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We propose generalized uncertainty principle (GUP) with an additional term of quadratic momentum motivated by string theory
and black hole physics and providing a quantum mechanical framework for the minimal length uncertainty, at the Planck scale.
We demonstrate that the GUP parameter, β0, could be best constrained by the gravitational wave observations, GW170817 event.
To determine the difference between the group velocity of graviton and that of the light, we suggest another proposal based on the
modified dispersion relations (MDRs). We conclude that the upper bound of β0 reads ≃1060. Utilizing features of the UV/IR
correspondence and the apparent similarities between GUP (including nongravitating and gravitating impacts on Heisenberg
uncertainty principle) and the discrepancy between the theoretical and the observed cosmological constant Λ (obviously
manifesting gravitational influences on the vacuum energy density), known as catastrophe of nongravitating vacuum, we
suggest a possible solution for this long-standing physical problem, Λ ≃ 10−47 GeV4/ℏ3c3.

1. Introduction

The cosmological constant, Λ, was introduced by Albert
Einstein in 1917 to impose steady-state universe [1] that is
neither expanding nor contracting. To counterbalance the
effects of gravity, the cosmological constant was introduced
to assure static evolution of the universe [2, 3]. This model
was subsequently refuted, and accordingly, the Λ-term was
abandoned from the Einstein field equation (EFE), especially
after the confirmation of the celebrated Hubble observations
in 1929 [4], which also have verified the consequences of
Friedmann solutions for EFE, at vanishing Λ [5]. Nearly
immediate after publishing GR, a matter-free solution for
EFE with finite Λ-term was obtained by de Sitter [6]. Later
on when it has been realized that the Einstein static universe
was found unstable for small perturbations [7–9], it was
argued that the inclusion of the Λ-term remarkably contrib-
utes to the stability of the universe and simultaneously sup-

ports its expansion, especially that the initial singularity of
Friedmann-Lemaître-Robertson-Walker (FLRW) models
could be improved, as well [10, 11]. Furthermore, the obser-
vations of type-Ia high redshift supernovae in the late nine-
teenth of the last century [12, 13] indicated that the
expanding universe is also accelerating, especially at a small
Λ-value, which obviously contributes to the cosmic negative
pressure [14, 15]. With this regard, we recall that the cosmo-
logical constant can be related to the vacuum energy density,
ρ, as Λ = 8πGρ/c2, where c is the speed of light in vacuum
and G is the gravitational constant. In 2018, the Planck
observations have provided us with a precise estimation of
Λ, namely, ΛPlanck ≃ 10−47GeV4/ℏ3c3 [16]. When comparing
this tiny value with the theoretical estimation based on
quantum field theory in weakly or nongravitating vacuum,
ΛQFT ≃ 1074GeV4/ℏ3c3, there is, at least, a 121 orders of
magnitude difference to be fixed [17–19].
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The disagreement between both values is one of the
greatest mysteries in physics and known as the cosmological
constant problem or catastrophe of nongravitating vacuum.
This problem represents one of the still puzzling question
in physics [18, 20–23]. From different aspects, some possible
solutions have been reported [22, 24–26]. In the present
work, we utilize the generalized uncertainty principle
(GUP), which is an extended version of Heisenberg uncer-
tainty principle (HUP), where a correction term encompass-
ing the gravitational impacts is added, and thus an
alternative quantum gravity approach emerges [27, 28]. As
a consequence of thought experiments [29], GUP comes
up with an extra quadratic term in momentum resulted in
various aspects of quantum gravity theories and becomes
compatible with string theory and black hole physics [27,
28]; the minimal length uncertainty that was inspired from
GUP can be related to the Planck length. Its value can be
thought as a length discretization for quantum gravity
[30–32]. The proposed minimal length uncertainty exhibits
some features of the UV/IR correspondence [33–35], which
has been performed in viewpoint of local quantum field the-
ory in the limit of the Planck length restrictions. Thus, it is
argued that the UV/IR correspondence is a relevant
approach to revealing several aspects of short-distance phys-
ics, such as the cosmological constant problem [18, 36–38].
Therefore, a precise estimation of the minimal length uncer-
tainty strongly depends on the proposed upper bound of the
GUP parameter, β0 [39, 40]. Various ratings for β0 upper
bound have been proposed, for example, by comparing
quantum gravity corrections to various quantum phenom-
ena with electroweak [41, 42] and astronomical observations
[43, 44]. Accordingly, β0 ranges between 1033 and 1078
[43–45]. So far, there are various quantum gravity
approaches presenting quantum descriptions for different
physical phenomena in presence of gravitational fields to
be acknowledged here [27, 28].

