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We study neutrino mass matrices with one texture equality and the neutrino mixing matrix having either its first (TM1) or second
(TM2) column identical to that of the tribimaximal mixing matrix. We found that out of total fifteen possible neutrino mass
matrices with one texture equality, only six textures are compatible with TM1 mixing and six textures are compatible with T
M2 mixing in the light of the current neutrino oscillation data. These textures have interesting implications for the presently
unknown parameters such as the neutrino mass scale, effective Majorana neutrino mass, effective neutrino mass, the
atmospheric mixing, and the Dirac- and Majorana-type CP violating phases. We, also, present the S3 group motivation for
some of these textures.

1. Introduction

In the last two decades, significant advances have been made
by various neutrino oscillation experiments in determining
the neutrino masses and mixings. Various neutrino parame-
ters like three mixing (solar, atmospheric, and reactor) angles
and the two mass squared differences (Δm2

21 and jΔm2
31j) have

been measured by various neutrino oscillation experiments
with fairly good precision. In addition, the recent neutrino
oscillation data hint towards a nonmaximal atmospheric mix-
ing angle (θ23) [1] and Dirac-type CP-violating phase (δ) near
270° [2, 3]. However, many other attributes like leptonic CP-
violation, neutrino mass ordering (normal mass ordering
(NO) or inverted mass ordering (IO)), nature of neutrinos
(Dirac or Majorana), and absolute neutrino mass scale are still
unknown. Furthermore, the origin of the lepton flavor struc-
ture still remains an open issue. The neutrino mass matrix
which encodes the neutrino properties contains several
unknown physical parameters. The phenomenological
approaches based on Abelian or non-Abelian flavor symme-

tries can play a significant role in determining the specific tex-
ture structure of the neutrino mass matrix with reduced
number of independent parameters.

Several predictive models such as texture zeros [4–25],
vanishing cofactors [26–37], equalities among elements/
cofactors [38, 39], and hybrid textures [40–46] amongst
others can explain the presently available neutrino oscillation
data, since the presence of texture equalities, just like texture
zeros or vanishing cofactors, reduces the number of free
parameters in the neutrinomass matrix and, hence, must have
a similar predictability as that of texture zeros or vanishing
cofactors. In the flavor basis, neutrino mass matrices with
one texture equality and two texture equalities have been stud-
ied in the literature [38, 39]. The hybrid textures which com-
bine a texture equality with a texture zero or a vanishing
cofactor have been studied in the literature [40–46].

In addition, discrete non-Abelian symmetries leading to
the Tri-Bi-Maximal (TBM) [47, 48] neutrino mixing pattern
have been widely studied in the literature. The TBM mixing
matrix given by
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predicts a vanishing reactor mixing angle (θ13 = 0) and max-
imal atmospheric mixing angle (θ23 = π/4), and the solar
mixing angle is predicted to be ðθ12Þ which is sin−1ð1/ ffiffiffi

3
p Þ.

However, the nonzero value of θ13 confirmed by various
neutrino oscillation experiments underlines the need for
necessary modifications to the TBM mixing pattern to make
it compatible with the present experimental data [49–53].
One of the simplest possibilities is to keep one of the columns
of the TBM mixing matrix unchanged while modifying its
remaining two columns to within the unitarity constraints.
This gives rise to three mixing patterns, viz., TM1, TM2, and
TM3 which have their first, second, and third columns identi-
cal to the TBM mixing matrix, respectively. The TM3 mixing
scheme predicts θ13 = 0 and is, hence, phenomenologically
unviable. The TM1 and TM2 mixing schemes have been suc-
cessfully employed to explain the pattern of lepton mixing
and have been extensively studied in the literature [54–71].
The TM1 mixing, in particular, gives a very good fit to the
present neutrino oscillation data. Recently, neutrino mass
matrices with texture zero(s) in combination with TM1 and
TM2 mixing have been studied [72–74].

In the present work, we study a class of neutrino mass
matrices having one texture equality with TM1 or TM2 of
the TBM in the neutrino mixing matrix. Neutrino mass
matrices having one texture equality along with TM1 or T
M2 of the TBM have a total of six free parameters and,
hence, lead to very predictive textures for the neutrino mass
matrices.

There are a total of fifteen possible structures with one
texture equality in the neutrino mass matrix, and they are
listed in Table 1.

There exists a μ-τ permutation symmetry between dif-
ferent structures of neutrino mass matrices, and the corre-
sponding permutation matrix has the following form:

P23 =

1 0 0

0 0 1

0 1 0

0
BB@

1
CCA: ð2Þ

Neutrino mass matrices with one texture equality, there-
fore, are related to each other as

Mν
′ = P23MνP

T
23, ð3Þ

leading to the following relations between the neutrino oscil-
lation parameters:

θ12′ = θ12, θ13′ = θ13, θ23′ =
π

2
− θ23, δ′ = π − δ: ð4Þ

Neutrino mass matrices with one texture equality related
by the μ-τ permutation operation are

Mν1 ↔Mν2,Mν3 ↔Mν5,Mν4 ↔Mν6,

Mν7 ↔Mν7,Mν8 ↔Mν9,Mν10 ↔Mν11,

Mν12 ↔Mν12,Mν13 ↔Mν13,Mν14 ↔Mν15:

ð5Þ

In the flavor basis, where the charged lepton mass matrix
Ml is diagonal, the complex symmetric Majorana neutrino
mass matrix Mν can be diagonalized by a unitary matrixV ′:

Mν =V ′Mdiag
ν V′T , ð6Þ

whereMdiag
ν = diag ðm1,m2,m3Þ. The unitary matrix V ′ can

be parametrized as

V ′ = PlV withV =UPν, ð7Þ

where

U =
c12c13 c13s12 e−iδs13

−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

s12s23 − eiδc12c23s13 −eiδc23s12s13 − c12s23 c13c23

0
BB@

1
CCA,

Pν =

1 0 0

0 eiα 0

0 0 eiβ

0
BB@

1
CCA,  Pl =

eiϕe 0 0

0 eiϕμ 0

0 0 eiϕτ

0
BB@

1
CCA,

ð8Þ

Table 1: Fifteen possible texture structures with one equality
between two nonzero elements.

