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We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale
and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator
growth in two different toy models. The first one is a MERA-like tensor network built from a random unitary circuit with the
operator size defined using the integrated out-of-time-ordered correlator (OTOC). The second model is an error-correcting
code of perfect tensors, and the operator size is computed using the number of single-site physical operators that realize the

logical operator. In both cases, we observe linear growth.

1. Introduction

In the seminal work by Maldacena et al. [1], it was argued
that in a large N chaotic theory, the OTOC is bounded by
the exponential growth with the Lyapunov exponent A; <2
7t/f. The bound is saturated when the theory admits a grav-
ity dual. This conjecture has been verified in numerous
cases. The bound on chaotic behavior also leaves its mark
on various other measures like the spectral form factor [2],
growth of operator [3, 4], and pole skipping [5, 6].

It has long been speculated that gravity shall emerge
from the entanglement structure, but the precise procedure
remains unclear. One way to build up the geometry is to
consider the entanglement renormalization, which is essen-
tially the radial evolution of the wave function. In some dis-
crete many-body systems, the wave function can be
expressed in terms of a tensor network, which consists of
two types of local operations (disentangler, isometry) that
modify the entanglement structure (see, e.g., [7] for a
review). Originally, this approach with the name of multi-
scale entanglement renormalization ansatz (MERA) was
designed for solving the ground state wave function. It was
later realized [8, 9] that the MERA tensor network bears a
lot of similarities with the AdS space and hence could be

understood as a concrete realization of emergent spacetime.
The discrete MERA was later generalized [10, 11] to the con-
tinuous situation of AdS/CFT (cMERA). Each layer of the
tensor network becomes a codimension-two surface in the
bulk and corresponds to a state in the CFT (surface/state
correspondence). States at different scales are related by uni-
tary radial evolution operators W, which in turn define the
renormalized operators WTOW (as if in the Heisenberg
picture).

It is natural to expect the same chaotic behavior for the
radial evolution as if the latter is viewed as a dynamic pro-
cess. In this sense, the fact that the chaos bound is saturated
in the gravity system makes it an ideal probe for spacetime
geometry. For example, the renormalized operator grows
along the radial direction and shall have the same chaotic
behavior as in the evolution along the time direction. The
chaos bound can then tell whether the wave function corre-
sponds to some bulk geometry. In other words, chaos indi-
cates how information is scrambled under the RG flow and
hence greatly influences the entanglement structure.

The state or wave function in the continuous MERA net-
work follows from the Euclidean path integral defined on the
codimension one surface [12, 13], which is the same path
integral of the boundary CFT (up to a conformal factor).
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Due to conformal symmetry, it is natural to expect the same
dynamics and hence the same chaotic behavior.

However, establishing the measures of chaos along the
renormalization group flow is not a simple task. It is not that
we can remake all the known results by simply replacing the
time coordinate with its radial counterpart. One of the diffi-
culties is that we do not have a clear definition of tempera-
ture for the states generated by entanglement
renormalization. The UV state we consider is the vacuum
and has zero temperature, at which the chaos bound
becomes trivial. Moreover, the radial “time” parameterizing
the entanglement renormalization is ambiguous and obvi-
ously different choices affect the growth. In the presence of
a holographic dual, the radial proper distance or its function
is a good candidate. In general, we may use the energy scale
as in ordinary RG flow.

We get some hints from the recently proposed size-
momentum correspondence [14, 15], which can be applied
to the vacuum case. It was found that the size and complex-
ity of an operator shall grow linearly in time or the circuit
time. The operator in this scenario is evolved along the time
direction with the ordinary Hamiltonian. It is not a renor-
malized operator even though it corresponds to a point par-
ticle in the bulk. Despite the difference in the physical
meaning, we believe the same relation holds up in our sce-
nario. In the rest of the paper, we will focus on the growth
of the size of an operator in the radial direction and then
establish the chaos bound in a gravity theory. We propose
that the size and also the corresponding complexity of an
operator cannot grow faster than the characteristic energy
scale or rather the radial coordinate of the operator. Sup-
porting evidence is found from some toy models of tensor
networks that are decent approximations of discrete AdS
space. We observe linear growth in two types of tensor net-
works, one built from random unitary circuit [16, 17] and
the other being the famous error-correcting code made of
perfect tensors [18].

