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High dynamic range (HDR) imaging, aiming to increase the dynamic range of an image by merging multiexposure images, has
attracted much attention. Ghosts are often observed in a resultant image, due to camera motion and object motion in the scene.
Low-rank matrix completion (LRMC) provides an effective tool to remove ghosts. However, user specification of the included or
excluded regions is required. In this paper, we propose a novel HDR imaging method based on bidirectional structural similarities
and weighted low-rank matrix completion. In our method, we first propose the bidirectional structural similarities containing
forward-projection structural similarity (FPSS) and backward-projection structural similarity (BPSS) to divide each image into
four groups: motion region, saturated region in the source image, saturated region in the reference image, and static and
unsaturated regions. Then, the weight maps and the motion maps constructed based on FPSS and BPSS are introduced in the
weighted LRMC model to reconstruct the background irradiance maps. Experiments are conducted on several challenging image
sets with complex scene, and the results show that the proposed method outperforms three current state-of-the-art methods and

Photoshop cs6 and is robust to the reference image.

1. Introduction

The typical digital cameras capture images represented in 8-bit
per pixel for each color channel, which is much lower than the
dynamic range of the real-world scenes. Thus, details of the dark
or bright parts in the scenes are missing in a single image. This
problem can be addressed by merging images captured under
the different exposure settings, because different regional in-
formation can be captured under specific exposure [1].

Some methods generate a high dynamic range (HDR)
image as the weighted sum of the estimated irradiance
images, after recovering the camera response function [2, 3],
while others directly generate an HDR-like low dynamic
range (LDR) image as the weighted sum of the input LDR
images by appropriately adjusting weights [4-6]. These
methods perform well if the scene is static. However, ghosts
are often observed in a resultant image, because motions are
hard to be avoided in the applications. Thus, ghost removal is
essential in HDR imaging [7-9].

Recently, most studies focus on object motion correction
in the scene, because camera motion can be avoided by fixing
camera or applying global registration methods [10-12].
Existing object motion removal methods mainly include two
categories: selection-based methods and correction-based
ones. Selection-based methods [13-16] generate a resultant
image as the weighted sum of all input images or based on
the weighted sum of all gradient images, where 0 or small
weight is assigned to motion pixel. These methods perform
well in some cases; however, they usually rely heavily on the
accurate detection of the motion pixel.

Correction-based methods reconstruct the motion re-
gions and the saturated regions based on the correlation. For
example, Sen et al. [17] and Hu et al. [18] exploited the patch
matching method to search the closest patches for each pixel,
which was used to correct the motion regions and the
saturated regions. However, mismatch appears in the sat-
urated regions and blurring exists in the fused image.
Zimmer et al. [19] proposed using optical flow to find the
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dense correspondence, based on which an HDR image is
reconstructed. However, the correspondence failed for large
displacement.

Rank minimization provides an effective tool in image
recovery [20-22]. Based on the assumption that the intensity
of image is linear to the irradiance of the scene, Oh et al. [23]
first proposed introducing the rank minimization in HDR
imaging to detect motion and using the estimated sparse
error to determine the weight maps. Bhardwaj and Raman
[24] modified the soft thresholding function in the original
robust principal component analysis (RPCA) algorithm to
recover the low-rank matrix, which was combined by ap-
plying the pyramid-based method [4] to obtain the resultant
background irradiance map. Lee et al. [25] improved the
model by introducing the low-rank matrix completion
(LRMC). However, these methods also suffer from the
problems of the selection-based methods. To handle this
problem, Oh et al. [26] introduced the rank-1 constraint into
the LRMC and replaced the partial sum of singular values to
the nuclear norm. The estimated low-rank matrix is the
background irradiance map. Lee and Lam [27] employed
truncated nuclear norm minimization to accelerate the al-
gorithm. However, their performance relies highly on the
selection of the missing regions. In [26, 27], part of missing
regions requires user specification. When the scene is
complex, it is hard for the user to do so.