Textures Constraints on elements

Mν1 Mee=Meμ

Mν2 Mee=Meτ

Mν3 Meμ=Mμμ

Mν4 Mμμ=Mμτ

Mν5 Meτ=Mττ

Mν6 Mμτ=Mττ

Mν7 Mee=Mμτ

Mν8 Meτ=Mμμ

Mν9 Meμ=Mττ

Mν10 Mee=Mμμ

Mν11 Mee=Mττ

Mν12 Mμμ=Mττ

Mν13 Meμ=Meτ

Mν14 Meμ=Mμτ

Mν15 Meτ=Mμτ
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with cij = cos θij, sij = sin θij. Pν is the diagonal phase matrix
containing the two Majorana-type CP-violating phases α and
β. δ is the Dirac-type CP-violating phase. The phase matrix
Pl is physically unobservable. The matrix V is called the
neutrino mixing matrix or the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) [75–78] matrix. The effective Majorana
neutrino mass matrix can be written as

Mν = PlUPνM
diag
ν PT

νU
TPT

l : ð9Þ

The Dirac-type CP-violation in neutrino oscillation exper-
iments can be described in terms of the Jarlskog rephasing
invariant quantity JCP [79] with

JCP = Im U11U22U
∗
12U

∗
21f g

= sin θ12 sin θ23 sin θ13 cos θ12 cos θ23 cos2θ13 sin δ:

ð10Þ

The effective Majorana neutrino mass jMeej, which deter-
mines the rate of neutrinoless double beta decay, is given by

Meej j = m1U
2
e1 +m2U

2
e2 +m3U

2
e3

�� ��: ð11Þ

There are many experiments such as CUORICINO [80],
CUORE [81], MAJORANA [82], SuperNEMO [83], and
EXO [84] which aim to achieve a sensitivity up to 0.01 eV
for jMeej. The KamLAND-Zen experiment [85] provides the
upper limits on the effective Majorana neutrino mass which
is given by

Meej j < 0:36 − 0:156ð Þ eV, ð12Þ

at 90% confidence level (C.L.).
The measurement of the absolute neutrino mass scale via

the decay kinematics is usually described by the effective
neutrino mass [86]

mβ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 Ue1j j2 +m2
2 Ue2j j2 +m2

3 Ue3j j2
q

: ð13Þ

Recently, the KATRIN [87] experiment has reported the
upper limit of mβ < 0:8 eV at 90% C.L.

Further, cosmological observations provide more strin-
gent constraints on absolute neutrino mass scale by putting
an upper bound on the sum of neutrino masses:

〠 = 〠
3

i=1
mi: ð14Þ

Recent Planck data [88] in combination with baryon
acoustic oscillation (BAO) measurements provide a tight
bound on the sum of neutrino masses ∑mi ≤ 0:12 eV at
95% C.L.

2. TM2 Mixing and One Texture Equality

A neutrino mass matrix with TM2 mixing can be written as

MTM2
= PlUTM2

PνM
diag
ν PT

νU
T
TM2

PT
l , ð15Þ

where the mixing matrix TM2, also known as trimaximal
mixing, can be parametrized [68–71] as
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=

ffiffiffi
2
3

r
cos θ

1ffiffiffi
3

p
ffiffiffi
2
3

r
sin θ

eiϕ sin θffiffiffi
2

p −
cos θffiffiffi

6
p 1ffiffiffi

3
p −

eiϕ cos θffiffiffi
2

p −
sin θffiffiffi

6
p

−
cos θffiffiffi

6
p −

eiϕ sin θffiffiffi
2

p 1ffiffiffi
3

p eiϕ cos θffiffiffi
2

p −
sin θffiffiffi

6
p

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð16Þ

The mass matrix MTM2
is invariant under the transfor-

mation GT
2MTM2

G2 =MTM2
with G2 =UTM2

diag ð−1, 1,−1Þ
U†

TM2
, as the generator of Z2 symmetry [90, 91]. Invariance

of MTM2
under G2 when combined with one texture equality

leads to the equality of three unphysical phases inMTM2
, i.e.,

ϕe = ϕμ = ϕτ ≡ ϕl.
The most general neutrino mass matrix with TM2 as the

mixing matrix can be parametrized as
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=
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The neutrino mass matrix MTM2
can be realized within

the framework of an A4 model where the A4 flavor symme-
try is spontaneously broken by two real A4 triplets ϕ, ϕ′, and
three real A4 singlets, ξ, ξ′, ξ′′ which are SUð2ÞL gauge
singlets [92–94]. Upon symmetry breaking, the VEVs of
the flavone singlets and triplets take the alignments

ξ = ua, ξ′ = uc, ξ
′′ = ub, ϕ = v, v, vð Þ, ϕ′ = v′, 0, 0

� �
: ð18Þ

The neutrino mass matrix, in the flavor basis, is given by

u +
2x
3

v −
x
3

w −
x
3

v −
x
3

w +
2x
3

u −
x
3

w −
x
3

u −
x
3
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3

0
BBBBBB@

1
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: ð19Þ
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The above mass matrix leads to the TM2 neutrino mix-
ing matrix. For v =w, the above mass matrix leads to the
TBM neutrino mixing matrix. The equality among the ele-
ments of mass matrix in Eq. (17) does not arise naturally,
and hence, we assume additional constraints on the elements
of mass matrix, e.g., u = v − x which leads to one equality
between the ð1, 1Þ and ð1, 2Þ elements of MTM2

in Eq. (17).
Therefore, all possible textures of neutrino mass matrices
with TM2 mixing and one texture equality are given by