The rest of the paper goes as follows. In Section 2, we
review the idea of size-momentum correspondence and
explain its implications in our scenario. In Section 3, we
use a simple toy model of a random unitary circuit to dem-
onstrate how our idea works. More precisely, we use the cir-
cuit to turn an unentangled IR state into a UV state that
emulates the ground state of a holographic CFT in the sense
that the Ryu-Takayanagi (RT) formula is reproduced. We
then show that the integrated OTOC or equivalently opera-
tor size grows linearly with the circuit time or rather the
radial coordinate. In Section 4, we investigate the operator
growth in the pentagon error-correcting code based on per-
fect tensor and show that the size of a renormalized operator
does grow linearly. Finally, in Section 5, we conclude and
discuss about future directions.

2. Size-Momentum Correspondence

It was conjectured that [14, 15] the size of an operator
corresponds to the radial momentum of a particle in the
bulk, and hence, the dynamics of the latter is governed
by the evolution of the size or equivalently the complexity,
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whose growth rate with respect to the circuit time in turn
gives the size. The readers should be aware that there are
other definitions of size. In the SYK model, it measures
the number of fermions needed to composite the operator
[3, 4]. We believe all these definitions as in the case of
complexity shall agree for practical purpose but their pre-
cise connection remains unclear. We will review the basic
results in [15] and offer our new observations from a dif-
ferent perspective. In this case, the size s is defined in the
following way:

s(r) = (1)

T

where & is the complexity and 7 is the circuit time. When
a gravity dual is assumed, 7 is simply identified as the
radial proper distance p in the AdS,,, space

ds? = — cosh’pdt® + dp? + sinh’pd(Q% |,  p € [0,+00), t € (~00,+00).

(2)
It was then argued that s shall go as
s(p) ~ €. (3)

The holographic dual of the operator is an infalling
particle whose geodesic gives the radial momentum:

2nP = % =s(p) ~t. (4)

Now, we will make a bold conjecture that such a rela-
tion (3) is understood as the saturation of the chaos
bound saturated in gravity system. In this sense, the time
evolution of size is a consequence that the particle cannot
move faster than light.

The operator growth was known as a measure of chaos
[3, 4], and a bound similar to the case of OTOC was estab-
lished for finite temperature. At first glance, our proposal
appears to be quite different. To see the connection, we first
note that the near horizon region of a black hole (BH) can
always rewrite in the Rindler coordinate, in which the BH
time 7 is related to the time ¢ of a vacuum space as

6(271//3)? ~t. (5)

In other words, we recover the well-known results of
chaos bound as long as the size grows linearly with ¢ in a
vacuum state.

The reader shall be aware that an operator in the size-
momentum correspondence is still evolved by the Hamilto-
nian in the time direction. On the other hand, the fact that
its holographic dual is a local object makes its very tempting
to think that a renormalized operator, which in the tensor
network is acting on a bulk site will have the same growth
in the radial direction.

For later convenience, we replace the radial proper dis-
tance by the characteristic length scale z (in pure AdS, p ~
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log z), which is simply the radial coordinate in the Poincare
patch

A2 —df? + dx°

ds? = 5
z

(6)

It also measures the scope of influence of the renorma-
lized operator, which is associated with a causal diamond
with a spherical RT surface of radius z. Moreover, we note
that from the definition of (1), the size and complexity share
the same behavior of growth. As a result, we will henceforth
take them as interchangeable and sometimes loosely refer to
their behavior as growth of operator. The bound on chaos
which then implies the size or complexity of a renormalized
operator shall grow at most linearly in z.

3. Random Unitary Circuit as a Discrete
AdS Space

Now, we would like to study the operator growth in some
specific models. Ideally, it would be nice to work in the
actual AdS/CFT setup, but now, we have to settle for some
discrete toy models. The goal is to study the growth of a
renormalized operator on a tensor network that serves as a
good approximation of a spatial slice of the AdS; space.
For starters, let us be clear about the definition of the renor-
malized operator. In the MERA tensor work (see Figure 1),
two types of local unitary operations (gates) are applied to
the state. A disentangler removes the local entanglement
and an isometry performs coarse graining. Eventually, all
the spatial entanglements are removed. The collection of
all these gates is composed of a circuit, which provides a
map W(t,, 7,) between Hilbert spaces at different scales.
So a simple IR operator O can be evolved radially to UV as
WTOW (for simplicity, we denote the map from IR to UV
as W), which becomes in general a complicated nonlocal
operator as in the time-like evolution.

