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We consider canonical/Weyl-Moyal type noncommutative (NC) spaces with rectilinear coordinates. Motivated by the analogy of
the formalism of the quantum mechanical harmonic oscillator problem in quantum phase-space with that of the canonical-type
NC 2-D space, and noting that the square of length in the latter case is analogous to the Hamiltonian in the former case, we arrive
at the conclusion that the length and area are quantized in such an NC space, if the area is expressed entirely in terms of length.
We extend our analysis to the 3-D case and formulate a ladder operator approach to the quantization of length in 3-D space.
However, our method does not lend itself to the quantization of spacetime length in 1 + 1 and 2 + 1 Minkowski spacetimes if
the noncommutativity between time and space is considered. If time is taken to commute with spatial coordinates and the
noncommutativity is maintained only among the spatial coordinates in 2 + 1 and 3 + 1 dimensional spacetime, then the
quantization of spatial length is possible in our approach.

1. Introduction

Noncommutative (NC) spacetime, which was first intro-
duced by Snyder [1] in an attempt to regulate the diver-
gences in quantum field theories, has also been introduced
in various contexts [2–7], and the literature in this area is
quite replete. To name a few, field theories [8–10], gravity
theories [11–15], and quantum mechanics [16–24] have all
been considered with the background spacetime being non-
commutative. In another development, the spectral mani-
folds in NC geometry are shown to exhibit the geometric
analogue of Heisenberg commutation relation involving
the Dirac operator and the Feynman slash operator for real
scalar fields, leading to the quantization of volume [25]. In
[15], it was shown from the pure geometrical point of view
that the NC-Minkowski spacetime parametrized with spher-
ical or cylindrical coordinates has nontrivial NC corrections
to curvature tensors and curvature scalar.

Noncommutativity of spatial coordinates is related to the
presence of a minimal length in a system. This minimal length
in turn is usually related to the uncertainties in the distance
measurements [3, 22]. Instead of relating the minimal length
with uncertainties, we propose in this work an approach in

which the actual square of the distance L2 = gijðyi − ziÞðyj −
zjÞ between any two points y and z in a commutative flat-
spacetime is promoted as an operator with the introduction

of the canonical/Weyl-Moyal type noncommutativity ½ŷi, ŷ j�
= iθ′ij = ½ẑi, ẑ j� among the coordinate operators. Here, gij is

taken to be a constant diagonal metric of spacetime, and θ′ij
is a constant and real antisymmetric matrix. The operators ŷi

and ẑi may be taken either as the position operators of two par-
ticles or as the operators corresponding to the positions at
which fields are considered. The idea of length as an operator
has already been discussed in the literature in the context of
canonical quantum gravity [26]. We set up an algebra of oper-

ators in such a way that the eigenvalues of the operator L̂
2
can

be raised or lowered. The hint to such an approach is provided
by an analogy of 2-DNC-space operator formalismwith that of
the quantum mechanical harmonic oscillator problem. Taking
x̂i = ŷi − ẑi and assuming that the coordinate operators of dif-
ferent particles commute, i.e., ½ŷi, ẑ j� = 0, we can define the
operator corresponding to the square of the distance as

L̂
2 = gijx̂

ix̂ j, ð1Þ
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with

x̂i, x̂ j
Â Ã

= iθij, ð2Þ

where θij = 2θ′ij. If gij = diag ð1, 1Þ, then the operator L̂
2
in

such a 2-D NC space can be related to the Hamiltonian of an
appropriate harmonic oscillator. One important thing in such
an analogy is the set of ladder operators â−, the lowering oper-

ator, and â+ = â†−, the raising operator. If X̂ =
x̂1

x̂2

 !
and Â

=
â−

â+

 !
, then the ladder operators have the following three

important relations:

â−, â+½ � = 1, ð3Þ

L̂
2, â∓

h i
= ∓λâ∓, ð4Þ

Â
†
Â = γX̂

†
X̂ = γL̂

2, ð5Þ

where λ and γ are constants. If Â =UX̂ denotes the transforma-
tion from X̂ to Â, then Equation (5) implies thatU†U = γ. With
θ12 = −θ21 = θ in 2-D, we can define the ladder operators as