M1
TM2

=

a a b

a b + d a − d

b a − d a + d

0
BB@

1
CCA,M2

TM2
=

a b a

b a + d a − d

a a − d b + d

0
BB@

1
CCA,

ð20Þ

M3
TM2

=

b + d a a − d

a a b

a − d b a + d

0
BB@

1
CCA,M5

TM2
=

b + d a − d a

a − d a + d b

a b a

0
BB@

1
CCA,

ð21Þ

M4
TM2

=

a + d b a − d

b a a

a − d a b + d

0
BB@

1
CCA,M6

TM2
=

a + d a − d b

a − d b + d a

b a a

0
BB@

1
CCA,

ð22Þ

M7
TM2

=M8
TM2

=M9
TM2

=

a b d

b d a

d a b

0
BB@

1
CCA, ð23Þ

M10
TM2

=M15
TM2

=

a b b − d

b a b − d

b − d b − d a + d

0
BBB@

1
CCCA,

M11
TM2

=M14
TM2

=

a b b + d

b a + d b

b + d b a

0
BBB@

1
CCCA,

ð24Þ

M12
TM2

=M13
TM2

=

a b b

b b + d a − d

b a − d b + d

0
BB@

1
CCA, ð25Þ

where the neutrino mass matrices in each equation are
related by μ-τ symmetry. The neutrino mixing angles can
be calculated by using the following relations:

sin2θ13 = U13j j2, sin2θ12 =
U12j j2

1 − U13j j2 , sin
2θ23 =

U23j j2
1 − U13j j2 :

ð26Þ

Substituting the elements of U form Eq. (16) into Eq.
(26), we get

sin2θ13 =
2
3
sin2θ, sin2θ12 =

1
3 − 2 sin2θ

,

sin2θ23 =
1
2

1 +
ffiffiffi
3

p
sin 2θ cos ϕ

3 − 2 sin2θ

 !
:

ð27Þ

Using Eqs. (10) and (16), the Jarlskog rephasing invari-
ant is given by

JCP =
1

6
ffiffiffi
3

p sin 2θ sin ϕ, ð28Þ

and the Dirac-type CP-violating phase can be calculated by
using the equation [72–74]

tan δ =
cos 2θ + 2
2 cos 2θ + 1

tan ϕ: ð29Þ

From Eqs. (11) and (16), the effective Majorana mass for
TM2 mixing is given by

Meej j = 1
3
2m1 cos2θ +m2e

2iα + 2m3 sin2θe2iβ
��� ���, ð30Þ

and the effective neutrino mass for TM2 mixing can be cal-
culated by using Eqs. (12) and (16) as

mβ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

2m2
1 cos2θ +m2

2 + 2m2
3 sin2θ

À Ár
: ð31Þ

The existence of one equality between the elements ða, bÞ
and ðc, dÞ of the neutrino mass matrix MTM2

implies

MTM2 abð Þ −MTM2 cdð Þ = 0, ð32Þ

which yields the complex equation

〠 QVaiVbi −VciVdið Þmi = 0, ð33Þ

where Q = eiðϕa+ϕb−ðϕc+ϕdÞÞ and V is the PMNS matrix given in
Eq. (7). The above equation can be rewritten as

m1A1 +m2A2e
2iα +m3A3e

2iβ = 0, ð34Þ

where

Ai = QUaiUbi −UciUdið Þ, ð35Þ

with ði = 1, 2, 3Þ and a, b, c, d can take values e, μ, and τ.
Since the TM2 mixing has equal elements in the second col-
umn, it leads to A2 ≡ ðQUa2Ub2 −Uc2Ud2Þ = 0. Therefore,
using Eq. (16) in Eq. (34), we have

m1A1 +m3A3e
2iβ = 0: ð36Þ
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Simultaneous solution of the real and imaginary parts of
Eq. (36) leads to

ξ ≡
m3
m1

=
Re A1ð Þ

Im A3ð Þ sin 2β − Re A3ð Þ cos 2β =
A1j j
A3j j , ð37Þ

β =
1
2
tan−1

Re A3ð Þ Im A1ð Þ − Re A1ð Þ Im A3ð Þ
Re A1ð Þ Re A3ð Þ + Im A1ð Þ Im A3ð Þ : ð38Þ

Using experimentally available mass squared differences
Δm2

21 and Δm2
31ðΔm2

23Þ for NO (IO) with Eq. (37), the three
neutrino mass eigenvalues are given by

m1 =

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

ξ2 − 1

s
,m2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 +m2
1

q
,m3 = ξm1 for NO,

ð39Þ

m1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

23 − Δm2
21

1 − ξ2

s
,m2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 +m2
1

q
,m3 = ξm1 for IO,

ð40Þ
where Δm2

ij =m2
i −m2

j , m1 <m2 <m3 for NO, and m3
<m1 <m2 for IO.

For the numerical analysis, we generate ∼107-109 points.
The mass squared differences Δm2

21 and Δm2
31ðΔm2

23Þ for NO

(IO) are varied randomly within their 3σ experimental
ranges given in Table 2. Parameters θ, ϕ, and α are, also, var-
ied randomly within their full ranges (0-90°), (0-360°), and
(0-360°), respectively. Equation (38), (39), and (40) are used
to calculate the Majorana-type CP-violating phase β and
three mass eigenvalues (m1,m2, and m3) for both mass
orderings. In addition, the mixing angles θ12, θ13, and θ23
are calculated by using Eq. (27) and must satisfy the experi-
mental data given in Table 2. The Jarlskog invariant (JCP),
Dirac-type CP-violating phase (δ), effective Majorana mass
(jMeej), effective neutrino mass (mβ), and the sum of neu-
trino masses (∑) are calculated by using Eqs. (28), (29),
(30), (31), and (14), respectively.

The numerical predictions for various neutrino parame-
ters are given in Tables 3 and 4. Table 3 provides numerical
predictions for viable textures under the constrains from
neutrino oscillation data, whereas Table 4 provides numeri-
cal predictions for viable textures under the constrains from
cosmological and neutrinoless double beta decay bounds
along with neutrino oscillation data. The allowed range of
parameter α is (0-360°) for all viable textures. JCP which lies
in the range (−0.037-0.037) for all viable textures except
M3

TM2
ðM5

TM2
Þ with NO (IO), and for these textures, the

range of JCP is ±(0.011–0.037). The parameter θ is con-
strained to lie within the ranges (10.0°-11.1°) for all viable
textures. The solar mixing angle (θ12) is constrained to lie
in the ranges (35.68°-35.77°) for all allowed textures.