To address the limitations of the LRMC-based HDR
imaging methods, we present a novel HDR imaging method
based on the bidirectional structural similarities and the
weighted LRMC model. First, we propose the bidirectional
structural similarities to segment an image into four groups:
motion regions, saturated regions in the source image,
saturated regions in the reference image, static and unsat-
urated regions. Similarity measurements irrelevant to lu-
minance variation, such as local entropy [28], zero-mean
normalized cross-correlation [29, 30], interconsistency and
intraconsistency [31], direction of the signal structure
component [32], were employed to detect motion regions.
These methods perform well in many cases but are prone to
mistake the well-exposure regions of the source image that
correspond to the saturated regions in the reference image as
object motion. Considering that the images need to be
transformed into the same luminance level prior to the
similarity check, we observe that structural variation in the
motion regions and in the saturated regions are bidirectional
and unidirectional, respectively. To facilitate the discussion
later, the projection from the reference image to the source
image is termed as the forward-projection (FP) and the
reverse projection is termed as the backward-projection
(BP). The structure in a motion region changes in both FP
and BP; the structure in a saturated region of the source
image changes in BP and remains unchanged in FP; the
structure in a saturated region in the reference image re-
mains unchanged in BP and changes in FP. Therefore, we
propose bidirectional structural similarities including FP
structural similarity (FPSS) and BP structural similarity
(BPSS) to more accurately detect the motion regions and the
saturated regions. Then, we construct the motion maps and
the weight maps based on FPSS and BPSS and introduce into
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the weighted LRMC-based method. The proposed method
requires no user specification of the missing regions and is
robust to the reference image.

The rest of the paper is organized as follows. The pro-
posed method based on the bidirectional structural simi-
larities and the weighted LRMC-based method is described
in Section 2. Section 3 discusses the experiments and results,
followed by conclusions in Section 4.

2. HDR Imaging Based on Bidirectional
Structural Similarities and Weighted LRMC

In this section, a novel HDR imaging method based on
bidirectional structural similarities and weighted LRMC
is described. Figure 1 illustrates an overview of the
proposed method. Given n different exposure LDR im-
ages {I1, I, .. ., I,,}, where the pixel number of each image
is m, one image I, (1<r<mn) is chosen as the reference
image and the others are the source images. We assume
that n images are globally aligned by applying a global
registration method [12]. First, for each source image, we
measure the bidirectional structural similarities including
FPSS and BPSS. Then, all pixels are classified into four
groups: motion regions, saturated regions in the source
image, saturated regions in the reference image, and static
and unsaturated regions. Noise could lead to incorrect
region detection. Thus, we introduce FPSS and BPSS into
graph cuts to generate the final motion maps and the
weight maps, which are integrated into the weighted
LRMC model. The low-rank matrix of the weighted
LRMC model corresponds to the background irradiance.

2.1. Bidirectional Structural Similarities. In the previous
methods, FP is usually employed prior to measure the
similarity between two different exposure images. A un-
saturated region in the source image which corresponds to a
saturated region in the reference image is mistaken as the
motion region. The unsaturated region has richer details
than saturated region. When unsaturated intensity is pro-
jected to saturated intensity, compression between intensity
difference results in missing detail so that the projected
region is like the saturated region. By contrast, when sat-
urated intensity is projected to unsaturated intensity,
compressed intensity difference cannot be recovered so that
the structural similarity is low. Therefore, pixels in the
saturated regions of the reference image have small FPSS and
big BPSS, while pixels in the saturated regions of the source
image have small BPSS and big FPSS. Pixels in the motion
regions have both small FPSS and small BPSS.

Figure 2 illustrates the structural similarities between
two images in FP and BP, where Figure 2(a) is the reference
image and Figure 2(b) is the source image. Figure 2(c) is the
backward-projected image of (b) and (d) is the forward-
projected image of (a). Figures 2(e) and 2(f) are BPSS and
FPSS between (a) and (b). Three regions marked with red
box represent the saturated region in the source image, the
saturated region in the reference image, and the motion
region, respectively. From Figures 2(e) and 2(f), we can see
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FIGURE 1: Block diagram of the proposed method.