To summarize, the present attempt is motivated by the
similarity of GUP (including nongravitating and gravitating
impacts on HUP) and the disagreement between theoretical
and observed estimations for Λ (manifesting gravitational
influences on the vacuum energy density) and by the
remarkable impacts of Λ on early and late evolution of the
universe [2, 3, 46]. As a preamble of the present study, we
present a novel estimation for β0 from the binary neutron
stars merger, the gravitational wave event GW170817
reported by the Laser Interferometer Gravitational Wave
Observatory (LIGO) and the Advanced Virgo collaborations
[47]. With this regard, there are different efforts based on the
features of the UV/IR correspondence in order to interpret
the Λ problem [48–52] with Liouville theorem in the classi-
cal limit [48, 53, 54]. Having a novel estimation of β0, a solu-
tion of the Λ problem, catastrophe of nongravitating
vacuum, could be best proposed. The upper bound of the
dimensionless β0 could be determined in general relatively
and rainbow gravity. The latter is an alternative approach
in the special relativity (DSR) [55, 56], in which the disper-
sion relations is modified. MDRs break the Lorentz symme-
tries to assure an invariant energy scale [57, 58]. The

geometry of spacetime is also dictated by energy of the cos-
mic background. As particle passes through space, its energy
is interacting with space geometry and forming rainbow
gravity, like light entering prism. The rainbow gravity is a
generalization of DSR to the curved spacetime geometry
and supported by various studies [59–62] and observations
[63, 64] to integrate the gravitational impacts.

The present paper is organized as follows: Section 2
reviews the basic concepts of the GUP approach with qua-
dratic momentum. The associated modifications of the
energy-momentum dispersion relations related to GR and
rainbow gravity are also outlined in this section. In Section
3, we show that the dimensionless GUP parameter, βo, could
be, for instance, constrained to the gravitational wave event
GW170817. Section 4 is devoted to calculating the vacuum
energy density of states and shows how this contributes to
understanding the cosmological constant problem with a
quantum gravity approach, the GUP. The final conclusions
are outlined in Section 5.

2. Generalized Uncertainty Principle and
Modified Dispersion Relations

HUP emerges from commutative phase-space geometry, i.e.,
½xi, xj� = 0 and ½pi, pj� = 0. As the energy approaches the
Planck scale, HUP likely breaks down to GUP, where the
gravitational impacts and noncommutative phase-space
geometry are taken into consideration, i.e., ½xi, xj� ≠ 0 and ½
pi, pj� ≠ 0. Various approaches to quantum gravity such as
string theory, doubly special relativity, black hole physics
help to model the nonzero minimal length uncertainty,
which could be related to the Planck scale [27, 28]. The
GUP was suggested as [65, 66]

ΔxΔp ≥
ℏ
2

1 + α Δxð Þ2 + β Δpð Þ2 + γ
Â Ã

, ð1Þ

where α, β, and γ are independent parameters. This expres-
sion leads to nonzero minimal uncertainty in both position
and momentum. The corresponding commutation relation

x, p½ � = iℏ 1 + αx2 + βp2
À Á

, ð2Þ

was obtained from quantum group symmetric Heisenberg
algebra and Bargmann-Fock representation [66]. It was
pointed out that in quantum mechanics and from the
sequences of jψni vector state, both position and momentum
eigenstates jxi and jpi can be approximated to an arbitrary
precision of increasing localization in position or momen-
tum space [65].

