Hindawi

Advances in Meteorology

Volume 2020, Article ID 8841913, 12 pages
https://doi.org/10.1155/2020/8841913

Research Article

Hindawi

Quantifying the Location Error of Precipitation Nowcasts

Arthur Costa Tomaz de Souza

, Georgy Ayzel

, and Maik Heistermann

University of Potsdam, Institute of Environmental Science and Geography, Potsdam 14476, Germany

Correspondence should be addressed to Arthur Costa Tomaz de Souza; costatomazde@uni-potsdam.de

Received 11 September 2020; Accepted 21 October 2020; Published 3 December 2020

Academic Editor: Francesco Viola

Copyright © 2020 Arthur Costa Tomaz de Souza et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In precipitation nowcasting, it is common to track the motion of precipitation in a sequence of weather radar images and to
extrapolate this motion into the future. The total error of such a prediction consists of an error in the predicted location of a
precipitation feature and an error in the change of precipitation intensity over lead time. So far, verification measures did not allow
isolating the extent of location errors, making it difficult to specifically improve nowcast models with regard to location prediction.
In this paper, we introduce a framework to directly quantify the location error. To that end, we detect and track scale-invariant
precipitation features (corners) in radar images. We then consider these observed tracks as the true reference in order to evaluate
the performance (or, inversely, the error) of any model that aims to predict the future location of a precipitation feature. Hence,
the location error of a forecast at any lead time At ahead of the forecast time ¢ corresponds to the Euclidean distance between the
observed and the predicted feature locations at t + At. Based on this framework, we carried out a benchmarking case study using
one year worth of weather radar composites of the German Weather Service. We evaluated the performance of four extrapolation
models, two of which are based on the linear extrapolation of corner motion from ¢ -1 to ¢ (LK-Linl) and ¢ — 4 to ¢ (LK-Lin4) and
the other two are based on the Dense Inverse Search (DIS) method: motion vectors obtained from DIS are used to predict feature
locations by linear (DIS-Linl) and Semi-Lagrangian extrapolation (DIS-Rotl). Of those four models, DIS-Linl and LK-Lin4
turned out to be the most skillful with regard to the prediction of feature location, while we also found that the model skill
dramatically depends on the sinuosity of the observed tracks. The dataset of 376,125 detected feature tracks in 2016 is openly
available to foster the improvement of location prediction in extrapolation-based nowcasting models.

1. Introduction

Forecasting precipitation for the imminent future (ie.,
minutes to hours) is typically referred to as precipitation
nowcasting. A common nowcasting technique is to track the
motion of precipitation from a sequence of weather radar
images and to extrapolate that motion into the future [1]. For
that purpose, we often assume that the intensity of pre-
cipitation features in the most recent image remains con-
stant over the lead time period—an assumption commonly
referred to as “Lagrangian persistence” [2]. In Lagrangian
field tracking, a velocity vector is obtained for each pixel of a
precipitation field, and that vector field is used to extrapolate
the motion of the entire precipitation field—as opposed to
cell tracking in which contiguous high-intensity objects are
tracked (see [3] for a discussion of both methods).

The present study focuses on nowcasts that are based on
field tracking. The performance (or skill) of field tracking
techniques is mostly verified by comparing the forecast
precipitation field F,, », for time ¢+ At against the observed
precipitation field O, 5, at time t + At, where t is the forecast
time and At is the lead time. A large variety of verification
measures have been suggested in the literature (see, e.g.,
[4, 5]). Most of them, however, struggle with disentangling
different sources of error: when we compare Fy,p; to Opap
how can we know the cause of the disagreement? Was it our
prediction of the future location of a precipitation feature, or
was it how precipitation intensity changed over time? Some
verification scores, such as the Fractions Skill Score [6],
apply a metric over spatial windows of increasing size in
order to examine how the forecast performance depends on
the spatial scale. Yet, we still lack the ability to explicitly
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isolate and quantify the location error. This makes it difficult
to benchmark and optimize the corresponding components
of nowcast models.

In this study, we introduce an approach to directly
quantify the location error of precipitation nowcasts which is
based on the extrapolation of field motion. With location
error, we refer to the spatial offset (or Euclidean distance)
between the true and the forecast locations of a precipitation
feature (Figure 1). In this context, the term “feature” does
not refer to a contiguous object but to a distinct point in the
precipitation field, and we make use of the ability of the
OpenCV library to detect and track the true motion of such
distinct points. In a verification case study, we will dem-
onstrate the ability to quantify the location error by
benchmarking a set of routine extrapolation techniques for
one year of quality-checked radar data in Germany.

Section 2 highlights the approach to quantify the loca-
tion error and describes a set of tracking and extrapolation
techniques based on optical flow, as well as the radar data for
our case study. Section 3 presents the results of our case
study, and Section 4 concludes the paper.

2. Methods and Data

2.1. Feature Detection and Tracking. We suggest quantifying
the location error of a forecast by comparing the observed
location (or displacement) of a precipitation feature against
its predicted location. In visual computing, a feature is
defined as a point that stands out in a local neighborhood
and is invariant in terms of scale, rotation, and brightness
[7]. For a radar image, a feature (or corner) represents a
point with a sharp gradient of rainfall intensity [2].