that the region 1 has small BPSS and big FPSS, region 2 has
big BPSS and small FPSS, and region 3 has both small BPSS
and small FPSS. Based on the above phenomenon, each
image can be segmented into four groups: motion regions,
saturated regions in the source image, saturated regions in
the reference image, and static and unsaturated regions.
As stated in paper [32], patch-based structural similarity
is expected to best represent the structural similarity. Unlike
the previous method, all color channels are considered
jointly. We use the color channel that has the largest
structural change to determine the structural similarity.
Therefore, the desired structural similarity between two
different exposure images I; and I; is determined by the
smallest structural similarity of all color channels:
Sp(li, 1]-) min 2covkp(I,, I]) +¢;
ke{RG.B} vary , (I;) + Varkp(I ) +c,

(1)

where R, G, and B represent the red, green, and blue channels
of a color image, respectively, var ,(*) is the variance in the
window with size 9 x 9 around p of channel k, covy,(*, *) is
the covariance, and ¢; is a small constant to avoid de-
nominator and nominator to be zero and is set to 0.03.
For the smoothed region, intensity similarity of all color
channels would respond to the structural similarity. A
straightway of this relationship is employed as follows:

L (I- I(): Zke{RGB‘”kp(I)Hkp( )+62
o Zke{R,G,B}(nuk,p (1) + A”k,p(lj)) i

where iy ,(¢) represents the mean value in the window
around p of channel k and ¢, is a small constant to avoid
denominator and nominator to be zero and is set to 0.01.

For the saturated region, the intensity difference is
compressed. When the saturated region and the unsaturated
region have the same intensity difference, the similarity of
the saturated region is less than that of the unsaturated
region. Thus, we introduce the well-exposedness [4] which
measures how far the intensity is from the saturated intensity

(2)

to present similarity. We define the well-exposedness sim-

ilarity as follows:
) Ak (f(ep () (p(1,))) * €
Pl

[Tkeram( f ( (/’lkp(l ))
(3)

where f(¢) is the well-exposedness measurement function
and defined as

E,(I.1;

f(x)=1-2]x-0.5|] (4)

For each source image I; (1 <i<n, i #r), we define FPSS
and BPSS as follows:

EPSS, (FP(I,). ;) = S, (FP(I,),
BPSS, (I,,BP(I;)) = S, (I,

1)Ly (FP(1,), 1)E, (FP (). ),
BP(1,))L, (I, BP (1,))E, (I,, BP(1,))
(5)

where FP(¢) and BF(®) represent the FP and the BP based on
histogram projection algorithm, respectively.

2.2. Motion Map and Weight Map Construction. With FPSS
and BPSS, the source image is divided into four groups. Let
0, 1, 2, and 3 denote the labels of motion regions, saturated
regions in the source image, saturated regions in the ref-
erence image, static and unsaturated regions, respectively.
For pixel p, the probability belonging to I-th group is defined

as
DS, (I;) =| [FPSS, (FP(1,), 1,), BPSS,, (I, BP (I,))] - C; |2,
(6)

where Cl is the center of the [-th group. As stated in Section
2.1, the centers of motion regions, saturated regions in the
source image, saturated regions in the reference image, and
static and unsaturated regions are [0,0], [1,0], [0,1] and [1,1],
respectively. Then, the initial segmentation is determined by
[(p) = argmineq ;55 {DS () (I)}-
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Figure 2: Example of FPSS and BPSS of two images. (a) Reference image; (b) source image; (c) backward-projected image of (b); (d)

forward-projected image of (a); (e) BPSS; (f) FPSS.

Because noises could make the segmentation unreliable,
we employed graph cuts algorithm [33, 34], where the energy
function is defined as

?:{%?;i;}l Z DP(DSP (I,-)) +y Z M (p,q). )
b1,2.55 peP {p,q}EN

The first term is the data term and is represented by
D, (DS, (I) = (1/1 + e~ 2008, (1)-039)) The second term is
smoothed term and is presented by M (p, q) = e~ (lp~1d)"/20)]
where ¢ is the variance of the whole image.