â∓ =
e±iδffiffiffiffiffi
2θ

p x̂1 ± ix̂2
À Á

, ð6Þ

that satisfy Equations (3)–(5) with λ = 2θ and γ = 1/θ. Here, δ is
an arbitrary real number. The square of the length in this case is
given by

L̂
2 = 2θ â+â− +

1
2

� �
: ð7Þ

In analogy with the quantum harmonic oscillator problem,
it is clear that on the eigenstate jni of â+â−,

L̂
2
nj i = 2θ n + 1/2ð Þ½ � nj i, ð8Þ

with the minimum eigenvalue being θ. The operator â+ plays

the role of a raising operation, i.e., the eigenvalues of L̂
2
on

the states jni and â+jni are 2θ apart. The operator â− does
the lowering operation. The angle δ in Equation (6) corre-
sponds to the orientation of the line segment that would con-
nect the points y and z in the commutative 2-D space.

On such admissible eigenstates, the square root of Equa-
tion (7) is also quantized. In 2-D Euclidean space, the com-
mutative analogue of Equation (1) could also mean the area
of a square of side L, in which case the quantization of Equa-
tion (7) can also imply the quantization of area. In [25], it
has been shown in the context of spectral manifolds in NC
geometry that the area of a 2-D manifold is quantized. Here,
we arrive at the same result in the case of 2-D plane with
coordinate noncommutativity. In the following, we attempt
to generalize this result to other NC spaces.

Before proceeding, note that the commutator Equation
(4) is essential to construct a ladder of states which are all

eigenstates of L̂
2
operator, and that the canonical commuta-

tor Equation (2) (or Equation (3)) can be used to reduce the
degree of any polynomial P̂ðx̂Þ by considering the commuta-
tor ½P̂ðx̂Þ, x̂i�. Equation (4) is an example for such reduction
of the degree of a polynomial. In this context, it is worth
remarking that a generalized coordinate noncommutativity,
which would involve a nonconstant θij in Equation (2), will

pose problem to construct a ladder of eigenstates of L̂
2
using

Equation (4). So, such generalized coordinate commutator
structure (see for example [4]) is not considered in this work
(The authors thank the referee for raising the issue of gener-
alized coordinate commutator structure.).

2. A Generalization

It turns out that Equations (3)–(5) play a crucial role in the
generalization of the idea of length quantization to other
spaces with constant and symmetric metric gij. In an N
-dimensional space, we define the lowering operator and
the operator corresponding to square of length, respectively,
as

â− = αi x̂
i, L̂2 = gijx̂

ix̂ j, i = 1, 2,⋯N , ð9Þ

where Einstein’s summation convention is implied, and αi
values are complex constants to be determined. Substitution
of Equation (9) in Equation (4) gives the relation

2igijθ
jkαk = −λαi: ð10Þ

Also, Equations (3) and (10) lead to

αiα∗i = 2/λ, ð11Þ

where α∗i is the complex conjugate of αi. In the following, we
solve Equations (10) and (11) for the cases of 3-D space, 1
+ 1 dimensional spacetime, and 2 + 1 dimensional space-
time and analyze the consequences.

2.1. The Case of 3-D. We assume that gij = diag ð1, 1, 1Þ and
that θ12 = θ13 = θ23 = θ, in which case the set of three equa-
tions in Equation (10) have nontrivial solution only if the
secular determinant

λ 2iθ 2iθ
−2iθ λ 2iθ
−2iθ −2iθ λ

��������

��������
= 0, ð12Þ

which leads to the nontrivial value λ = ±2
ffiffiffi
3

p
θ. The third

trivial solution λ = 0 leads to a set of αi values such that â+
∝ â−, thereby violating Equation (3). Also, λ = 0 does not
give any length-raising or lowering operation in the theory
(see Equation (4)). Choosing the positive value for λ so that
â− can be identified with a lowering operation and
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substituting it in Equations (10) and (11) gives a set of values
for αi