There are various attempts to simulate the discrete AdS
space using tensor networks. However, we prefer to keep
the size of Hilbert space fixed at each step of the RG flow,
in agreement with the surface/state correspondence. There-
fore, we first study a toy model built from random unitary
circuit and get back to the pentagon code in the next section.

Recently, people [17] have studied the chaotic behavior
of the so-called integrated OTOC, which is essentially the
size of an operator evolved in a random unitary circuit con-
sisting of two types of quantum gates (SWAP, CNOT) with
certain probability. A SWAP gate exchanges the states of the
two qubits next to each other. What we are going to do is to
replace their CNOT gate by an Eadd gate that works as the
inverse of disentangler. The reason for the inverse is that
in our case the circuit goes from IR to UV. As we shall see,
this minor change gives a completely different circuit that
emulates a MERA network or discrete AdS space. For our
convenience, we would like to make the circuit time ¢ corre-
spond to the radial z coordinate. It should be noted that the
size of an operator in its definition (1) depends on the choice
of circuit time. But here, the size is taken as a physical quan-

tity and is computed in a different way. Consequently, our
choice of circuit time has no effect on the size. We will com-
pute the integrated OTOC (taken as the size) and show that
it grows linearly with the circuit time t. To make sure that
the circuit constructed in this way does look like AdS space,
we also compute the entanglement entropy of a single inter-
val on the boundary and find that it has the right logarithmic
behavior as indicated by RT formula.

3.1. OTOC. As in [17], we consider a 1d lattice of N qubits.
We start with an IR state with no spatial entanglement, or
more precisely a state with all qubits being 0 and invert the
RG flow towards UV. Physically, the “time” evolution of
the circuit represents a renormalization group flow from
IR to UV. At each time slice, unitary gates are applied with
some fixed probability. As in the MERA circuit, we need
two types of gates in the circuit: the disentangler and the
isometry.

Now, the claim is that a SWAP gate, which switches the
states of two adjacent qubits, works almost as good as coarse
graining (isometry) (strictly speaking, the argument below is
only valid in a state with all entanglements being bipartite,
i.e.,, taking the form of Bell pairs; however, for the study of
entanglement renormalization, this picture is actually a
decent approximation [19]) or rather its inverse. In the
MERA network, coarse graining brings together qubits that
are entangled but far apart, and eventually, such entangle-
ment is removed by the disentangler. Following [17], we
divide all the ordered pairs into two groups in the forms of
(2m,2m+ 1) and (2m —1,2m) (m being positive integers),
respectively. The SWAP gates act on two group alternately.
A circuit swaps (2m, 2m + 1) pairs at odd steps and (2m —
1,2m) pairs at even steps (or the other way around). Such
a particular arrangement guarantees that entangled pairs
(of neighboring sites) are gradually stretched out. So the
inverse operation of isometry is achieved by the SWAP
gates, and hence, we only need to introduce disentanglers.
Since the RG flow is inverted (IR — UV), what we need
are entanglers that add entanglement to the system. More
precisely, this type of gate (we call “Eadd”) is to add Bell
pairs to the spatially unentangled state.

1 1

|00) — ﬁ(\00>+|11>), I11) — ﬁ(|00>_|11>)’
1 1

01) — ﬁ(\m) +]10)), [10) — ﬁ(\m) - 10)).

(7)

In the MERA network, the total number of Bell pairs
grows exponentially with the depth # of the circuit. In the
continuous case, we have z ~ 2", and hence, the total entan-
glement shall grow linearly in z. In other words, we can take
the probability of the Eadd gate to also be a constant if the
circuit time is taken to be the z coordinate. The constructed
circuits are different in every run due to randomness, but
eventually, we take an average of the computed quantities
(like correlators and entanglement entropy).
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FiGURE 1: The MERA tensor network is a circuit W made of disentangler (boxes) and isometry (triangles) operations. More precisely, W
(15, 7,) is given by the product of all the tensors between the lines 7 =17, and 7 =17, and provides a map from low-energy states (7 =1,)
to high-energy states (7 = 7,). The Euclidean times 7,, 7, again denote different energy scales, and 7 =0 corresponds to the UV cutoff.