Table 2: Current neutrino oscillation parameters from global fits [89] with Δm2
3l ≡ Δm2

31 > 0 for NO and Δm2
3l ≡ Δm2

32 = −Δm2
23 < 0 for IO.

Neutrino parameter
Normal ordering (best fit) Inverted ordering (Δχ2 = 2:6)

Bfp ± 1σ 3σ range Bfp ± 1σ 3σ range

θ∘12 33:44+0:77−0:74 31:27⟶ 35:86 33:45+0:77−0:74 31:27⟶ 35:87

θ∘23 49:2+1:0−1:3 39:5⟶ 52:0 49:5+1:0−1:2 39:8⟶ 52:1

θ∘13 8:57+0:13−0:12 8:20⟶ 8:97 8:60+0:12−0:12 8:24⟶ 8:98

δ∘CP 194+52−25 105⟶ 405 287+27−32 192⟶ 361

Δm2
21

10−5eV2 7:42+0:21−0:20 6:82⟶ 8:04 7:42+0:21−0:20 6:82⟶ 8:04

Δm2
3l

10−3eV2 +2:515+0:028−0:028 +2:431⟶ +2:599 −2:498+0:028−0:029 −2:584⟶ −2:413

Table 3: Numerical predictions for viable textures having one equality inMν with TM2 mixing at 3σ C.L. (only neutrino oscillation data are
incorporated).

Texture Ordering mlowest (eV) Meej j (eV) ∑ (eV) mβ θ∘23 δ∘ β∘

M1
TM2 NO 0.003-0.0087 0.0-0.0083 0.062-0.073 0.009-0.0128 39.5-51.41 0-155 ⊕ 205-360 16-90 ⊕ 270-344

M2
TM2 NO 0.003-0.0083 0.0-0.0082 0.061-0.072 0.009-0.0124 39.5-51.4 0-160 ⊕ 202-360 0-81 ⊕ 279-360

M3
TM2

NO 0.025-0.5 0.006-0.5 0.10-1.51 0.026-0.5 39.5-45 90-160 ⊕ 200-270 0-68 ⊕ 292-360

IO 0.02-0.48 0.015-0.5 0.12-1.45 0.05-0.5 45-51.4 0-90 ⊕ 270-360 0-90 ⊕ 270-360

M4
TM2 IO 0.003-0.008 0.014-0.05 0.1-0.11 0.048-0.051 39.8-51.4 0-150 ⊕ 210-360 0-77 ⊕ 283-360

M5
TM2

NO 0.02-0.5 0.005-0.5 0.09-1.5 0.02-0.5 45-51.4 0-90 ⊕ 270-360 0-90 ⊕ 270-360

IO 0.027-0.5 0.017-0.47 0.13-1.48 0.05-0.5 39.8-45 90-150 ⊕ 209-270 0-59 ⊕ 303-360

M6
TM2 IO 0.003-0.009 0.014-0.05 0.101-0.111 0.048-0.051 39.8-51.4 0-151 ⊕ 211-360 19-90 ⊕ 270-340
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Table 4: Numerical predictions for viable textures having one equality in Mν with TM2 mixing at 3σ C.L. (cosmological and neutrinoless
double beta decay bounds along with neutrino oscillation data are incorporated).

Texture Ordering mlowest (eV) Meej j (eV) ∑ (eV) mβ θ∘23 δ∘ β∘

M1
TM2 NO 0.003-0.0087 0.0-0.0083 0.062-0.073 0.009-0.0128 39.5-51.41 0-155 ⊕ 205-360 16-90 ⊕ 270-344

M2
TM2 NO 0.003-0.0083 0.0-0.0082 0.061-0.072 0.009-0.0124 39.5-51.4 0-160 ⊕ 202-360 0-81 ⊕ 279-360

M3
TM2 NO 0.025-0.031 0.006-0.03 0.10-0.12 0.026-0.032 39.5-40.34 137-160 ⊕ 200-222 45-68 ⊕ 292-316

M4
TM2 IO 0.003-0.008 0.014-0.05 0.1-0.111 0.048-0.051 39.8-51.4 0-150 ⊕ 210-360 0-77 ⊕ 283-360

M5
TM2 NO 0.021-0.031 0.005-0.03 0.098-0.12 0.023-0.032 49.7-51.4 0-42 ⊕ 317-360 45-90 ⊕ 270-316

M6
TM2 IO 0.003-0.009 0.014-0.05 0.101-0.111 0.048-0.051 39.8-51.4 0-151 ⊕ 211-360 19-90 ⊕ 270-340
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Figure 1: Correlation plots among various parameters for textures (a)M1
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with NO.
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Figures 1 and 2 show correlations among various neutrino
oscillation parameters. The Dirac CP-violating phase δ and
phase ϕ are linearly correlated as shown in Figure 2(e).
Figure 1(h) depicts the correlation between θ12 and θ13. The
Dirac-type CP-violating phase δ strongly depends on the
Majorana-type CP-violating phase β as shown in Figure 1(a).

The main results for the neutrino mass matrices with
one texture equality and TM2 mixing are listed in the
following:

(i) Textures M7
TM2

,M8
TM2

, and M9
TM2

lead to two
degenerate eigenvalues and are, hence, experimen-
tally ruled out at 3σ C.L.

(ii) Textures M10
TM2

,M11
TM2

,M12
TM2

,M13
TM2

,M14
TM2

, and

M15
TM2

lead to vanishing reactor mixing angle and,
hence, are not viable at 3σ C.L.

(iii) TexturesM3
TM2

andM5
TM2

for IO are not consistent
with the experimental data if cosmological and
neutrinoless double beta decay bounds along with
neutrino oscillation data are incorporated

(iv) Textures M1
TM2

and M2
TM2

are consistent with NO

only, whereas textures M4
TM2

and M6
TM2

are consis-
tent with IO only

(v) For NO, textures M4
TM2

and M6
TM2

are not consis-
tent with the experimental data as the mixing
angles θ12 and θ13 are not within the 3σ range

(vi) All viable textures cannot have zero lowest mass
eigenvalue for both mass orderings

(vii) The atmospheric mixing angle θ23 is below (above)
maximal for textures M3

TM2
(M5

TM2
) and M5

TM2

(M3
TM2

) with NO and IO, respectively

(viii) θ23 is maximal for δ ∼ π/2 or 3π/2 for textures
M1

TM2
(M6

TM2
) and M2

TM2
(M4

TM2
) with NO (IO).