For nonzero minimal uncertainty in position, ððΔxÞ2jψi
= hψjðx − hψjxjψiÞ2jψi ≥ Δx0 ∀jψi, no physical state would
exist with such a position eigenstate [65, 66]. γ can be related
to the expectation values of position and momentum, γ = α

hxi2 + βhpi2. A minimal position uncertainty means that
the position operator is no longer self-adjoint and the Hei-
senberg algebra does not allow for Hilbert space
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representation of the position space [65]. In light of this, we
restrict ourselves to Δx ≠ 0 and vanishing α [65], i.e., no
minimal momentum uncertainty [65, 66]:

ΔxΔp ≥
ℏ
2

1 + β Δpð Þ2 + β ph i2Â Ã
, ð3Þ

where Δx and Δp are the uncertainties in position and
momentum, respectively. It should be highlighted that
although the KMM work [65] has been succeeded to deter-
mine the minimal length uncertainty, it does not consider
the limitation on the upper bound of momentum. This
would mean that the uncertainty in momentum is going to
be divergent and in particular also infinite energy of free par-
ticle [65]. This failure has been processed in work of [67] in
determination of the maximal test particle’s momentum. We
have reviewed this point in our reviews [27, 28]. This version
of GUP was deduced from black hole physics [68], string
theory [30], and supported by different Gedanken experi-
ments [69].

The GUP parameter can be expressed as β = β0ðℓp/ℏÞ2
= β0/ðMpcÞ2, where β0 is a dimensionless parameter, ℓp = 1
0−35m is the Planck length, and Mp = 1:22 × 1019GeV/c2 is
the Planck mass. Equation (3) implies the existence of a
minimum length uncertainty, which is related to the Planck
scale, Δxmin ≈ ℏ

ffiffiffi
β

p
= ℓp

ffiffiffiffiffi
β0

p
. It should be noticed that the

minimum length uncertainty exhibits features of the UV/
IR correspondence [33–35]. Δx is obviously proportional
to Δp, where large Δp (UV) becomes proportional to large
Δx (IR). Equation (3) is a noncommutative relation, ½x̂i, p̂j�
= δijiℏ½1 + βp2�, where both position and momentum oper-
ators can be defined as

x̂i = x̂0i, p̂j = p̂0j 1 + βp2
À Á

, ð4Þ

where x̂0i and p̂0j are the corresponding operators obtained
from the canonical commutation relations ½x̂0i, p̂0j� = δijiℏ
and p2 = gijp

0i p0 j.
We can now construct MDR due to quadratic GUP. We

start with the background metric in GR gravitational space-
time

ds2 = gμνdx
μ dxν = g00c

2dt2 + gijdx
i dxj, ð5Þ

with gμν is the Minkowski spacetime metric tensor ð−, + ,
+ , + Þ. Accordingly, the modified four-momentum squared
is given by

pμp
μ = gμμp

μpμ = g00 p0
À Á2 + gijp

0ip0j 1 + βp2
À Á

= − p0
À Á2 + p2 + 2β p2 · p2:

ð6Þ

Comparing this with the conventional dispersion rela-
tion, pμp

μ = −m2c2, the time component of the momentum

can be defined as ðp0Þ2 =m2c2 + p2ð1 + βp2Þ. The energy of
the test particle ω can be defined as ω/c = −ζμpμ = −gμνζ

μ

pν, where the killing vector is given as ζμ = ð1, 0, 0, 0Þ. There-
fore, ω could be expressed as ω = −g00cðp0Þ = cðp0Þ, and the
modified dispersion relation in GR gravity with GUP reads

ω2 =m2c4 + p2c2 1 + 2βp2
À Á

: ð7Þ

For β⟶ 0, the standard dispersion can be obtained.
The rainbow gravity generalizes MDR in doubly special rel-
ativity to curved spacetime [70], where the geometry space-
time is explored by a test particle with energy ω [57, 58].