α1, α2, α3ð Þ = ρσ,−ρσ∗, ρð Þ, ð13Þ

where ρ = eiδ1 /
ffiffiffiffiffiffiffiffiffiffiffi
3θ

ffiffiffi
3

pp
and σ = −eiπ/3, and δ1 is a real con-

stant. Note that jαij = jρj = 1/√ð3θ√3Þ . The lowering opera-
tor can then be expressed as

â− = ρ σx̂1 − σ∗x̂2 + x̂3
Â Ã

: ð14Þ

Since there are three independent operator variables x̂1

, x̂2, and x̂3, we need another operator b̂ in addition to â−
and â+, to define the transformation Â =UX̂ in 3-D and to

make it invertible. But b̂ and its Hermitian conjugate b̂
†

should not be independent of each other, else we would
end up with four independent operator variables. We define
in the following way:

b̂ = βi x̂
i, ð15Þ

where βi values are complex numbers. Since b̂ is defined as a
linear and homogeneous function of x̂i, its Hermitian conju-

gate b̂
†
is also linear and homogeneous in x̂i, and so β∗

i = ββi
, where β is such that jβj = 1 since jβ∗

i j = jβij. If Â
† = ðâ+,

â−, b̂
†Þ and X̂

† = ðx̂1, x̂2, x̂3Þ, then the analogue of Equation
(5) is written as

L̂
2 = X̂

†
gX̂ = 1

γ
Â
†
gÂ = 1

γ
X̂
†
U†gUX̂, ð16Þ

where g is the matrix form of the metric tensor. The above

L̂
2
can further be expressed as

L̂
2 = x̂1
À Á2 + x̂2

À Á2 + x̂3
À Á2 = 1

γ
2â+â− + b̂

†
b̂ + 1

� �
ð17Þ

upon the condition that U†gU = γg. Using the expressions
for â−, â+, and b̂ in terms of x̂i as in Equations (9) and
(15), we can get the elements of U in terms of αi, α

∗
i , and

βi from which the condition U†gU = γg in indicial form is
expressed as

α∗i αj + αiα
∗
j + β∗

i βj = γgij: ð18Þ

For all the values i = j, the above condition gives jβjj as

βj

���
��� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ − 2 ρj j2À Áq

: ð19Þ

For i = 1 and j = 2 and 3 we can, respectively, show that

β2 = −
1
β∗
1

α∗1α2 + α1α
∗
2ð Þ, β3 = −

1
β∗
1

α∗1α3 + α1α
∗
3ð Þ, ð20Þ

which in general leads to β∗
i = βiðβ∗

1 /β1Þ. Calculation of j

β∗
1β2j using Equations (20), (19), and (13) gives γ = 3jρj2 =

1/ð√3 θÞ. Therefore, by writing β1 = jρj eiδ2 , Equation (20)
completely determines β2 and β3 in terms of δ2 and jρj

β1, β2, β3ð Þ = ρj jeiδ2 ,− ρj jeiδ2 , ρj jeiδ2
� �

: ð21Þ

Then the only free parameters in the theory would be δ1
and δ2. These two parameters would correspond to the ori-
entation of the line segment connecting the points y and z in
the physical 3-D commutative space.

Note that the explicit values in Equation (13) of αi and βi
values have the following properties:

αiα
i = 0, ð22Þ

θijβj = 0, ð23Þ

αiβ
i = α∗i β

i = 0: ð24Þ
Equation (22) can also be inferred from the ½â−, â−� = 0.

Equation (24) leads to ½â−, b̂� = ½â+, b̂� = 0. In fact, Equation
(23) leads to ½x̂i, b̂� = 0, and thus b̂ commutes with all the
operators of the form F̂ðx̂Þ in the theory. In other words,
the states characterized by any index corresponding to b̂
are unaffected by other operators of the form F̂ðx̂Þ.