(ix) The parameter jMeej is found to be nonzero for all
viable textures except M1

TM2
andM2

TM2
. jMeej gets

its largest value when δ ∼ π/2 or 3π/2 for textures
M3

TM2
and M5

TM2
.

(x) For all viable textures, the effective neutrino mass
(mβ) is well within the range provided by KATRIN
experiment

(xi) The parametersm1 ðm3Þ, jMeej, and ∑ get their
largest value when θ23 ∼ 45∘ for textures M3

TM2

and M5
TM2

with NO (IO).
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, and (f) M6
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with
IO.
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3. S3 Group Motivation

The S3, permutation group of three objects, is the smallest
discrete non-Abelian group. The permutation matrices in
the three dimensional reducible representation are

S 1ð Þ =

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA,

S 123ð Þ =

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA, S 132ð Þ =

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA,

S 12ð Þ =

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA, S 13ð Þ =

0 0 1

0 1 0

1 0 0

0
BB@

1
CCA, S 23ð Þ =

1 0 0

0 0 1

0 1 0

0
BB@

1
CCA,

ð41Þ

where matrices in each equation belong to the same class
of S3. The most general neutrino mass matrix invariant
under the S3 group is proportional to the democratic matrix
and is given by

Mν = aD withD =

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA, ð42Þ

where a is a complex number and D is called the Democratic
matrix. The exact S3 symmetry does not satisfy the current
neutrino oscillation data, and hence, symmetry must be bro-
ken. Various models based on the S3 symmetry have been
presented in Refs. [95–122]. In Ref. [123, 124], the S3 sym-
metry is broken by the linear combination of S3 group matri-
ces and successfully generates the nonzero θ13.

The mass matricesMTM2
in Eqs. (20)–(25) can be seen as

the linear combination of a democratic part and a symmetry
breaking part. The symmetry breaking matrix is the sum of
two symmetric matrices out of which one is the S3 group
matrix which can be any of the Sð12Þ, Sð13Þ, Sð23Þ matrices,
and the other part is chosen in such a way that the resultant
neutrino mass matrix still satisfies the magic symmetry
[125–129] and remains invariant under Z2 symmetry. The
mass matrix M1

TM2
can be rewritten as

M1
TM2

=

a a b

a b + d a − d

b a − d a + d

0
BB@

1
CCA ≡ aD + c S 13ð Þ + dΔ ,

ð43Þ

where

D =

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA, S 13ð Þ =

0 0 1

0 1 0

1 0 0

0
BB@

1
CCA, Δ =

0 0 0

0 1 −1

0 −1 1

0
BB@

1
CCA,

ð44Þ

and a, c, d are arbitrary parameters with b = c + a.The S3 sym-
metry of the neutrino mass matrix is broken, and the resultant
neutrino mass matrix still satisfies S3 invariant constraints

Mνii
−Mν j j

=Mνkj
−Mνki

 with i ≠ j ≠ k: ð45Þ

This leads to a trimaximal eigenvector for the resultant
neutrino mass matrix. For example, a typical form of M1

TM2

neutrino mass matrix is given by

M1
TM2

=

0:004406 − 0:005578 i 0:004406 − 0:005578 i 0:002587 + 0:006938 i

0:004406 − 0:005578 i −0:003415 + 0:027066 i 0:010408 − 0:025705 i

0:002587 + 0:006938 i 0:010408 − 0:025705 i −0:001597 + 0:014550 i

0
BB@

1
CCA:

ð46Þ

In this analysis, we take the charged lepton mass matrix to
be diagonal. If a horizontal symmetry exists, it must, simulta-
neously, be a symmetry of the neutrinos as well as the charged
leptons before the gauge symmetry breaking. After the symme-
try breaking when the fermions acquire nonzero masses, the
neutrino sector and the charged lepton sector should be gov-
erned by different subgroups of the symmetry group in order
to have nonzero mixing. Here, we consider S3 to be the residual
symmetry in the neutrino sector and Z3 symmetry as the resid-
ual symmetry in the charged lepton sector which yields nonde-
generate diagonal charged lepton mass matrix [130].

Similarly, other viable textures in Eqs. (20)–(22) can,
also, be decomposed into the democratic S3 invariant part
and the symmetry breaking part. The phenomenologically
viable mass matrices in Eqs. (20)–(22) are related as follows
by S3 permutation symmetry:

S 123ð ÞM1
TM2

S 123ð ÞT =M4
TM2

, S 132ð ÞM1
TM2

S 132ð ÞT

=M5
TM2

, S 12ð ÞM1
TM2

S 12ð ÞT =M3
TM2

,

S 13ð ÞM1
TM2

S 13ð ÞT =M6
TM2

, S 23ð ÞM1
TM2

S 23ð ÞT =M2
TM2

: ð47Þ

4. TM1 Mixing and One Texture Equality

The neutrino mixing matrix with first column identical to
TBM can be parametrized [60–67] as
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UTM1
=

ffiffiffi
2
3

r
cos θffiffiffi

3
p sin θffiffiffi

3
p

−
1ffiffiffi
6

p cos θffiffiffi
3

p +
eiϕ sin θffiffiffi

2
p sin θffiffiffi

3
p −

eiϕ cos θffiffiffi
2

p

−
1ffiffiffi
6

p cos θffiffiffi
3

p −
eiϕ sin θffiffiffi

2
p eiϕ cos θffiffiffi

2
p +

sin θffiffiffi
3

p

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð48Þ

and the corresponding neutrino mass matrix is given by

MTM1
= PlUTM1

PνM
diag
ν PT

νU
T
TM1

PT
l : ð49Þ

The most general neutrino mass matrix with TM1 mix-
ing can be written as

MTM1
=

a 2b 2c

2b 4b + d a − b − c − d

2c a − b − c − d 4c + d

0
BB@

1
CCA: ð50Þ

The mass matrixMTM1
is invariant under the transforma-

tion GT
1MTM1

G1 =MTM1
where G1 =UTM1

diag ð1,−1,−1Þ
U†

TM1
is the generator of Z2 symmetry. This along with equal-

ity condition restricts the three unphysical phase angles to ϕe
= ϕμ = ϕτ ≡ ϕl.