In this study, features are detected using the approach
of Shi and Tomasi [8] If a feature is detected at one time
step, we attempt to track that feature in any subsequent
time step until it is no longer trackable. The feature tracking
follows the approach of Kanade [9], as implemented by
Bouguet [10]. The tracking error (or, inversely put, the
robustness of tracking a feature from one radar image to the
next) is quantified in terms of the minimum eigenvalue of a
2 x 2 normal matrix of optical flow equations (this matrix is
called a spatial gradient matrix in Bouguet [10]), divided by
the number of pixels in a neighborhood window. In the
tracking step, that minimum eigenvalue has to exceed a
threshold in order for a feature to be considered as suc-
cessfully tracked. Table 1 provides an overview of pa-
rameters used for both feature detection and tracking.
These values are based on the ones presented by Ayzel et al.
[2]. The underlying equations are well documented in
OpenCV [11].

In order to increase the robustness of track detection, the
tracking was also performed backwards at each time step
(Figure 2): let p, signify a feature that was identified at frame ¢
and tracked to the next frame at time ¢+ 1 at the position p,, .
The same tracking process was then applied backwards from
the point p,,; to time ¢, yielding the point p>&. Only the
trajectories where the distance d,, 4 between the source point
p, and the backwards tracked point p%< was less than one
kilometer (the grid resolution) were considered in our analysis.
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Ficure 1: Illustration of the location error for a prediction at
forecast time ¢ that is based on the linear extrapolation of feature
motion from t—1 to t.

To collect all feature tracks T in any given time period
with a length of n time steps, we detect “goodFeaturesTo-
Track” (Shi and Tomasi, 1994) at each time step k€ [1, .. ., n],
and track these features over as many subsequent time steps
as possible. Accordingly, each track T;; could be identified
by a unique tuple (4, j, k) that carries its starting point (by the
grid’s row and column indices, i and j) and its starting time
index k. In this study, we use an analysis period of one year
(2016, a leap year) and a time step length of 5 minutes, so
that ke [1, ..., 105408].

In summary, the tracking process consists of six steps:

(1) Identify the features p;®" using goodFeaturesToTrack
[11] at any time k.

(2) If there are already features being tracked, p¢¢, from

k-1 to k, we consider only those features p;°" for
which the distance to any feature p¢! is greater than
7km (with this threshold, we enforce consistency
with the minDistance parameter of the Shi-Tomasi
corner detection; see Table 1). The trackable features

px are hence the union of p¢d and piev.

(3) Track py from k to k + 1 using calcOpticalFlowPyrLK
(11}

(4) Backwards track (from k + 1 to k) those features p;,,
that were obtained in step 3.

(5) Calculate the distance, dy,q, from the features py to
the backward-tracked locations resulting from step
4.

(6) Keep only those features p,,; where the distance
old

dpaq is less than 1km. These features are now py.).

For statistical analysis, each track T;; is characterized by

its duration 7 (the number of time steps over which the track
persists), the overall displacement distance d of the feature
along its track, the average feature velocity v = d/7, and the
straightness of the feature’s displacement in terms of the
sinuosity index (SI) (which is calculated by dividing d by the
Euclidean distance between the feature origin and end lo-
cations). The concept of sinuosity is widely used to char-
acterize river curvatures as introduced by Mueller [12] and
was also applied to atmospheric science by Terry and Feng



Advances in Meteorology

TaBLE 1: OpenCV function parameters used for feature detection and tracking.

Parameter name Value Meaning
maxCorners 200 Maximum number of features
qualityLevel 0.2 Minimum accepted quality of features
minDistance 7 Minimal Euclidean distance between features
blockSize 21 Size of pixel neighborhood for covariance calculation
winSize (20, 20) Size of the search window
maxLevel 2 Maximal number of pyramid levels
TaBLE 2: Overview of extrapolation models.
Pt Prv1
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P

FIGURE 2: Illustration of the backward tracking test performed at
each time step for all features.

[13] to quantify the sinuosity of typhoon tracks. In our
analysis, we will also use the sinuosity index in order to
understand the error of predicted feature locations.

2.2. Error of Predicted Locations. Let p be the true location
and let P be the predicted location of a point feature in a
Cartesian coordinate system. At forecast time t, p, will be
equal to P,. Consider P,,,, =f (p» At, S;) any function or
algorithm that predicts the future location P, ,, of point p,
from any set S, of predictors that is available at time ¢ or
before. In the context of our study, that set of predictors
could be, for example, the previous locations p, 1, p;», . .. of
pr- We then define the error of our prediction, henceforth
referred to as location error &, as the Euclidean distance
between P,,,, and p,, ;-

2.3. Extrapolation Techniques. In a verification experiment,
we can use our collection of tracks T in order to retrieve
points p; for which the location P,,,, at t+ At should be
predicted, points that could be used as predictors (S,), as well
as the true location p,,,, of the point at t + At. Assuming that
an extrapolation of motion uses feature locations from m
time steps before #, the minimum feature track length to
produce a forecast would be m + 1. In order to retrieve the
location error of such a prediction at time £+ At, we would
need a minimum track length of m + Af+ 1.