ω2 f1
ω

ωp

 !2

− pcð Þ2 f2
ω

ωp

 !2

= mc2
À Á2, ð8Þ

where ωp is the Planck energy and f1ðω/ωpÞ and f2ðω/ωpÞ
are known as the rainbow functions, which are model
depending. The rainbow functions can be defined as [63, 71]

f1 ω/ωp

À Á
= 1, f2 ω/ωp

À Á
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η ω/ωp

À Ánq
, ð9Þ

where η and n are free positive parameters. It was argued
that for the logarithmic corrections of black hole entropy
[72], the integer n is limited as n = 1, 2 [73]. Therefore, it
would be eligible to assume that n = 2. Thus, MDR for rain-
bow gravity with GUP can be written as

ω2 =
mc2
À Á2 + p2c2 1 + 2βp2

À Á
1 + η pc/ωp

Â Ã2 1 + 2βp2ð Þ
: ð10Þ

Again, as β⟶ 0, Equation (10) goes back to the stan-
dard dispersion relation.

We have constructed two different MDRs for quadratic
GUP, namely, Equations (7) and (10) in GR with GUP and
in rainbow gravity, respectively. Bounds on the GUP param-
eter from GW170817 shall be outlined in the section that
follows.

3. Bounds on GUP Parameter from GW170817

Instead of violating Lorentz invariance [74], we intend to
investigate the speed of the graviton from the GW170817
event. To this end, we use MDRs obtained from the qua-
dratic GUP approaches, discussed in Section 2. Thus, defin-
ing an upper bound on the dimensionless GUP parameter
β0 for given bounds on mass and energy of the graviton,
where mg4:4 × 10−22eV/c2 and ωg = 8:5 × 10−13eV, respec-
tively, plays an essential role. Assuming that the gravita-
tional waves propagate as free waves, we could, therefore,
determine the speed of the mediator, that of the graviton,
from the group velocity of the accompanying wavefront,
i.e., vg = ∂ω/∂p, where ω and p are the energy and momen-
tum of the graviton, respectively [75].

This section intends to define an upper bound on the
dimensionless β0 from the difference between the group
velocity of the graviton and the speed of light. Thus, it can
be deduced from the MDR approaches, i.e., the difference
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between Equation (7) for GR gravity with GUP and Equa-
tion (10) for rainbow gravity.

(i) For GR gravity with GUP: the group velocity, vg = ∂
ω/∂p, can be given as

vg =
pc2

ω
1 + 4βp2
À Á

= c 1 − mc2

ωg

 !2" #1/28<
:

+ 4β
ω2
g

c2
1 −

mc2

ωg

 !2" #3/2)
:

ð11Þ

It is obvious that for β⟶ 0, i.e., in absence of GUP
impacts, one can estimate the difference between the speed
of light and that of the graviton as jδvj = jc − vgj1:34 × 1
0−19c. Although small difference is obtained, we are—in the
era of gravitational wave (GW) observations—technically
able to measure even a such tiny difference, which is appar-
ently comparable with the range of −3 × 10−15c < δv < +7 ×
10−16c reported in ref. [76]. Furthermore, it is found that
the GW speed vg ~ c, where ð0:79 c, 1:01 cÞ is the interval
due to recent GW observations [77].

In light of this, we could use the results deduced from the
GW170817 event, such as the graviton velocity, to set an
upper bound on β0. For a massless graviton, the difference
between the speed of light and that of the graviton in pres-
ence of the GUP impacts reads

δvGUPj j = 4βω
2

c

����
���� = 4β0

ω2

M2
pc

3

�����
����� ≲ 1:941 × 10−80β0c: ð12Þ

Thus, the upper bound on β0 of the quadratic GUP can
be simply deduced from comparing jδvGUP/δvj with

β0 ≲ 6:89 × 1060: ð13Þ

(ii) For rainbow gravity: when applying the quadratic
GUP approach, Equation (10), the group velocity
of the graviton due MDR of the rainbow gravity
can be expressed as

vg =
∂ω
∂p

=
pc2

ωg

 ! 1 − η/ω2
p mc2
À Á2� �

1 + 4βp2
À Á

1 + η cp/ωp

À Á2 1 + 2βp2ð Þ
h i2 : ð14Þ

Similarly, for a massless graviton, one can express the
conventional momentum in terms of the GUP parameter.