Using Equation (4), it is easy to show that ½L̂2, â+â−� = 0.
So it is possible to construct a complete set of simultaneous

eigenstates of L̂
2
, â+â−, and b̂

†
b̂.

Like in the case of quantum harmonic oscillator prob-
lem, the relations of Equations (3) and (4) ensure that the
eigenvalues of â+â− should be nonnegative integers (since

the eigenvalues of b̂
†
b̂ will also turn out to be nonnegative),

and the eigenstate itself may be denoted by jni. Using the
commutator

x̂i, â+â−
Â Ã

= λ

2 αi∗â− − αiâ†
À Á

, ð25Þ

we can show that

â+â− x̂i nj iÀ Á
= −

λ

2 αi∗
ffiffiffi
n

p
n − 1j i − αi

ffiffiffiffiffiffiffiffiffiffi
n + 1

p
n + 1j i

� �
+ n x̂i nj iÀ Á

:

ð26Þ

The above relation suggests that the state ðx̂ijniÞ can be
written as

x̂i nj i = χi
nð Þ−1 n − 1j i + χi

nð Þ nj i + χi
nð Þ+1 n + 1j i, ð27Þ

where χi
ðnÞ−1, χi

ðnÞ, and χi
ðnÞ+1 are constants to be determined.

By acting â+â− on Equation (27) and comparing the
result with Equation (26), we have

χi
nð Þ−1 =

λ

2 α
i∗ ffiffiffi

n
p

, χi
nð Þ+1 =

λ

2 α
i
ffiffiffiffiffiffiffiffiffiffi
n + 1

p
: ð28Þ
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Projecting the state Equation (27) onto jni, jn − 1i, and
jn + 1i, respectively, and in those projections comparing
the action of x̂i on the ket vector with its action on the bra
vector leads to

χi∗
nð Þ = χi

nð Þ, χ
i∗
n−1ð Þ+1 = χi

nð Þ−1, χ
i∗
n+1ð Þ−1 = χi

nð Þ+1: ð29Þ

Making use of the commutator ½x̂i, â†� = ðλ/2Þαi∗ in the
calculation of hn + 1ja†x̂ijni, we can show that χi

ðn+1Þ = χi
ðnÞ,

and therefore χi
ðnÞ is independent of n, which we denote by

χi. To be consistent with the relations like âjni = ffiffiffi
n

p jn − 1i
, χi needs to satisfy

χi αi = 0 = χiα∗i , ð30Þ

which is possible if we choose anyone of the following set for
χi:

χi = +χ,−χ,+χð Þor −χ,+χ,−χð Þ, ð31Þ

which gives ðχiÞ2 = χ2 for any particular i, where χ is some real
constant. The values in Equation (31) are motivated by the
values of βi, Equation (21), because both χi and βi have the
same properties with αi (compare Equations (30) and (24)).

If we choose the states ðð1/
ffiffiffiffiffiffiffi
θξin

q
Þx̂ijniÞ to normalize to

1, where i is not summed over and ξin values are dimension-
less constants to be determined, then using Equation (27)
and its Hermitian conjugate, the normalization leads to

ξin

���
��� = 1

θ
χ2 + λ2 ρj j2

4 2n + 1ð Þ
 !

: ð32Þ

We denote the above expression by ξnðχÞ since it is the
same for all i and it depends on χ. Also, using Equations
(24), (28), and (31), it is straightforward to show that

b̂ nj i = βiχ
iÀ Á
nj i = 3 ρj jχeiδ2

� �
nj i, ð33Þ

b̂
†
b̂ nj i = β∗

i χ
iÀ Á

βjχ
j

� �
nj i =

ffiffiffi
3

p
χ2

θ

 !
nj i, ð34Þ

and therefore the states may be properly denoted by jn, χi
instead of jni. Since the operator b̂ commutes with all other
operators, it is not possible to determine χ through the oper-
ator algebra method.