All possible textures of neutrino mass matrices with TM1
mixing and one texture equality are given by

M1
TM1

=

2b 2b 2c

2b 4b + d b − c − d

2c b − c − d 4c + d

0
BBB@

1
CCCA,

M2
TM1

=

2c 2b 2c

2b 4b + d −b + c − d

2c −b + c − d 4c + d

0
BBB@

1
CCCA,

M3
TM1

=

a 2b 2c

2b 2b a + b − c

2c a + b − c 4c − 2b

0
BBB@

1
CCCA,

M5
TM1

=

a 2b 2c

2b 4b − 2c a − b + c

2c a − b + c 2c

0
BBB@

1
CCCA,

M4
TM1

=

a 2b 2c

2b
1
2

a + 3b − cð Þ 1
2

a + 3b − cð Þ

2c
1
2

a + 3b − cð Þ 1
2

a − 5b + 7cð Þ

0
BBBBB@

1
CCCCCA,

M6
TM1

=

a 2b 2c

2b
1
2

a + 7b − 5cð Þ 1
2

a − b + 3cð Þ

2c
1
2

a − b + 3cð Þ 1
2

a − b + 3cð Þ

0
BBBBB@

1
CCCCCA,

M7
TM1

=

a 2b 2c

2b 3b − c a

2c a 3c − b

0
BB@

1
CCA,

M8
TM1

=

a 2b 2c

2b 2c a + 3b − 3c

2c a + 3b − 3c 6c − 4b

0
BBB@

1
CCCA,

M9
TM1

=

a 2b 2c

2b 6b − 4c a − 3b + 3c

2c a − 3b + 3c 2b

0
BBB@

1
CCCA,

M10
TM1

=

a 2b 2c

2b a 3b − c

2c 3b − c a − 4b + 4c

0
BBB@

1
CCCA,

M11
TM1

=

a 2b 2c

2b a + 4b − 4c 3c − b

2c 3c − b a

0
BBB@

1
CCCA,

M12
TM1

=M13
TM1

=

a 2b 2b

2b 4b + d a − 2b − d

2b a − 2b − d 4b + d

0
BB@

1
CCA,

M14
TM1

=

a 2b 2c

2b a + b − c 2b

2c 2b a − 3b + 3c

0
BBB@

1
CCCA,

M15
TM1

=

a 2b 2c

2b a + 3b − 3c 2c

2c 2c a − b + c

0
BBB@

1
CCCA,

ð51Þ

where textures represented in each equation are related
by μ-τ permutation symmetry. The neutrino mixing angles
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for TM1 mixing in terms of parameters θ and ϕ are [72–74]
given by

sin2θ13 =
1
3
sin2θ, sin2θ12 = 1 −

2
3 − sin2θ

,

sin2θ23 =
1
2

1 +
ffiffiffi
6

p
sin 2θ cos ϕ
3 − sin2θ

 !
:

ð52Þ

For TM1 mixing, the Jarlskog rephasing invariant
[72–74] is

JCP =
1

6
ffiffiffi
6

p sin 2θ sin ϕ, ð53Þ

and the Dirac-type CP-violating phase [72–74] is given by

tan δ =
cos 2θ + 5
5 cos 2θ + 1

tan ϕ: ð54Þ

The effective Majorana mass for TM1 mixing can be cal-
culated by using Eqs. (11) and (48) as

Meej j = 1
3
2m1 +m2 cos2θe2iα +m3 sin2θe2iβ
��� ���, ð55Þ

and the effective neutrino mass for TM1 by using Eqs.(12)
and (48) is given by

Table 5: Numerical predictions for viable textures having one equality inMν with TM1 mixing at 3σ C.L. (only neutrino oscillation data are
incorporated).