In order of OðβÞ, we get

p c = ωg 1 − η
ωg

ωp

 !2 !−1/2

− β
ω2
g

c2
1 − η

ωg

ωp

 !2 !−3/22
4

3
5:
ð15Þ

The investigation of the speed of the graviton from the
GW150914 observations [78] specifies the rainbow gravity
parameter, ηðωg/ωpÞ2 ≤ 3:3 × 10−21 [44]. Accordingly, Equa-
tion (15) can be reduced to cp = ωgð1 − βω2

g/c2Þ, and the
group velocity of the massless graviton is given as

vg = c 1 − 5
βω2

c2
+ O β2À Á� �

: ð16Þ

Then, the difference between the speed of light and that
of the graviton reads

δvGUPj j = 5β
ω2

c

����
���� ≲ 2:43 × 10−80β0 c: ð17Þ

Similarly, one can compare the difference of jδvGUP/δvj
and get an upper bound of β0 as

β0 ≲ 5:5 × 1060: ð18Þ

It is obvious that both results, Equations (13) and (18),
are very close to each other, β0 ≲ 1060. The improved upper
bound on β0 is very similar to the ones reported in refs. [43,
44] for the gravitational wave event GW170814 data and
[79] for the gravitational wave event GW170817, which—as
well—are depending on astronomical observations. We rees-
timate the upper bound of β0 with more recent data of event
GW170817 to find more updated constraints. The present
results are based on mergers of spinning neutron stars. Thus,
it is believed that more accurate observations, the more pre-
cise shall be β0.

Having set an upper bound on the GUP parameter and
counting on the spoken similarities between GUP and the
catastrophe of nongravitating vacuum, we can now propose
a possible solution of the cosmological constant problem.

Our result on the upper bound on β0 based on event
GW170817 of binary neutron stars merger is very close to
the results obtained from the MESSENGER spacecraft which
orbited Mercury in 2011-2013 [80] and reported β0 ≤ 1069
[43]. Table 1 summarizes various upper bounds on β0 as
obtained from different measurements and observations
[41, 43]. The present analysis is in excellent agreement, espe-
cially with the astronomical observations [43].

4. A Possible Solution of the Cosmological
Constant Problem

The cosmological constant can be given as Λ = 3H2
0ΩΛ,

where H0 and ΩΛ are the Hubble parameter and the dark
energy density, respectively [81]. On the other hand, the
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origin of the catastrophe of nongravitating vacuum would be
understood from the disproportion of the value of Λ in the
theoretical calculations, while this is apparently impacting
the GW observations [82]. From the most updated Planck
observations, the values of ΩΛ = 0:6889 ± 0:0056 and H0 =
67:66 ± 0:42 km·s-1·Mpc-1 [16]. Then, the vacuum energy
density is

c2

8πG
Λ =

3H2
0c

2

8πG

� �
ΩΛ =

3ℏc
8πℓ2pℓ20

ΩΛ, ð19Þ

where the scale of the visible light is ℓ0 = c/H0 ≃ 1:368 × 1023
km [16]. Therefore, one can use Equation (19) to estimate
the vacuum energy density in order of 10−47GeV4/(ℏ3c3).
In quantum field theory, the cosmological constant is to be
calculated from sum over the vacuum fluctuation energies
corresponding to all particle momentum states [81]. For a
massless particle, we obtain

1
2πℏð Þ3

ð∞
0
d3 p

! ℏωp

2

� �
≃ 9:60 × 1074GeV4/ ℏ3c3

À Á
: ð20Þ

This is clearly infinite integral. But, it is usually cut off, at
the Planck scale, μp = ℏ/ℓp. We assume that ωp is the vacuum

energy of quantum harmonic state ℏωp = ½p2c2 +m2
gc

4�1/2.
To propose a possible solution of the cosmological con-

stant problem, it is initially needed to determine the number
of states in the phase-space volume taking into account
GUP, Equation (3). An analogy can be found in Liouville
theorem in the classical limit. We need to make sure that
the size of each quantum mechanical state in phase-space
volume is depending on the modified momentum p, espe-
cially when taking GUP into consideration, Equation (3).
In other words, the number of quantum states in the
phase-space volume is assumed not depending on time.

In the classical limit, the relation of the quantum com-
mutation relations and the Poisson brackets is given as ½Â,
B̂� = iℏfA, Bg. Details on the Poisson bracket in D-dimen-
sions are outlined in the Appendix. Consequently, the mod-
ified density of states implies different implications on
quantum field theory, such as the cosmological constant
problem.