Finally, the eigenvalues of L̂
2
in Equation (17) are

worked out to be

L̂
2
n, χj i = θξn n, χj i = χ2 + θffiffiffi

3
p 2n + 1ð Þ

� �
n, χj i: ð35Þ

Essentially, we have worked out the eigenvalues of L̂
2
in

terms of the eigenvalues corresponding to â+â− and b̂
†
b̂.

Since χ is real because of Equation (29), the minimum value
for χ2 is 0, and therefore we have,

L̂
2
n, 0j i = θξn n, 0j i = θffiffiffi

3
p 2n + 1ð Þ n, 0j i: ð36Þ

In the Euclidean 3-D space, the commutative analogue
of Equation (17) can also be interpreted as the area of a
square of side L in the plane formed by â− and â+, and so
the quantization of Equation (17) implies the quantization
of area with the minimum value being θ/√3 = 2θ′/√3. But
the actual uncertainty relation ðΔy1ÞðΔy2Þ ≥ θ′/2 would
yield the minimum θ′/2 which is lower than 2θ′/√3. So
the minimum value of the quantized area is not violating
the uncertainty principle. If a volume is written as a function
of the side L̂, then the volume is also quantized along the
dimensions of â− and â+.

2.2. 1 + 1 Dimensional Spacetime. If gij = diag ð1,−1Þ and
θ12 = −θ21 = θ, then the relation in Equation (10) leads to
the purely imaginary value for λ = ±2iθ. Also, the substitu-
tion of this value back into Equation (10) implies that α1 =
∓α2, which will contradict Equation (3). Therefore, the
quantization of spacetime length in this approach is not
feasible.

2.3. 2 + 1 Dimensional Spacetime. If we take gij = diag ð1, 1,
−1Þ and θ12 = θ13 = θ23 = θ, then the solution to the secular
equation corresponding to Equation (10) gives only the
purely imaginary number λ = ±2iθ as the nontrivial value.
Putting the value λ = 2iθ in Equation (10) gives no nontrivial
solution to αi, and the value λ = −2iθ results in â† ∝ â, con-
tradicting Equation (3). So, in this case also, our method is
not feasible to quantize the spacetime length. However, if
θ23 = 0, i.e., if the time commutes with the spatial coordi-
nates, then the method outlined in the Introduction can be

used to quantize the spatial part of L̂
2
in a particular rectilin-

ear system of coordinates.

2.4. 3 + 1 Dimensional Spacetime. In this case, if the time is
taken to commute with the spatial coordinates, then the
same method for the 3-D case can be used to quantize the
spatial length in a particular rectilinear system of coordi-
nates. However, if time is assumed to noncommute with
spatial coordinates, it requires a separate elaborate treatment
and it will be published elsewhere.

3. Concluding Remarks

In this work, we have proposed a length operator L̂ in Weyl-
Moyal type noncommutative (NC) spaces and analyzed the
consequences on the quantization of length. By comparing
the operator formalism of 2-D NC space with that of quan-
tum harmonic oscillator problem, we have deduced that the
operator corresponding to the square of length is analogous
to the Hamiltonian of the oscillator, and hence the length
and area are quantized in 2-D NC space. This result is in
conformity with and a special case of the already established
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result in the context of spectral manifolds in NC geometry
[25]. We have also succeeded in showing that the length is
quantized in a 2-D NC subspace of a 3-D NC space. Since
the length quantization is more fundamental, the quantization
of area and volume [25] can be inferred from it for the special
cases in which they directly depend on the length along the 2-
D subspace. But our method does not work for the cases of 1
+ 1 and 2 + 1 spacetime dimensions if the time is taken to
noncommute with the spatial coordinates. This is because
the eigenvalue equation (Equation (10)) which is the result
of the commutator (Equation (4)) gives imaginary eigenvalues

for λ—the quantum of L̂
2
. This essentially implies that the

length is increased or decreased in steps of imaginary values
which is unphysical. When the metric is changed to an Euclid-

ean metric, the quanta of L̂
2
become real.
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