Based on the above terminology, we present in the
following the extrapolation models analyzed in the present
study. These models are based on the models that were also
evaluated in a recent benchmarking study on optical-flow-
based precipitation nowcasting [2]. Table 2 gives an overview
of model acronyms and their main properties.

# Time steps

Name Main approach looking back
Persist Eulerian persistence 0

LK- Linear extrapolation based on Lukas 1

Linl Kanade

LK- Linear extrapolation based on Lukas 4

Lin4 Kanade

DIS- Linear extrapolation from DIS 1

Linl motion field

DIS Semi-Lagrangian extrapolation based

Rotl on motion field obtained by dense 1

optical flow

2.3.1. Eulerian Persistence. As a trivial benchmark, we use
the assumption of Eulerian persistence, meaning that the
precipitation feature will simply remain at its position at
forecast time; that is, P, , = p,-

2.3.2. Linear Extrapolation. Linear extrapolation of feature
motion assumes that a feature moves, over any lead time, at
constant velocity and in the same direction. The displace-
ment vector representing this motion can be obtained in
different ways. These ways constitute three different models
exemplified in the present study: LK-Linl, LK-Lin4, and DIS-
Linl. In the case of LK-Linl and LK-Lin4, the displacement
vector is obtained from “looking back” m time steps from
forecast time t to previous feature locations at t — m (tracked
by using the Lucas-Kanade method, hence the LK label). For
LK-Linl, m equals 1, so the vector v (¢, p,) to displace feature
p:is the connection from p,_; to p; for LK-Lin4, m equals 4,
so that the displacement vector results from the connection
between p, 4 and p;, where the length of the vector is divided
by 4 in order to obtain the displacement velocity. Hence, a
forecast at lead time At extends the vector v(t, p,) corre-
spondingly. Please see Figure 3 for an illustration of both the
LK-Linl and the LK-Lin4 method. Of course, any other
look-back time m could be used to obtain a displacement
vector. In this study, we arbitrarily used m € {1, 4} in order to
examine the effect of m on the forecast performance.

For the DIS-Linl model, a complete field of motion
vectors Vg is obtained from the Dense Inverse Search
(DIS) method [14]; the underlying concept and equations of
the DIS method have been elaborated by Kroeger et al. [15]
and then used for the extrapolation. A point p;, is linearly
extrapolated from ¢ to t+n by n times the velocity vector
vprs (t, py), where vy (£, p,) is the vector closest to p; in the
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v

F1GURE 3: Illustration of the linear extrapolation schemes for the LK group: on the left LK-Lin1 and on the right LK-Lin4. The location error

is displayed by &(t,,).

Vs (t) field (Figure 4). Vg (¢) is calculated by OpenCV’s
cv2.DISOpticalFlow_create function, which returns velocity
vectors for each grid pixel based on the radar frames from
t—1to t. In a recent benchmarking study about optical-flow-
based precipitation nowcasting, Ayzel et al. [2] showed that
the DIS-based model (referred to as the “Dense” model in
that paper) is an effective method for radar-based precipi-
tation nowcasting.

2.3.3. Semi-Lagrangian Approach Based on Dense Optical
Flow. In a Semi-Lagrangian approach, the motion field is
typically assumed as constant over the forecast period and
the feature trajectory is determined by following the
streamlines [16]. Following this concept, the DIS-Rotl
model (corresponding to “Dense rotation” in [2]) uses the
two most recent radar images, t — 1 and ¢, to estimate V¢ (¢)
by c¢v2.DISOpticalFlow_create function. Similar to the DIS-
Linl model, the displacement vector vy (¢, p,) which is
closest to p; is used to extrapolate the motion of p, from its
position at t to t+ 1, providing the location of P,;. This
process is repeated at all lead time steps until the maximum
lead time is achieved. Hence, at each lead time step n, we
retrieve the vector v ¢ (t, P,,,) which is closest to P,,, in
order to extrapolate the feature location, P,,,,,. Accord-
ingly, the velocity vector is updated at each lead time step
from Vp(t), allowing for rotational or curved motion
patterns (Figure 5).

2.4. Weather Radar Data and Experimental Setup. Our
benchmarking case study is based on weather radar data
from the German Weather Service, namely, the RY product
generated as part of the RADKLIM radar reanalysis of the
German Weather Service DWD [17]. The RY product
represents a quality-controlled national precipitation in-
tensity composite from 18 C-Band radars covering Germany
at 5-minute intervals and a spatial resolution of 1km at an
extent of 1100 x 900 km. The basis of the composite product
is the so-called “precipitation scans” from each of the 18
radar locations. The precipitation scan is designed to follow
the horizon as closely as possible at an azimuth resolution of
I’ and a radial resolution of 1km, adjusting the elevation
angle for each azimuth depending on the presence of

Vs (£) /

»
»

FIGURE 4: In the DIS-Linl model, the vector vy (t, p,) (light red
arrow) obtained from Vi (£) is transferred to the p, location and
linearly extended to ¢+ n.