Texture Ordering mlowest (eV) Meej j (eV) ∑ (eV) mβ δ∘ β∘

M1
TM1 NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 63-125 ⊕ 235-297

21-65 ⊕ 116-159

⊕ 202-244 ⊕ 296-339

M2
TM1 NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 64-125 ⊕ 235-296

26-68 ⊕ 112-154

⊕ 206-249 ⊕ 291-334

M3
TM1

NO 0.046-0.67 0.027-0.55 0.16-2.0 0.002-0.003 64-122 ⊕ 235-297
0-43 ⊕ 137-222

⊕ 318-360

IO 0.05-0.42 0.06-0.41 0.21-1.25 0.077-0.42 67-125 ⊕ 235-294
0-44 ⊕ 136-227

⊕ 314-360

M4
TM1 IO 0.007-0.016 0.017-0.051 0.107-0.121 0.048-0.052 65-124 ⊕ 235-295 0-324

M5
TM1

NO 0.04-0.92 0.02-0.88 0.15-2.8 0.045-0.92 64-124 ⊕ 235-296
0-36 ⊕ 143-218

⊕ 322-360

IO 0.062-0.36 0.064-0.29 0.22-1.1 0.079-0.37 66-125 ⊕ 236-293
0-35 ⊕ 144-213

⊕ 324-360

M6
TM1 IO 0.008-0.017 0.017-0.052 0.108-0.123 0.049-0.524 65-125 ⊕ 234-294 0-324

M7
TM1 NO 0.085-0.72 0.032-0.7 0.26-2.2 0.085-0.72 63-125 ⊕ 236-297

0-37 ⊕ 143-218

⊕ 323-360

M8
TM1

NO 0.03-0.32 0.02-0.31 0.118-0.98 0.031-0.32 63-124 ⊕ 236-297
0-53 ⊕ 128-235

⊕ 308-360

IO 0.014-0.23 0.03-0.22 0.116-0.7 0.05-0.24 66-125 ⊕ 235-294
0-65 ⊕ 115-244

⊕ 296-360

M9
TM1

NO 0.025-0.31 0.018-0.19 0.107-0.93 0.025-0.32 67-125 ⊕ 235-297
0-50 ⊕ 130-224

⊕ 312-360

IO 0.0148-0.33 0.028-0.26 0.117-1.0 0.05-0.33 66-125 ⊕ 235-294
0-56 ⊕ 124-236

⊕ 306-360

M10
TM1

NO 0.034-0.7 0.014-0.65 0.13-2.1 0.034-0.7 63-124 ⊕ 237-297 43-141 ⊕ 221-314

IO 0.028-0.4 0.021-0.27 0.14-1.2 0.05-0.41 66-125 ⊕ 235-295 34-145 ⊕ 215-325

M11
TM1

NO 0.031-0.3 0.011-0.27 0.122-0.86 0.032-0.29 65-125 ⊕ 235−295 47-128 ⊕ 229-313

IO 0.03-0.51 0.023-0.48 0.14-1.52 0.05-0.51 65-124 ⊕ 236-295 44-136 ⊕ 224-316

M14
TM1

NO 0.04-0.48 0.02-0.36 0.16-1.43 0.04-0.48 63-123 ⊕ 237-297 47-132 ⊕ 230-314

IO 0.06-0.4 0.028-0.38 0.21-1.2 0.07-0.41 65-126 ⊕ 234-294 43-135 ⊕ 225-316

M15
TM1

NO 0.04-0.55 0.01-0.5 0.15-1.7 0.04-0.55 64-123 ⊕ 236-295 53-125 ⊕ 237-307

IO 0.06-0.52 0.03-0.5 0.22-1.6 0.07-0.52 65-125 ⊕ 235-295 54-126 ⊕ 234-305
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mβ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
2m2

1 +m2
2 cos2θ +m2

3 sin2θ
��r

: ð56Þ

The existence of one equality between the elements of
the neutrino mass matrix implies

MTM1 abð Þ −MTM1 cdð Þ = 0, ð57Þ

which yields the following complex equation:

〠 QVaiVbi −VciVdið Þmi = 0, ð58Þ

where Q = eiðϕa+ϕb−ðϕc+ϕdÞÞ. The above equation can be rewrit-
ten as

m1A1 +m2A2e
2iα +m3A3e

2iβ = 0, ð59Þ

where

Ai = QUaiUbi −UciUdið Þ, ð60Þ

with ði = 1, 2, 3Þ and a, b can take values e, μ, and τ. Solving
the real and imaginary parts of Eq. (59) simultaneously, we
obtain the following two mass ratios:

These mass ratios can be used to calculate the ratio of
mass squared differences (Rν) which is given by

Rν ≡
Δm2

21
Δm2

31
=
ζ2 − 1
ξ2 − 1

 Rν ≡
Δm2

21
Δm2

23
=

ζ2 − 1
ζ2 − ξ2

, ð62Þ

for NO and IO, respectively. Since, Δm2
21 and Δm2

31ðΔm2
23Þ

for NO (IO) are experimentally known, the parameter Rν
should lie within its experimentally allowed range for a tex-
ture equality to be compatible with the current neutrino
oscillation data. The neutrino mass eigenvalues can be calcu-
lated by using the relations

m2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + Δm2
21

q
,m3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + Δm2
31

q
,

m2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + Δm2
21

q
,m3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + Δm2
21 − Δm2

23

q
,

ð63Þ

for NO and IO, respectively.
For numerical analysis, we follow the same procedure as

in TM2 mixing except that the parameters β and m1 are gen-
erated randomly within their allowed ranges. The mass
eigenvalues are calculated by using Eq. (63), and texture
equality is imposed by requiring the parameter Rν in Eq.
(62) to lie within its 3σ experimental range.

The numerical predictions for unknown parameters are
summarized in Table 5 (where constrains only from

Table 6: Numerical predictions for viable textures having one equality in Mν with TM1 mixing at 3σ C.L. (cosmological and neutrinoless
double beta decay bounds along with neutrino oscillation data are incorporated).

Texture Ordering mlowest (eV) Meej j (eV) ∑ (eV) mβ δ∘ β∘

M1
TM1 NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012

64-125 ⊕ 235-296
21-65 ⊕ 116-158

⊕ 201-245 ⊕ 295-339

M2
TM1 NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012

64-125 ⊕ 235-296
26-68 ⊕ 112-154

⊕ 206-249 ⊕ 291-334

M4
TM1 IO 0.007-0.016 0.017-0.051 0.107-0.12 0.048-0.052 66-125 ⊕ 235-295 0-322

M6
TM1 IO 0.008-0.017 0.017-0.051 0.108-0.12 0.049-0.052 65-125 ⊕ 235-295 0-320

M8
TM1 IO 0.014-0.017 0.038-0.049 0.116-0.12 0.05-0.052 84-124 ⊕ 236-273

11-53 ⊕ 125-170

⊕ 193-235 ⊕ 307-347

M9
TM1

NO 0.025-0.031 0.018-0.031 0.107-0.12 0.026-0.32 112-125 ⊕ 235-247
1-29 ⊕ 152-208

⊕ 332-359

IO 0.0148-0.0167 0.037-0.047 0.117-0.12 0.05-0.052 67-95 ⊕ 269-293
16-44 ⊕ 135-168

⊕ 191-225 ⊕ 316-348

ζ ≡
m2
m1

=
Re A1ð Þ Im A3ð Þ − Re A3ð Þ Im A1ð Þð Þ cos 2β + Re A1ð Þ Re A3ð Þ + Im A1ð Þ Im A3ð Þð Þ sin 2β

Re A3ð Þ Im A2ð Þ − Re A2ð Þ Im A3ð Þð Þ cos 2 α − βð Þ + Re A2ð Þ Re A3ð Þ + Im A2ð Þ Im A3ð Þð Þ sin 2 α − βð Þ ,