To see the chaotic behavior, we consider the usual
OTOC. In this case, it is defined by the commutator of two
operators V, U at different circuit time. At time ¢ =0, the
simple operator V;(0) is a Pauli matrix acting only on a sin-
gle site labeled by j. Such an operator initially at site i after
the unitary time evolution W(t)= W(t,,7,) (or rather
under the renormalization group from IR scale T=1, to
higher energy scale 7=1,) becomes a very complicated
object U,(t) = W'(t)U,;(0)W(t) and can have nonvanishing
overlap with operators at different sites. Following [17], we
use the integrated OTOC, which is defined in the following
way:

In our case, V;(0) is taken to be an IR operator, and

j
U,(t) is the renormalized operator at a higher energy scale

obtained by reverting the renormalization group flow. As
V,U are both Pauli matrices (even though at different
energy scales), they satisfy V> = U? = 1 and we have

[Vi(0)Ui(t) = Us(1)V,(0)]” = V;(0) U,() V,(0) Ui (1)
+U(O)V;(0)U, (1) V(0) - 2.
©)

The commutator is evaluated with respect to the unen-
tangled IR state. This quantity can also be understood as
the size of the operator U,(t). The expectation value is an
average over all different states generated by different ran-
dom circuits.

To match the linear growth in the holographic picture
discussed in Sec 2, we are supposed to go the other way
and measure an IR operator in terms of the simple UV oper-
ators. However, the size and complexity of an operator grow
exponentially in the proper distance, or linearly in the radial
coordinate z. In the the current case, the OTOC essentially
measures the relative complexity between operators at differ-

ent scales (one being IR), and hence, it should be propor-
tional to the difference in z (or equivalently circuit time ¢).
In other words, it should grow linearly in ¢.

For demonstration purpose, we consider a small circuit
of 16 qubits (N =16). Two types of gates are applied ran-
domly at every time step in t. We set the probability of
SWAP gates fixed at p=0.9 and consider three different
choices for the probability of Eadd (r = 0.1,0.2,0.3). The cod-
ing is done using ITensor package [20]. This setup limits our
evolution to 7 time steps (¢ = 7). Despite the small number of
data points, a linear behavior of OTOC is observed for var-
ious r as shown in Figure 2. We note that f(0) = 4 (for a triv-
ial circuit with no gates), and hence, all the data values in the
figure are shifted by —4 for better visualization.

3.2. Entanglement Entropy. To see that our random unitary
circuit does emulate the discrete AdS space, we check the
entanglement entropy of the UV state obtained by running
the circuit to the time ¢ =8. To get a slightly better resolu-
tion, we extend the lattice to include 22 qubits. Moreover,
we impose periodic boundary condition. In this case, the
grid points are supposed to be labeled by angular coordinate,
and the Ryu-Takayanagi formula in this case takes the fol-
lowing form:

8(0,,0,) = g log sin @ (10)

With periodic condition, a subsystem with x quibts cor-
responds to an angle of

X
X . 11
> (11)

So we shall try to fit the data using

X

a log sin (ﬁ) +b, (12)

where x is the number of qubits in the subsystem and the
precise values of a,b are unimportant. We note that the
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FIGURE 2: Numerical results for the OTOC in a random circuit
resembling AdS space. To minimize boundary effect and parity
asymmetry, we take the average of the data from i=8 and i=9.
For the cases of p=0.9 and r=0.1,0.2,0.3, respectively, f(¢) is
approximately a linear function of radial scale f in AdS space.

RT formula is not very accurate for small intervals due to the
discrete nature, and hence, we start with a system of 6 qubits.
The entanglement entropy decreases if the size gets past half
of the total and hence we stop at x=11. As we can see in
Figure 3, the entanglement entropy can be described by the
RT formula with good accuracy.

4. Operator Growth in a Network of
Perfect Tensors

In [18], a MERA-like tensor network was constructed using
the product of pentagon perfect tensors (a tensor T is perfect
if T"T gives the identity when half or more of its indices are
contracted). Such a network shares many nice features with
the AdS space, like RT-formula and error correction (subre-
gion duality [21, 22]). We would like to investigate the com-
plexity of a bulk operator in this setup. More precisely, a
bulk operator in the sense of error correction is taken as a
logical operator, and it can be mapped by the network to a
subsystem in the physical space on the boundary. In other
words, the logical operator can be recovered from a subre-
gion (protected from the erasure of the rest). The physical
operator in general is nonlocal in its support of the whole
subregion and hence has large complexity measured by the
single-site operators (taken to be simple). Since complexity
and size grow the same way, we expect the complexity to
grow linearly in the radial coordinate.