X

FIGURE 5: Schematic of the DIS-Rotl model (orange path), where
the velocity is updated every time step by transferring the velocity
vector vpg (¢, p) (light orange arrow) closest to p, (black circles, for
t=0) or P,,, (orange circles, for t>0) in Vpis(), to the P, + At
location to advect.

mountains that would interfere with the beam propagation.
Quality control includes a wide range of correction methods
for, e.g., clutter or partial beam blockage (see [17] for
details).

The year 2016, selected for this experiment, was char-
acterized by an annual precipitation close to the climato-
logical mean for most regions in Germany, as can be seen in
the German Climate Atlas [18]. However, the precipitation
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mean during autumn was below the normal average and
during the winter months slightly above the climatological
mean.

As 2016 was a leap year, this experiment was carried out
on 105408 radar composite images. Since none of the
methods under evaluation required any kind of training,
there was no need to split the data into sets for calibration
and validation. Instead, we used all tracks for verification.
For each track, we always use, as forecast time ¢, a time of 20
minutes after the feature was detected for the first time. That
is because our model LK-Lin4 needs to look back four time
steps (i.e., 20 minutes) in order to make a forecast, and we
need to make sure, for a fair comparison, to compare all
models for the same forecast times.

2.5. Computational Details. The analysis was carried out in a
Python 3.6 environment using the following main open-
source libraries: NumPy (https://numpy.org), NumExpr
(https://github.com/pydata/numexpr), and SciPy (https://
www.scipy.org) for general computations; OpenCV
(https://opencv.org) for feature tracking; and Pandas
(https://pandas.pydata.org) and h5py (https://www.h5py.
org).

3. Results and Discussion

3.1. Properties of Collected Tracks. The identification and
tracking process detected 376,125 features above the rainfall
rate threshold of 0.2mm/h and lasted over 20 minutes,
which resulted in 337,776 eligible tracks after applying the
extrapolation step. A track was considered as “eligible” in
case all models had a predicted location at all lead times,
from t to t + n. The loss of 10.2% that is implied by the above
numbers was caused by the DIS group of models which did
not generate a valid velocity vector vy (t, p,) near every p,
point, in the V¢ (¢) field, within a 3.5km threshold.

Figure 6 gives an overview of the properties of the valid
tracks. The figure also shows the seasonal dependency of
these track properties by summarizing their distribution on
a per month basis. We would like to emphasize that this
analysis must not be interpreted as a “climatology” of track
properties as it only contains data from a single year. Still, we
consider it as illustrative to investigate which properties tend
to exhibit a seasonal pattern and also to discuss whether the
observed properties can be considered as representative for
the governing rainfall processes in Germany.

In an average month of 2016, we identified and tracked
28,146 features (Figure 6(a)). The largest number of tracks is
found from April to August (all above the average). Yet,
there is no continuous seasonal pattern in the number of
detected tracks because, e.g., January and October also show
rather large counts.

No pattern at all can be found for the track length
(Figure 6(b)). With an average track length of 128 km,
monthly maximum mean and median track lengths occur in
January, April, and September. A partly similar pattern can
be found for the track duration that amounts to 207 minutes
on average (Figure 6(c)). This is plausible as we would, in

general, expect the length of a track to increase with its
duration. Yet, there are also months—most notably the
summer months from May to August—where this expec-
tation is not met; and, of course, the length of a track de-
pends not only on its duration but also on a feature’s
velocity. The average feature velocity in 2016 amounted to a
value of 42 km/h; and, in fact, not only does velocity show a
clear seasonal pattern (with minimum velocities in the
summer months; see Figure 6(d)), but also the seasonal
pattern helps us to understand where the patterns of track
length and duration appear to be “inconsistent.” For ex-
ample, the track velocity is at a minimum in May and June,
which decreases the length of track despite the rather high
duration values for these two months.

The clearest seasonal pattern can be observed for rainfall
intensity (Figure 6(e)). That pattern is very much in line with
our expectation as rainfall in the summer months is gov-
erned by convective events that tend to be more intense than
stratiform event types. However, if we assumed that a higher
rainfall intensity along a track is caused by the convective
nature of the underlying event, the track duration in the
corresponding months (e.g., May and June) is at least
surprising: we would expect a convective event not only to be
more intense but also to be rather short (in comparison to
widespread stratiform rainfall). The apparent inconsistency
between the patterns of rainfall intensity and track duration
points us to one of the key issues with the presented track
inventory: we must not misinterpret a “track” as an “event”
in a hydrometeorological sense. The corner detection al-
gorithm (see Section 2.1) searches for pronounced features
in the sense of strong local gradients and tracks a feature for
as long as it stands out. While we define a rainfall event as
some coherent process in space and time, the tracking al-
gorithm could “lose” a feature right in the course of an
ongoing event and maybe, at the same time, find another
feature to track somewhere else in the field. Obviously, the
tracking algorithm was able to track features over a longer
duration in May, June, and September of 2016. However, as
of now, we do not know which properties of the corre-
sponding rainfall events caused that effect. We should just
emphasize that the duration of a track does not necessarily
correspond to the duration of an event. In the same way, we
cannot expect the tracking algorithm to find features at
“representative” locations of a convective cell. It will detect
such features anywhere in a rainfall field where local gra-
dients meet the tracking criteria. That could be right not only
in the middle of heavy rainfall but also at the edges. Hence,
the reported precipitation intensities along the tracks will
not be representative of the mean precipitation intensities of
the corresponding precipitation fields.