In D-dimensional spherical coordinate systems, the den-
sity of states in momentum space is given as [48, 53, 54]

V dD p
!

1 + βp2ð ÞD+1
, ð21Þ

where V is the volume of phase-space. It should be noticed
that in quantum mechanics, the number of quantum stated
per unit volume is given as V/ð2πℏÞD. Therefore, for Liou-
ville theorem, the weight factor in 3-D dimension reads
[48, 53, 54] (review the Appendix).

1
2πℏð Þ3

d3 p
!

1 + βp2ð Þ4
: ð22Þ

In quantum field theory, the modification in the quan-
tum number of state of the phase-space volume should have
consequences on different quantum phenomena, such as the
cosmological constant problem and the black body radia-
tion. At finite weight factor of GUP, the sum over all
momentum states per unit volume of the phase space mod-
ifies the vacuum energy density. The cosmological constant,
on the other hand, is determined by summing over the vac-
uum fluctuations, the energies, corresponding to a particular
momentum state

ΛGUP mð Þ = 1
2πℏð Þ3

ð∞
0
d3 p

!
ρ p2
À Á

ℏωp/2
À Á

=
1

2 2πℏð Þ3
ð

d3 p
!

1 + βp2ð Þ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 +m2

gc4
q

:

ð23Þ

With cos ðθÞ = 1/ð1 + βp2Þ, this infinite integral for a
massless test particle, m = 0, could be reduced to a finite
integral. With θ = ½0, π/2�,

ΛGUP m = 0ð Þ = c

8π2β2ℏ3

ðπ/2
0

sin θð Þ cos θð Þ 1 − cos θð Þð Þdθ:

ð24Þ

Therefore, the vacuum energy density, which is directly

Table 1: Possible bounds of the quadratic GUP parameter β0.

Phenomena β0

Present results based on event GW170817 1060

Quadratic GUP parameter based on event GW170814 [79] 9:63 × 1059

Light deflection by the sun [43] 1078

Perihelion precession (solar system data) [43] 1069

Perihelion precession (pulsar PRS B 1913+16 data) [43] 1071

Lamb shift [41] 1036

Landau levels [41] 1050

Scanning Tunneling Microscope [41] 1021
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related to Λ, reads

ΛGUP m = 0ð Þ =
c M2

pc
2

� �2
48π2ℏ3β2

0
= 1:01 × 10−48GeV4/ ℏ3c3

À Á
:

ð25Þ

As expected, the proposed minimal length uncertainty
due to GUP exhibits some features of the UV/IR correspon-
dence. We intend that Λ is rendering finite 1/β2. This result
is obtained as a result of the strong suppression on the den-
sity of state, at high momenta. We conclude that the connec-
tion between the estimated upper bound on β0, Equations
(13) and (18), deduced from GW170817 event [47] and
the most updated observations of the Planck collaboration
[16], Equation (20), and our estimation of Λðm = 0Þ, Equa-
tion (25), gives an plausible interpretation for the cosmolog-
ical constant problem due to the minimal length uncertainty.
The agreement between the observed value, Λ ≃ 10−47GeV4/
ℏ3c3, and our calculations based on quantum gravity
approach, Equation (25), seems convincing.

5. Conclusions

In the present study, we have proposed GUP with an addi-
tion term of quadratic momentum, from which we have
driven MDRs for GR with GUP and rainbow gravity, Equa-
tion (7) and Equation (10), respectively. Counting on the
similarities between GUP (manifesting gravitational impacts
on HUP) and the likely origin of the great discrepancy
between the theoretical and observed values of the cosmo-
logical constant that in the gravitational impacts on the vac-
uum energy density, the present study suggests a possible
solution for the long-standing cosmological constant prob-
lem (catastrophe of nongravitating vacuum) that Λ ≃ 10−47
GeV4/ℏ3c3.