First of all, let us consider a single perfect tensor. The
logical operator in the 5-qubit (pentagon) code [[5, 1, 3]], is
given by the tensor product of single-site operators (X, Z
being Pauli matrices)

X=X®0X®X®X®X,Z=20ZRZ®Z®Z. (13)

Here, we use the same notation as in [18]. A code
denoted as [[m, k,d]], has m physical spins (of degrees of
freedom v) or sites to encode k spins, which can be recov-

5
S (x)
5 _
4.5
e
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/‘//
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»
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FIGURE 3: Numerical results for the entanglement entropy for the
UV state obtained using the random circuit (at t=8) with
parameters N =22,p=0.9,r=0.2. Entanglement entropy of a
subsystem S(x) can be approximated by a logarithmic function of
its size x as required by the RT-formula.

ered from d spins. The encoding process is realized as a
one-to-five map using the 6-qubit (hexagon) perfect ten-
sor. A logical operator can be realized in various equiva-
lent representations

X~XU, Z~ZU, UeS. (14)

Here, & is the stabilizer group that consists of the
operators (also in the form of a product of single-site Pauli
matrices) keeping the perfect tensor invariant. In the cur-
rent case, it is generated by S; with the following explicit
form:

$,=X®Z1Z®X®I,
$,=1®X®Z®Z®X,
$5=X®I®X®Z®Z,
S,=Z0X®I®X®Z.

As a result, X and XU act the same way on the perfect
tensor. Some representations act only on sites in a certain
subregion. For example,

XU=-Z®X®Z®I®I, U=S,S,S,, (16)

which seems to imply its complexity is 3 as it can be real-
ized by the product of three simple operators. We also
check that [[3, 1,2]]; has similar properties.

It is natural to think that for a general stabilizer code
[[2n—1,1,n]], we have the logical operators all with com-
plexity n. For this code, we can recover the information from
n spins and hence there would be a representation of logical
operators in the form of tensor product of n Pauli matrices
(just like those in (13), but in a generalized form for v
dimensions). The group of all such products is denoted as
G,,.. The point is that two different representations (denoted



as X, X,) of a logical operator are equivalent as
X%, (17)

keeps all the states in the code space invariant and hence has
to be an element of & It is reasonable to assume that X is an
element of G, and then so is the subregion representation
XU € G,,. Such an operator has complexity 7 as it is the ten-
sor product of n simple (singe-site) operators.

Moreover, a tensor network composed of perfect tensors
is also stabilized by the Pauli matrices acting on the remain-
ing open (uncontracted) sites. We then expect that the logi-
cal operators are also in a similar product form. Therefore,
the complexity of a bulk operator is bounded by the size of
the one dimensional subregion on the boundary in which
it is encoded. The corresponding subregion (i.e., entangle-
ment wedge) in the AdS bulk is half of a disk with the radius
z (radial coordinate of the bulk operator), and hence, we get
the same linear growth behavior as before.

We would like to prove this statement by induction. First
of all, we would like to consider the logical operators in a
many-to-many code by a single tensor. A perfect tensor gen-
erally provides the coding of more than one spins. For exam-
ple, a perfect tensor with four indices T, (ie., [[4,0,3]];)
can be used for a 3-qutrit code [[3, 1, 2]];. At the same time,
it can be used to encode an operator acting on two qutrits in
the sense that the third qutrit can be included as logical (we
denote the original logical qutrit as the 4th). The logical
operators in the physical space become

Ok’l,,kl = Ti/j/kllloi/ /IT?//jl/kl, (18)

]-I’illj

where is a map between the spaces of two qutrits.
It is known that the basis in the code space of [[3, 1, 2]],

|;> = Tijujkl), (19)

takes the following explicit form [23]:
10) =
1) =

|2) = —=(|021) +102) + |210)).

V3

3 (|000) + |111) +|222)),

5l-

13 (|012) +|120) +|201)), (20)

- 5]

To get a better understanding the 2-to-2 code, one can
apply the unitary transformation U,

00) — [00) |11) — [01)  [22) — [02),
01) — [12) |12) — [10) |20) — |11), (21)
02) — |21)  |10) — |22)  [21) — |20),
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on the first two qutrits and turn the basis into the form of

1

—|i)(]00) + |11) + |22)). 22
75 2(100) + 1) + [22)) (22)
In other words, the transformation U, turns the 2-to-2

(34 — 12) map by T into the identity matrix. Therefore, a
logical operator Osg, is realized trivially

o3@4 = UJlrzOmz Ui, (23)

Such a code (and similarly the one by T without U,,)
even though trivial and not protective against any errors
remains legal and can serve as our starting point.