Altogether, we have to emphasize at this point that the
seasonal track statistics are indeed plausible. But it must be
clear that track statistics are not necessarily representative
for “event” statistics. That notion might be irritating for
those who have been defining and tracking features in terms
of coherent rainfall objects over their lifetime from initiation
to dissipation. A new feature track as we understand it in our
analysis could be found right in the middle of an ongoing
event, and it can be lost long before the actual rainfall
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“object” dissolves. However, that does not at all lessen the
value of these tracks for the purpose of our analysis, which is
to quantify the forecast location error based on well-defined
and scale-invariant features.

Having said that, one final track property shown in
Figure 6(f) has not been discussed yet: the sinuosity index.
As pointed out above (Section 2.1), the sinuosity index il-
lustrates how much the shape of a track deviates from a
straight line (which would correspond to a sinuosity index of
1). Figure 6(f) shows rather large sinuosity values for the
summer months, May to September, but there is no obvious
seasonal pattern. More strikingly, the distribution of the
sinuosity index is very heavily tailed. The average value
amounts to approximately 1.10 in the year 2016, which is, at
the same time, the 90th percentile of the sinuosity values.
That means, in turn, that the vast majority of tracks are
rather straight, while the remaining tracks show all kinds of
curved, meandering, twisted, or just erratic behavior.

Hence, before we systematically show the results of our
verification experiment with regard to the location error (see
Section 3.3), we would like to illustrate, in the following
paragraph, the behavior of observed tracks in comparison to
the forecast tracks under different sinuosity conditions.

3.2. Visual Examples of Observed and Predicted Tracks.
Before we systematically evaluate the performance of dif-
ferent extrapolation techniques, we would like to provide
some illustrative examples of observed versus predicted
tracks. The selection of tracks for this illustration is arbitrary
and does not intend to be representative of the performance
of any of the extrapolation methods. Instead, we aim to
exemplify shapes of observed and predicted tracks under
different sinuosity conditions in order to convey a better
understanding of the various constellations that will finally
be condensed into one single location error value.

Figure 7 shows a “gallery” of 11 observed tracks in
different subplots (From Figure 7(a) to 7(k)). Each subplot
also contains the tracks that were predicted by the different
extrapolation models. Each dot represents one feature
location in a 30-minute time step, except the first one that
represents the first prediction step at five-minute lead time.
LK-Linl and LK-Lin4 infer the displacement vector di-
rectly from the feature positions at t and t— 1 or t and ¢t — 4,
respectively. As a reminder, DIS-Linl and DIS-Rot1 obtain
the displacement vector of a feature from the DIS algo-
rithm, a dense optical flow technique that produces motion
fields based on the radar images at t and t—1; DIS-Linl
extrapolates the closest vector linearly over the entire lead
time, while DIS-Rotl uses a Semi-Lagrangian scheme in
which the displacement vector is updated as the feature
moves through the velocity field obtained from the DIS
technique. Further details have been provided in Section
2.3. As in all forecasts of our verification experiment, the
forecast time t corresponds to the 5th feature of the ob-
served track. That is because the LK-Lin4 method needs to
look four steps back in time (t—4) in order to produce a
forecast, while the other methods only look back one step in
time (t—1).

In order to convey a better idea about the rainfall pat-
terns in the examples, the observed rainfall intensity at
forecast time t is plotted as a background in grey scale.
Furthermore, the sinuosity index and the track duration are
printed in the corresponding subplots.

Please note that the duration of the observed tracks in
Figure 7 can extend over many hours; very long tracks were
capped at a duration of 300 minutes for the purpose of
plotting. Furthermore, the lead time of the predictions in the
examples was set to the (capped) track duration minus 20
minutes (which corresponds to the period t—4 until forest
time #). As a consequence, the lead times illustrated in
Figure 7 are mostly longer than the maximum lead time of
120 minutes, which is used in our verification experiment
(see the next section). Hence, the first visual impression of
Figure 7 is dominated by the considerable errors that can
occur for such long lead times. But, of course, we should
rather be aware of the behavior for shorter lead times up to
120 minutes. For that reason, the 120-minute lead time is
highlighted by a larger dot.