We have assumed that the gravitational waves propagate
as a free wave. Therefore, we could drive the group velocity
in terms of the GUP parameter for GR and rainbow gravity,
Equation (13) and Equation (18), respectively. Moreover, we
have used recent results on gravitational waves, the binary
neutron stars merger, the GW170817 event, in order to
determine the speed of the gravitons. Then, we have calcu-
lated the difference between the speed of graviton and that
of the light, at finite and vanishing GUP parameter. We have
shown that the upper bound on the dimensionless GUP
parameter, β0 ~ 1060, is merely constrained by such a speed
difference. We have concluded that the speed of the graviton
is directly related to the GUP approach utilized in.

The cosmological constant problem, which is stemming
from the large discrepancy between the QFT-based calcula-
tions and the cosmological observations, is tagged as ΛQFT/
Λexp ~ 10121. This quite large ratio can be interpreted by fea-
tures of the UV/IR correspondence and the impacts of grav-
ity. For the earlier, the large Δx (IR) corresponds to a large
Δp (UV) in scale of Planck momentum. For the later, the
GUP approach, for instance, Equation (3), plays an essential
role. We have assumed that in calculating the density of

states where GUP approach is taken into account, a possible
solution of the cosmological constant problem, Equation
(22), can be proposed. At Planck scale, the resulting density
of the states seems to impact the vacuum energy density of
each quantum state, Equation (25). A refined value of the
cosmological constant we have obtained for a novel upper
bound on β0, which—in turn—was determined from the
GW170817 observations. Finally, the possible matching
between the estimation of the upper bound on the GUP
parameter deduced from the gravitational waves, the
GW170817 event, and the one estimated from the Planck
2018 observations seems to support the conclusion about
the great importance of constructing a theory for quantum
gravity. This likely helps in explaining various still mysteri-
ous phenomena in physics.

Appendix

A. Algebra of Quantum Mechanical
Commutators and Poisson Brackets

For a binary set of anticommutative functions on position
and momentum, for instance, in D-dimensions, the Poisson
bracket expresses their binary operation:

F x1,⋯xD ; p1,⋯pDð Þ, G x1,⋯xD ; p1,⋯pDð Þf g = ∂F
∂xi

∂G
∂pj

−
∂F
∂pi

∂G
∂xj

 !
xi, pj
n o

+
∂F
∂xi

∂G
∂xj

xi, xj
È É

:

ðA:1Þ

During a time duration, δt, the Hamilton’s equations of
motion for position and momentum can be given as

xi′= xi + δxi, pi′= pi + δpi, ðA:2Þ

where

δxi, = xi,Hf gδt = xi, pj
n o ∂H

∂pj
+ xi, xj
È ÉH

xj
, ðA:3Þ

δpi, = pi,Hf gδt = − xi, pj
n o ∂H

∂xj
, ðA:4Þ

where H ≡Hðx, p ; tÞ is the Hamiltonian, itself.
The estimation of the change in the phase-space volume

during the time evolution requires to determine the Jacobian
of the transformation from ðx1,⋯xD ; p1,⋯pDÞ to ðx1′ ,⋯xD
′ ; p1′ ,⋯pD′ Þ, i.e.,

dDx′ dDp′ = dDx dDp
J

, ðA:5Þ

where J is the Jacobian of the transformation, which can be
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expressed as

J =
∂ x1′ ,⋯xD′ ; p1′ ,⋯pD′
� �
∂ x1,⋯xD ; p1,⋯pDð Þ














 = 1 +

∂
∂xi

∂ δxið Þ
∂t

+
∂
∂pi

∂ δpið Þ
∂t

� �
× δt:

ðA:6Þ

The general notations of position and momentum
brackets lead to the following algebraic relations:

xipif g = f ij x, pð Þ, xi, xj
È É

= gij x, pð Þ,

pi, pj
n o

= hij pð Þ:
ðA:7Þ

Thus, the Jacobian of the transformation is given as [53]

J =
YD
i=1

f ii x, pð Þ = 1 + 〠
D

i=1
f ii x, pð Þ − 1ð Þ: ðA:8Þ

Therefore, the invariant phase space in D-dimension
reads

dDxdDp

1 + βp2ð ÞD+1
: ðA:9Þ

Finally, the quantum density of states can be determined
from

1
2πℏð Þ3

d3 p
!

1 + βp2ð Þ4
: ðA:10Þ
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