ξ ≡
m3
m1

= Re A2ð Þ Im A1ð Þ − Re A1ð Þ Im A2ð Þð Þ cos 2α − Re A1ð Þ Re A2ð Þ + Im A1ð Þ Im A2ð Þð Þ sin 2α
Re A3ð Þ Im A2ð Þ − Re A2ð Þ Im A3ð Þð Þ cos 2 α − βð Þ + Re A2ð Þ Re A3ð Þ + Im A2ð Þ Im A3ð Þð Þ sin 2 α − βð Þ :

ð61Þ
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neutrino oscillation data are used) and Table 6 (where the
constrains from cosmological and neutrinoless double beta
decay bounds along with neutrino oscillation data are used).
The allowed ranges of the parameter θ12 are (34:24∘-34:42∘)
for all viable textures. The parameter θ is constrained to lie
in the ranges (14:3∘-15:7∘), whereas JCP lies in the ranges ±
ð0:026 − 0:036Þ for all viable textures. The Majorana phase
α varies in the range (0-360∘) for all viable textures with
NO only. Correlation plots among various neutrino oscillat-
ing parameters are shown in Figures 3 and 4 for NO and IO,
respectively. jMeej strongly depends on the Majorana phase
α as shown in Figure 3(a) for NO and Figure 4(b) for IO.
As shown in Figure 3(d), θ12 is inversely proportional to
θ13 which is the classical prediction of TM1 mixing. The
Dirac-type CP-violating phase is constrained to lie in the
regions around 90° and 270° which is consistent with the recent
observations in the long-baseline neutrino oscillation experi-
ments such as T2K and NOvA [2, 3] which shows a preference
for the Dirac-type CP-violating phase δ to lie around δ ∼ 270∘.
The main implications for textures having TM1 mixing with
one texture equality are summarized in the following:

(i) For IO, texturesM1
TM1

, M2
TM1

, and M7
TM1

are not
consistent with the neutrino oscillation data at 3σ
C.L.

(ii) For NO, textures M4
TM1

andM6
TM1

predict large θ13
and small θ12 and are, hence, experimentally ruled
out at 3σ C.L.

(iii) TexturesM12
TM1

andM13
TM1

predict a vanishing reac-
tor mixing angle and degenerate mass eigenvalues
and are, hence, not viable for both mass orderings

(iv) Textures M3
TM1

, M5
TM1

, M10
TM1

, M14
TM1

, M15
TM1

, and

M11
TM1

for both mass orderings and textures M7
TM1

,

M8
TM1

for NO predict large ∑mi and are, hence,
not viable with experimental data when cosmologi-
cal and neutrinoless double beta decay bounds along
with neutrino oscillation data are incorporated

(v) All viable textures cannot have zero lowest mass
eigenvalue for both mass orderings

(vi) The atmospheric mixing angle θ23 is maximal for
δ ∼ π/2 or 3π/2 for all viable textures

(vii) The parameter jMeej is found to be bounded from
below for all viable textures except M1

TM1
and

M2
TM1

with NO

𝜃
° 12

𝜃°13

34.42

34.36

34.3

34.24
8.2 8.4 8.6 8.8 9

0.1

0.11

0.12

0.024 0.028 0.032 

𝛴
m

 (e
V

)
M1 (eV)

0.008

0.006

0.004

0.002

0
90 180 2700

𝛼°

360

|M
ee

| (
eV

)
0.04

0.02

0

–0.02

–0.04
90 180 2700

𝛿°

360

J C
P

120 180 24060 300

𝜃
° 23

54

49

44

39

𝛿°

|M
ee

| (
eV

)

0.008

0.003 0.004 0.005 0.006 0.007

0.004

0

M1 (eV)

(a) (b) (c)

(d) (f) (f)

Figure 3: Correlation plots among various parameters for textures (a) M1
TM1

, (b)M1
TM1

, (c) M2
TM1

, (d) M2
TM1

, (e) M2
TM1

, and (f) M9
TM1

with
NO.

12 Advances in High Energy Physics



(viii) The parameter mβ is found to lie within the cur-
rent experimental range for all viable textures

(ix) The Dirac-type CP-violating phase δ is directly
proportional to the parameter ϕ for all viable
textures

5. Summary

We studied the phenomenological implications of one tex-
ture equality in the neutrino mass matrix with TM1 or T
M2 mixing. The presence of one texture equality in Mν with
TM1 or TM2 as the mixing matrix reduces the number of
free parameters significantly and, hence, leads to very pre-
dictive neutrino mass matrices. Out of total fifteen possible
textures of Mν, thirteen textures are phenomenologically
allowed with TM1 mixing, and only six textures are allowed
with TM2 mixing in the light of current neutrino oscillation
data at 3σ C.L. However, the number of viable textures
reduced to six for TM1 mixing if the constrains from cos-
mology and neutrinoless double beta decay experiments
along with neutrino oscillation data are used. Since, the T
M2 mixing predicts a value of θ12 away from its best fit value,
TM1 mixing is phenomenologically more appealing. In this
analysis, we have obtained interesting predictions for
unknown parameters such as the Dirac- and Majorana-
type CP-violating phases, effective Majorana neutrino mass,
effective neutrino mass, Jarlskog rephasing invariant, neu-
trino mass scale, and the sum of neutrino masses. For TM1

mixing, the Dirac-type CP-violating phase ðδÞ is restricted
to the regions around π/2 and 3π/2, the atmospheric mixing
angle ðθ23Þ is maximal for δ ∼ π/2 or 3π/2, and the lowest
neutrino mass eigenvalue cannot be zero for all viable tex-
tures. For TM2 mixing, the CP-violating phases δ and β
are strongly correlated, θ23 is below (above) maximal for tex-
tures M3

TM2
ðM5

TM2
Þ and M5

TM2
ðM3

TM2
Þ with NO and IO,

respectively, and the lowest mass eigenvalue cannot be zero
for all viable textures. ForMTM2

mass matrices with one tex-
ture equality, the residual S3 symmetry is broken, and the
resulting neutrino mass matrix is invariant under Z2 64.
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