Not surprisingly, most of the competing methods appear to
remain rather close to the observed track for short lead times of
up to 30 minutes (except, e.g., in subplot Figure 7(j) in which
the DIS-based methods entirely fail to capture the direction of
feature movement). After that, the lead time over which the
extrapolation models adequately predict the observed feature
track varies, depending on the persistence of the motion be-
havior and the validity of the underlying model assumption.
For example, all models perform quite well for very long times
in subplot (f). In subplot (i), the Semi-Lagrangian approach
(DIS-Rotl) shows a clear advantage, while in subplots of
Figures 7(c) and 7(k), DIS-Rotl is outperformed by all other
models. Surely, there are several examples (Figures 7(b), 7(d),
7(e), and 7(g)) in which all models entirely fail to anticipate the
motion for lead times beyond 120 minutes.

As this compilation of examples is deliberately arbitrary,
it does not provide a basis to infer the general superiority or
inferiority of one or the other method. All models appear to
struggle with predicting very sinuous tracks (subplots in
Figures 7(b), 7(d), 7(e), and 7(g)), which is what we would
expect. However, while the figure makes it difficult to
compare the absolute location error between the examples
(due to the different scales), it still appears that the absolute
location error does not necessarily depend on the sinuosity.
For example, the location error of LK-Linl after the max-
imum lead time (280 minutes) is higher in subplot 7(i)
(almost straight, SI=1.01) than it is in subplot 7(d)
(SI=1.36). In fact, straight tracks can imply a large error if
the initial motion vector of a forecast method fails to rep-
resent the average long-term direction (see subplot 7(j) for a
very impressive example). Then again, large errors can occur
if a strong sinuosity of the track coincides with a large
overestimation of the absolute velocity (e.g., subplots 7(b)
and 7(g)). In that case, the linear extrapolation quickly
departs from the track origin, while the actual feature track
meanders slowly and remains in the close vicinity of the
origin. For such a scenario, the trivial persistence model (the
feature just remains at the origin) will be superior even for
short lead times.
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duration 7 (in hours) and its sinuosity index SI are shown. The lead time of 120 minutes is highlighted by a larger dot. Some very long tracks
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Altogether, these different examples give us a better idea
of how location errors can develop from both inadequate
model assumptions (e.g., linear approximation versus
curved or sinuous conditions) and a failure to approximate
the average motion from the initial feature locations. It is
impossible, though, to diagnose the superiority of one or the
other model from these examples. Hence, we will now
systematically examine the results of our model verification
experiment. We will not only analyze how the location error
depends on lead time, but we will also investigate how the
model performance relative to the persistence model de-
pends on the sinuosity of the underlying tracks.

3.3. Systematic Quantification of the Location Error. After
having exemplified different observed and predicted tracks in
the previous section, we now present the results of our
benchmarking experiment. Figure 8 shows the distribution of
locations errors for different models and lead times up to 120
minutes. For each lead time, the box plots specify mean,
median, interquartile range, and the 5th and 95th percentiles
of the location error. For all models, the error quantiles in-
crease slightly exponentially but almost linearly with lead time.
The rate at which the location error grows with lead time is, for

all models, dramatically lower than that for the persistence
model; the mean error of persistence is higher than the mean
error of any model at any lead time, which means that all
models, on average, have positive skill at all lead times. For all
models, the error distribution is obviously positively skewed,
with the mean error being much higher than the median, and
thus there is a heavy tail towards high location errors.

For very short lead times of up to 10 minutes, the mean
error is about one kilometer for all competing models except
for persistence which is already up at more than seven ki-
lometers after ten minutes. After 60 minutes, the mean
location error of all models exceeds a distance of 5 kilo-
meters, as well as 10 kilometers after 110 minutes. For all
models, at least 25% of all forecasts exceed an error of 5
kilometers after 50 minutes and an error of 10 kilometers
after 90 minutes. After 75 minutes, at least 5% of all forecasts
exceed an error of 15 kilometers.

Altogether, the location error can be substantial for a
significant proportion of forecasts, while the median loca-
tion error grows at a more moderate rate.

While this general pattern governs the behavior of all
models, there are clear differences between the performances
of the competing models. These differences, however, are not
always coherent across all error quantiles and lead times,



Advances in Meteorology

25 A
|Median ~®Mean
20 | 25% 95%
5% 75%
3
g 15
Z

10 |

55

L

65 70 75 80 8 90 95 100 105 110 115 120

Lead time (min)

B Lk-Linl
B Lk-Lind
-@ DIS-Linl

- DIS-Rotl
—a— Persist

FiGure 8: The distribution of location errors for different extrapolation models and lead times.

except for the DIS-Rotl model, which has the weakest per-
formance of all models at virtually all lead times and for all
quantiles, and the LK-Lin1 model, which performs better than
DIS-Rotl but ranks second last. As for the best forecast
performance, the LK-Lin4 and the DIS-Linl models take turns
depending on error quantile and lead time: For the 5th and the
25th percentiles, the LK-Lin4 model performs best for lead
times up to 100 minutes, for the median up to 80 minutes, and
for the mean up to 55 minutes. The DIS-Linl model shows the
strongest changes of relative performance over lead time: as for
the mean error, DIS-Linl starts to outperform LK-Lin4 at a
lead time of 60 minutes and continues this way until the
maximum lead time of 120 minutes. As for the median error,
DIS-Linl only catches up with LK-Lin4 after 90 minutes. For
the 75th percentile, DIS-Linl outperforms LK-Lin4 after 50
minutes and for the 95th percentile already after 20 minutes.
In summary, LK-Lin4 tends to outperform DIS-Linl in the
first hour, while DIS-Linl becomes superior in the second
hour, apparently because it tends to avoid very high errors
more efficiently than LK-Lin4 does.