We use the segmentation results of equation (7) to
define the motion maps and the weight maps. First, pixels
labeled 0 in the source images are included in the motion
regions. Saturated regions may be connected with motion
regions; thus, we take the regions labeled 1 and 2 and
connected with motion regions as motion regions. The
remaining regions are regarded as static regions, where the
weight maps are based on the FPSS and BPSS. For each
source image, the weight value for each pixel in the static
regions labeled 2 and 3 is set 1, while the weight value for
each pixel in the static regions labeled 1 is proportional to
BPSS,(I,, BP(I;)). For the reference image, the weight values
for all pixels are set to 1 except that the weight values for the

saturated region are proportional to the minima
EPSS,(FP(1,), I;) for all source images. We define the weight
map for each pixel as follows:

BPSS; (I,,BP(I,)), i#r,l(p)=1

min PSS, (FP(1,),1,), i=rl(p) =2,

{ili=1,2,...,nNi#

1,

Wp (11‘) =
others.

(8)

2.3. Weighted LRMC-Based HDR Imaging. Let I=[vec(I}),
vec(ly), ..., vec(I,)] € R™" be a matrix, where vec(e) is
transform function from matrix to vector. For each image,
the corresponding irradiance image D; (i=1, 2, ..., n) is
estimated by the camera response function. The irradiance
matrix D is represented by the background matrix L with
rank equal to 1 plus the sparse error matrix E. Then, the
effective region is the static region constructed by the
method discussed in Section 2.2. In the effective region, the
information in the unsaturated regions is more reliable than
that in the saturated regions. Therefore, we add the sparse
error with small weights in the saturated regions and small
weights in the unsaturated regions. We propose the weighted
LRMC-based HDR imaging as follows:



Advances in Multimedia

N

FiGgure 3: Comparison results on “Cafe” with (a) the proposed method; (b) Oh et al. [26]; (c) Hu et al. [18]; (d) Ma et al. [32]; (e) Photoshop

cs6; (f-j) corresponding closeups of (a—e).

argmin |L|l, + AIW®E||,,
LE (9)

where ||L|, is the nuclear norm, |[W ® E||, is the 10-norm of
the matrix E, and ® means dot product and Pq(*) is defined
as follows:

, €,
Po(yp):{gf’ im- (10)

Inspired by Oh et al. [26], |ILIl, = Y}_,.,0% (L) the partial
sum of the eigenvalues of matrix L is used to replace the

nuclear norm and Iy-norm is replaced by I;-norm. Then,
equation (9) is rewritten as follows:

argmin L[, + AIW®E|,,
LE

st. Po(D) =Py (L+E), (11)

r=1.

The optimization of equation (11) can be solved by
augmented Lagrange multipliers and alternate direction
method. Finally, the resulting HDR image is the average of
the recovered low-rank matrix L.

3. Experimental Results

In this section, the performance of the proposed method is
evaluated both subjectively and objectively by comparing with
Oh et al. [26], Hu et al. [18], Ma et al. [32], and Photoshop cs6
on the challenging image sets with complex scene

(downloaded from http://user.ceng.metu.edu.tr/~akyuz/files/
eg2015/), where each image set contains five LDR images and
the third image is chosen as the reference image for all
methods. Oh et al. [26] is the state-of-the-art LRMC-based
HDR imaging method. Hu et al. [18] is the most competitive
state-of-the-art correction-based HDR imaging method. Ma
et al. [32] is the state-of-the-art exposure fusion method.
Photoshop cs6 is commercial software.

To subjectively evaluate the experimental results, Rein-
hard’s tone-mapping method [35] is employed in displaying
the HDR image generated by the proposed method and Oh
et al. [26]. The results generated by Hu et al. [18] are a set of
the latent images, which is merged by Mertens et al. [4]. Ma
et al. [32] and Photoshop cs6 directly generate displayable
image. All experiments are carried out in Matlab R2016b
(64-bit) and Windows 7.

