
expression in Equation (68) and the density expression in
Equation (67) for G are equivalent. Thus the relation
between the constants αD and αP can be obtained

1 − γSð Þ γS − 2ð Þc2s,0α2D
16πμ0D2

0
= γS − 1ð Þc2s,0α2P

16πμ0γ2SP2
0

⟶
α2P
α2D

= 2 − γSð Þγ2SP2
0

D2
0

:

ð74Þ

5. Conclusion

We develop a model of a matter particle as a SCO in an
idealized universe in which the existence of a classical ideal
gas as a medium is assumed. The SCO as a particle is mod-
elled as an oscillation of the medium and one possible math-
ematical structure of the SCO is described in Section 4 and
Equation (33). Under the above assumptions, using SCO 1
as a reference system, SCO 2 can have an attractive
inverse-square-type acceleration towards SCO 1 in the range
r ∈ ð2GMSCO/c2s,0, π/k′Þ where π/k′ can be set to be compara-
ble to the size of the idealized universe, and vice versa. The
mass expression for the SCO, MSCO, and the constant G,
which can be used for comparison with the gravitational
constant GN in this inverse-square-type acceleration, can
then be obtained by using the mass-energy equivalence.

The central idea of this model is the use of time averag-
ing and component superposition. This means that the
attraction we get under this model is a macroscopic result.
This may imply the possibility that other types of interac-
tions at the microscopic scale can lead to inverse-square-
type interactions at the macroscopic scale. Furthermore, this
contribution discusses the possibility that a macroscopic
inverse-square-type interaction originates from the wave
nature of matter.

The constant term from the inverse-square-type interac-
tion can be expressed entirely in terms of the parameters of
the ambient medium (i.e., the vacuum or the historical
"aether"). By further exploration, it may be possible to obtain
more ambient medium representations of constants from
other kinds of interactions, such as interactions that are pro-
portional to the power of the distance, or interactions that
are exponential to the distance.

Imagine two extremely large regions, but with different
properties of the ambient medium, which may lead to differ-
ences in the measurement of these constants in the two
regions. This also hints at the possibility that these universal
“constants” are not constant, and that the values currently
measured are local values.
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This discussion is limited to the classical wave equation
and indicates that two SCOs can attract each other in terms
of an inverse-square-type effect. A self-consistent treatment
will need to take into account a nonclassical wave equation
that allows cs to be variable. This leads to the view that SCOs
would be solitons (e.g., Rajaraman [14]).

This model is still in the early stages of research. We
have used only the ideal classical gas model as an “ether”.
The “aether” and Michelson-Morley experiment are dis-
cussed in Schmid and Kroupa [13]. In future research,
attempts can be made to extend the medium in the model
to superfluids (Landau and Lifshitz [18]).

On the other hand, other models for the mutual attrac-
tion of standing waves or wave packets in fluids exist, such
as the secondary Bjerknes force (Bjerknes [20]). This will
also be one of the directions of our further research.

Appendix

A. The Full Expression of Non-squared Terms

In this section, we express in full the term εn,mðr, tÞ in
Equation (40)

εn,m r, tð Þ = μc2s,0
A nð ÞA mð Þmnk′2

r2
sin nk′r
� �

sin mk′r
� �"(

× sin nk′cs,0t
� �

sin mk′cs,0t
� �#

+ A nð ÞA mð Þmnk′2

r2
cos nk′r
� �

cos mk′r
� �"

× cos nk′cs,0t
� �

cos mk′cs,0t
� �#

−
A nð ÞA mð Þnk′

r3
cos nk′r
� �

sin mk′r
� �"

× cos nk′cs,0t
� �

cos mk′cs,0t
� �#

−
A nð ÞA mð Þmk′

r3
cos mk′r
� �

sin nk′r
� �"

× cos nk′cs,0t
� �

cos mk′cs,0t
� �#

+ A nð ÞA mð Þ
r4

sin nk′r
� �

sin mk′r
� ��

× cos nk′cs,0t
� �

cos mk′cs,0t
� ��)

:

ðA:1Þ

Here, μ is a constant related to the unit of ρ. ρ is the
oscillation field. cs,0 is the propagation speed of plane
waves in the ambient medium. n and m are positive inte-
gers and n ≠m. If we take the time average of εn,mðr, tÞ
with a time period T = 2π/k′cs,0, the result will be zero.

B. Search for Non-Inverse-Square-
Type Acceleration

For the acceleration of the SCO 2 described in Section 4.1.4,
we have

〠
n=N

n=1

A2 nð Þnk′ sin 2nk′r
� �

2r2 −
A2 nð Þ sin2 nk′r

� �
r3

2
4

3
5 = b1

r
+ b2
r2
:

ðB:1Þ

Here b1 and b2 are parameters that are independent of
the distance r. Let y = 2k′r and perform the same transfor-
mation as in Equation (47). Now we have

〠
n=N

n=1

A2 nð Þny sin nyð Þ
2 − A2 nð Þ + A2 nð Þ cos nyð Þ

� �

= b′1y2 + b′2y:
ðB:2Þ

Here, we use b′1 = b1/2k′
2
and b′2 = b2/k′. Then, we let

g yð Þ = 〠
n=N

n=1
A2 nð Þ cos nyð Þ − A2 nð ÞÂ Ã

: ðB:3Þ

Substituting this result into Equation (B.2), similar
to Equation (50) we will obtain an ordinary differential
equation:

−
y
2

dg yð Þ
dy

� �
+ g yð Þ = b′1y2 + b′2y: ðB:4Þ

Solving this ordinary differential equation, we have

g yð Þ = −2b′1y2 ln yð Þ + 2b′2y + dy2, ðB:5Þ

here d is an arbitrary constant. Comparing Equation (B.5)
with Equation (B.3), we find that one condition should be
satisfied: The gðyÞ expressed in Equation (B.5) should be
symmetric along the axis of y0 = π when the domain of the
function gðyÞ is y ∈ ð0, 2πÞ. That is,

g y0 + y′
� �

= g y0 − y′
� �

: ðB:6Þ

Here, y0 = π and y = y0 + y′. It holds when y′ ∈ ½0, πÞ.
Substituting the gðyÞ from Equation (B.5) to Equation
(B.6), we have

b′1 π + y′
� �2

ln π + y′
� �

− π − y′
� �2

ln π − y′
� �� �

= 2b′2y′ + 2πdy′:
ðB:7Þ
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Taking the derivative of y′ twice on both sides, we find

2b′1 ln π + y′
� �

− ln π − y′
� �h i

= 0: ðB:8Þ

For arbitrary b′1 the only real-valued solution is y′ = 0,
but this kind of acceleration in Equation (B.1) is expected
to hold on y ∈ ð0, 2πÞ, i.e., y′ ∈ ½0, πÞ. So b′1 ≡ 0 is the only

choice. Considering b′1 = b1/2k′
2
, we find that the 1/r term

in the acceleration of the SCO 2 must vanish.
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