In the following, we would like to better understand how
model skill is affected by sinuosity. In Section 3.2, we have
already indicated that the absolute values of location errors
do not clearly depend on sinuosity. That was confirmed by
the systematic verification experiment (results not shown).
Yet, the difference between an extrapolation model and the
(trivial) persistence model might very well depend on sin-
uosity. In order to formally evaluate that hypothesis, we now

examine the skill of our models more closely. Skill scores rate
the score of a forecast in relation to the score of a reference
forecast, in our case persistence. They are particularly useful in
benchmark studies such as the present one. Equation (1)
shows the general definition of skill as derived from any
forecast score, as well as the specific formula if we use the
location error ¢ as the “score” (which becomes zero for a
perfect forecast) and persistence as the “reference”:

Scoreforecast B Scorereference _ Eforecast ~ €

Skill = persistence

Score — Score

perfect reference _Spersistence

(1)

We examine the forecast skill under different sinuosity
conditions. As already pointed out in Section 3.1, the dis-
tribution of sinuosity is highly skewed and 90% of observed
tracks would pass as at least “rather straight” with a sinuosity
index equal to or lower than 1.1. Hence, we split the forecasts
into three unequal groups, depending on quantiles of the
sinuosity index: The first group contains the “straight” 90%
of the forecasts with a sinuosity index below 1.1. We consider
the value of 1.1 as an—admittedly—arbitrary threshold
between “rather straight” and “rather winding” tracks. The
remaining 10% of tracks are split into two equally sized
groups, again based on sinuosity: the 5% with the highest
sinuosity, exceeding an SI value of 1.2, could be labelled as
“twisted,” and the remaining 5% with intermediate SI values
between 1.1 and 1.2 could be labelled as “winding.” Figure 9
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shows the average model’s skill over every lead time for these
three sinuosity classes. Clearly, the model skill dramatically
varies between these three groups: it ranges between 0.79
and 0.87 for the “straight” category, mostly between 0.5 and
0.65 for the “winding” category, and mostly between 0 and
0.5 for the “twisted” category. This decrease of skill with
increasing sinuosity is well in line with our expectation.
Furthermore, the ranking of all models based on skill is quite
coherent across all categories and also consistent with our
previous analysis of location errors. DIS-Linl becomes
superior within the second forecast hour, while LK-Linl
performs better in the first forecast hour. Only in the
“twisted” category do LK-Linl and, even more, LK-Lin4
outperform DIS-Linl across all lead times. It should be
noted, though, that the overall skill in the twisted category is
very low for all competing models. In the “winding” cate-
gory, LK-Lin1 slightly outperforms LK-Lin4 in the first 20
minutes. Finally, DIS-Rotl performs worst at all lead times
in all categories.

The change of model skill with lead time should be
interpreted with care, as it depends on both the performance
of the extrapolation model itself and the location error of the
persistence model. For most models and SI categories, the
skill appears to reach an optimum at some lead time, which
implies that the superiority of the model over persistence
reaches a maximum.

4. Conclusions

In this paper, we have introduced a framework to isolate and
quantify the location error in precipitation nowcasts that are
based on field-tracking techniques. While it is often assumed
that errors in precipitation nowcasts are dominated by the
temporal dynamics of precipitation intensity, the location
error of predicted precipitation features has so far not been
explicitly and formally quantified.

The main idea of our framework is to detect and track
scale-invariant precipitation features (corners) in radar

images. In our study, we detected features by using the
approach of Shi and Tomasi (1994) and tracked these fea-
tures following the approach of Lucas and Kanade [9], using
both algorithms as implemented in the OpenCV library. We
increased the robustness of extracted feature tracks by
making sure that the features can be successfully tracked
forwards and backwards. That approach, together with a
rather strict definition of parameter values for feature de-
tection and tracking, increases our confidence in the reli-
ability of the detected tracks. Still, we have to assume that the
feature locations themselves are, as any measurement, un-
certain. We expect the main sources of uncertainty to be the
grid resolution (which does not allow resolving errors below
1 km), and complex small-scale intensity dynamics that can
interfere with motion patterns. For future studies, we suggest
a comprehensive sensitivity analysis with regard to the
parameters of the feature detection and tracking algorithms
in order to better understand the effects on both the number
and the robustness of detected tracks in the context of
rainfall motion analysis. Still, we assume that the error of
extrapolating feature motion is substantially larger than the
error of feature tracking itself. In summary, we consider it
warranted to use the observed tracks as a reference in order
to evaluate the performance (or, inversely, the error) of any
model that aims to predict the future locations of such
precipitation features. For that purpose, we defined the
location error of a forecast at any lead time At ahead of the
forecast time ¢ as the Euclidean distance between the ob-
served and the predicted feature locations at t+ At.