Figure 3 shows the results generated by the proposed
method, Oh et al. [26], Hu et al. [18], Ma et al. [32], and
Photoshop cs6. Hu et al. [18] and Ma et al. [32] perform
well in ghost removal. However, the details of the man
inside the cafe are missing, as shown in Figures 3(h) and
3(i). Oh et al. [26] and Photoshop cs6 preserve the details
in the dark and bright regions but have problems in re-
moving ghost, as shown in Figures 3(g) and 3(j). This is
because Oh et al. [26] cannot handle the large overlapped
region of the man and the sitting women. Yet, the pro-
posed method successfully removes the ghost and pre-
served the details in both dark and bright regions.

Figure 4 gives another comparison result generated by
the proposed method, Oh et al. [26], Hu et al. [18], Ma et al.
[32], and Photoshop cs6. This scene is very complex, and
there are large and irregular overlapped regions across
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(d) (e)

FiGUure 4: Comparison results on “FastCars” with (a) the proposed method; (b) Oh et al. [26]; (¢) Hu et al. [18]; (d) Ma et al. [32];

(e) Photoshop cs6.

(d)

F1Gure 5: Comparison results on “Shop2” with (a) the proposed method; (b) Oh et al. [26]; (c) Hu et al. [18]; (d) Ma et al. [32]; (e) Photoshop cs6.

TABLE 1: Performance comparison for the proposed method and three state-of-the-art methods using the HIGRADE index.

Image sequence Proposed method Oh et al. [26] Hu et al. [18] Ma et al. [32]
café 0.4205 —0.5244 —0.0026 0.3531
FastCars 0.5094 0.0388 0.4533 0.5509
Sh0p2 0.483 —0.4278 0.2203 0.241
Walkpeople 0.5869 —0.1342 0.3153 0.1092
Average 0.5 —0.2619 0.2466 0.3136

0)

FiGure 6: Comparison results of the proposed method with different reference image. (a—e) Input LDR images; (f-j) the results generated

with (a—e) as the reference images.

images. Thus, the region is difficult for the user to specity.
Ghosts are very obvious in the results of Oh et al. [26] and
Photoshop cs6. Hu et al. [18] and Ma et al. [32] generate the
pleasant results completely without ghosts, but the result is
unnatural. For example, Figure 4(c) shows that color around
the light is distorted, and Figure 4(d) shows halos appear
around the edges. The proposed method provides the best
performance in ghost removal and detail preserving, and
there are no additional artifacts. Similar results can also be
seen in Figure 5.

Owing to the lack of the reference image, we applied the
blind image quality assessment index, HDR image gradient-
based evaluator (HIGRADE) [36], to objectively evaluate the
performance. For HIGRADE index, a higher value repre-
sents a higher visual quality. Table 1 shows the HIGRADE
scores of the proposed method and three state-of-the-art
methods. For most cases, the proposed method achieves the
highest HIGRADE score, which indicates the proposed
method can achieve natural appearances and preserve rich
details.
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Figure 6 shows the results of the proposed method based
on the different reference images. The performance of the
proposed method relies on the motion map and the weight
map. As shown in Figures 6(f)-6(i), ghosts are removed
successfully and details of dark and bright regions are
preserved. Detail loss on the road appears in Figure 6(j),
because there are too large saturated regions in the reference
image (Figure 6(e)).

4. Conclusions and Discussion

In this paper, a novel HDR imaging method based on the
bidirectional structural similarities and the weighted LRMC
is proposed. We observe that structural variation in the
motion regions and in the saturated regions are bidirectional
and unidirectional, respectively. Therefore, we propose bi-
directional structural similarities including FPSS and BPSS
to segment an image into four groups: motion regions,
saturated regions in the source image, saturated regions in
the reference image, and static and unsaturated regions.
Then, graph cuts algorithm is employed to eliminate noise.
Finally, the motion maps and the weight maps based on
FPSS and BPSS are introduced in the weighted LRMC-based
method. Unlike the previous LRMC-based methods, the
proposed method requires no user specification of the
missing regions.

Experiments on several challenging image sets with
complex scene are conducted. And, the proposed method is
compared with three current state-of-the-art algorithms and
Photoshop cs6. The results show that the proposed method
can preserve more details in the dark and bright regions and
simultaneously remove ghosts. In particular, the proposed
method is robust to the chosen reference image.
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