As explained earlier, physical operators in the form of
(18) for O, and O, both have representations supported in
the first two qutrits. Since the (single-site) logical operators
on different sites commute with each other, so do their dif-
ferent representations. Even though here we only consider
[[4,0,3]]; as an example, it is not difficult to see that the
same conclusion remains valid for other perfect tensors.
Now we can continue the induction. When one more perfect
tensor T is added to the network P, to get a new P, ,, it has
a few physical sites (denoted as B) contracted to the physical
sites in P,,. As a reminder, we reverse the construction order
in [18] (now from IR to UV). To maintain the isometry
property of the new tensor P, ;, we cannot contract more
than half of the sites of T. Since we only care about the local
bulk operator, it is okay to consider one logical site. The log-
ical operator X is equivalent to a representation supported
onlyon A (A=BUC)

X~X,=2XU=030 - ®0,00:.® - ®0:.€G,, (24)

where G, (like G, before) is the group for the product of
Pauli matrices on sites in the region A. Each local Pauli oper-
ator o (they can be different for different sites but we use
the same notation o for simplicity) in region B can be taken
as a logical operator 0 and is replaced by their own subre-
gion representation on the new boundary D through the
coding by the perfect tensor T. So we have
X~Xp,c=0p® ®I3Q0,® @0
=(0p®--®(I®o®---®I)--- (I®---®0()
=(0p®®0p®I® @) - ([® @0 @) -+ (I®-®0c).

(25)

In the second line, we first decompose the physical oper-
ator (in a representation for subregion A) as the product of
single-site operators. In the last line, single-site operators
in B are replaced by products in D. The final form of the rep-
resentation remains an element of G, and its complexity
is given by the total number of sites in the subregion DU C.

In summary, we show that a logical operator can be con-
structed as the product of single-site operators whose total
number agrees with the distance of the code. We take this
number as the complexity of a renormalized operator
instead of its size. It should be noted however that given
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the product structure, the integrated OTOC shall have the
same growth.

5. Discussions

It is known that the entanglement renormalization under-
stood as radial evolution is governed by the same Hamilto-
nian as in the time evolution and hence the renormalized
operators shall satisfy a similar chaos bound. Motivated by
the size-momentum correspondence, we further propose
that the size of a renormalized operator shall grow linearly
with respect to the radial coordinate in a holographic theory.
We study the growth of operator size in two different scenar-
ios. In the first case, we construct a random unitary circuit
that produces a tensor network similar to the MERA net-
work, which can be taken as a discrete AdS space. This is
supported by the fact that the entanglement entropy of the
UV state is given by the RT formula. The size of an operator
is measured in terms of the integrated OTOC and is found to
grow linearly with the circuit time. In the second case, we
consider the perfect tensor code. A logical operator is under-
stood as a renormalized operator, and its size is defined by
measuring its physical realization in the sense of error cor-
rection in terms of the single-site simple operator. It is found
that the physical operator is given by the product of a num-
ber of single-site operators. Moreover, such a number is
taken as the size and grows linearly with the size of the
boundary subregion to recover the logical operator.

Frankly speaking, our results only provide modest sup-
port for the claim that a renormalized operator in a holo-
graphic theory grows linearly. It is far from evident that
there is a universal chaos bound. In a general theory, entan-
glement renormalization can always be performed using
MERA (or cMERA). Given the locality of both disentangler
and isometry operations, it is natural to expect a bound on
how quickly the entanglement structure is built up. We
would like to take the saturation as a criteria for emergent
spacetime (even though it is merely a necessary condition).
At this point, this conjecture is mostly based on physical
intuition. Hopefully, more evidences can be found in future
studies.

Ideally, we would like to compute the size or complexity of
an operator in a CFT. There are quite a few available
approaches, and some of them are applicable to our current
scheme. For example, it is straightforward to compute the
complexity of a bulk operator using the techniques in [24].
Roughly speaking, it is the cost to move a bulk operator radi-
ally to a given point from the boundary. Unfortunately, we
find that the complexity grows linearly with the proper dis-
tance (instead of exponentially). We suspect the mismatch is
due to the fact that the bulk operator (in the standard HKLL
form, or for computation purpose the form in [25]) is essen-
tially free (not seeing even the gravity). Another option is to
compute the Krylov complexity (see, e.g., [26-28]).

Chaos phenomenon has been studied extensively, and
there are many other measures of chaotic behavior. Hope-
fully, a better understanding of their imprints on the entan-
glement renormalization can help us patch together a more
complete picture of spacetime emergence.
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