One might want to use this approach to comprehensively
quantify the location error of any forecast model for the full
spatial domain of a forecast grid, for example, a national
radar composite. In such a case, we would need to assume
that the average of forecast errors that we have quantified
from observed feature locations in a forecast domain is
representative for the average error of all location predic-
tions in that domain. We have not yet investigated the
validity of that assumption. One might argue that the
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behavior of locations identified as “corners” or “good fea-
tures to track” might not be representative for the motion
behavior of the entire precipitation field; however, it will be
difficult to find evidence to either verify or falsify such a
hypothesis, as it would require another independent way to
quantify the location error. Still, we are convinced that the
proposed framework is useful: even without the need of
strong assumptions on representativeness, the framework
allows us to compare and benchmark the ability of different
models to forecast future locations of precipitation features
and thus to specifically focus on improving that ability by
future model development.

The hypothesis that such further model developments
are urgently required is supported by the results of our
benchmarking study. It should be clarified again that this
benchmark study does not intend to suggest better ex-
trapolation models but to demonstrate the ability of our
framework to unravel the location errors that are produced
by state-of-the-art extrapolation methods. For that purpose,
we compared four models: two models use the feature lo-
cations before and at forecast time ¢ in order to derive
displacement vectors which are then used to linearly ex-
trapolate feature movement over the lead time. Model LK-
Linl uses the feature locations at ¢ and -1, and LK-Lin4
uses the feature locations at t and t — 4. The other two models
are based on the dense optical flow algorithm DIS that
generates a full motion vector field under various
smoothness constraints. The model DIS-Linl obtains the
displacement vector for a feature at ¢t from the nearest
motion vector in the field based on the radar images at times
tand t — 1 and uses that vector over the entire lead time. DIS-
Rotl, in contrast, uses a Semi-Lagrangian scheme in which
the displacement vector is updated as the feature moves
through the motion field obtained from the DIS technique.
The motivation behind the DIS-Rotl model is to better
represent rotational or curved motion patterns. From these
four competing models, LK-Lin4 appears to be the best
model in the first forecast hour and DIS-Linl the best in the
second. DIS-Rotl performs consistently the worst. That is
not quite in line with our naive expectation in which we
would hope that a Semi-Lagrangian approach should be able
to better capture at least curved motion patterns. But not
even in the winding category does the complexity of the DIS-
Rotl approach pay off. Whether that is due to the imple-
mentation of the Semi-Lagrangian approach or due to the
lack of validity of the approach should be the subject of
future research. Comparing LK-Linl to LK-Lin4, we see a
clear advantage in looking back in time more than one step.
It appears that, this way, we can retrieve more reliable, more
representative, and less noisy displacement vectors, which
shows in the superiority of LK-Lin4 over LK-Linl.

For all competing models, the mean location error exceeds
a distance of 5 kilometers after 60 minutes and 10 kilometers
after 110 minutes. At least 25% of all forecasts exceed an error
of 5 kilometers after 50 minutes and an error of 10 kilometers
after 90 minutes. Even for the best models in our experiment, at
least 5 percent of the forecasts will have a location error of more
than 10 kilometers after 45 minutes. When we relate such
errors to application scenarios that are typically suggested for
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precipitation nowcasting, for example, in the context of early
warning systems for pluvial floods in urban environments (see
[19]), it becomes obvious that location errors matter: the order
of magnitude of these errors is about the same as the typical
extent of a convective cell or of a medium-sized city. Hence, the
uncertainty of precipitation nowcasts at such length sca-
les—just as a result of locational errors—can be substantial
already at lead times of less than an hour.

While similar conclusions have already been drawn by
using spatially sensitive verification measures such as the
Fractions Skill Score (see, e.g., [6]), our framework allows us to
isolate the location error for specific models and situations, to
better understand the factors that govern these errors, and
hence to use that knowledge in order to specifically improve the
extrapolation of motion patterns in existing nowcasting models.
As an example, we have demonstrated how the use of the
sinuosity index can help us to better understand the predictive
skill and hence the uncertainty of our models in specific sit-
uations. We hope that the large number of extracted tracks will
help to foster the development of new techniques that use data-
driven machine learning models for the extrapolation of feature
location. For that purpose, we have made openly available the
full set of extracted feature tracks for the year 2016 (https://doi.
org/10.5281/zenodo.4024272 [20]) to serve as input to future
studies. However, such future studies should also use radar data
from a longer time period in order to learn more about the
seasonal effects related to the properties of feature tracks.

Data Availability

The radar data are provided by DWD at https://opendata.
dwd.de/weather/radar/radolan/ry (last access: Sept. 2020).
The code of this analysis is available in the Github repository
under https://github.com/arthurcts/loc_error (last access:
Sept. 2020). The dataset of extracted feature tracks has been
deposited in the Zenodo repository (https://doi.org/10.5281/
zen0do.4024272).
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