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In this study, an experimental hydrometeorological forecasting system was developed based on the Coupled Ocean-Atmosphere-
Wave-Sediment Transport (COAWST) model. )e system downloads global real-time ocean, atmosphere, and wave forcing data,
producing regional forecasts every day. A coastal area in South China, encompassing Hainan Island, Leizhou Peninsula, and
surrounding sea areas, was chosen as the study domain. A series of 72-hour forecasting simulations were conducted in the area,
lasting from July 27 to August 31, 2019. )e forecasts throughout August were chosen for evaluation with station observations,
along with two sets of reanalysis data, ERA5 and CLDAS. )e evaluation results revealed that the COAWST model had high
potential for routine forecasting operations. )e 24 h forecasts, with a lead time of 24 hours, had high accuracy, while the 48 h and
72 h forecasts did not differ greatly in terms of performance.)e distributions of bias between forecast and reanalysis data showed
obvious differences between land and sea, with more forecasted precipitation and lower temperatures in land grids than in sea
grids. In most cases, the forecasts were closer to ERA5 in terms of means and other statistical measures. )e forecasts enlarged the
land-sea differences of temperature when compared with ERA5 and strengthened summer monsoon with more moisture
transported to land areas. Resulting from that, a forecasted bias of lower surface pressure, higher air humidity, stronger south
wind, and so forth was also detected over the domain but at low values.

1. Introduction

)e forecast skill of numerical weather prediction (NWP)
has consistently increased over the past 40 years [1, 2]. Bauer
et al. found that the forecast skill, which is defined as the
correlation between forecasts and verified analyses at a
height of 500 hPa, has been increasing by about one day per
decade [3]. However, NWP still has several limitations in
terms of representing physical processes, ensemble model-
ing, and model initialization. Further, improvements are
required in observation and computing [4–6].

To improve the representation of physical processes in
hydrometeorological simulations, many studies have shown
that the sea-surface temperature (SST) and wave processes at
the air-sea interface influence air-sea surface roughness,
momentum, and heat fluxes, improving the accuracy of
NWP in coastal regions [7–9]. Traditional uncoupled at-
mosphere models usually adopt observations or modeling
data as one-way inputs of SST and use idealized parameters
to describe changes in air-sea surface variables (i.e., surface
roughness) during the forecast process. In contrast to these
uncoupled models, coupled forecasting models—which
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combine mesoscale atmospheric models with ocean and
wave models—can consider the dynamic interactions be-
tween atmospheric boundary layers and marine upper
layers. It has been proven that these coupledmodels improve
air-sea interactions and facilitate more accurate predictions
than uncoupled models, especially in extreme events, that is,
tropical cyclones (TCs) [10–13].

A number of fully coupled ocean-atmosphere-wave
models have been developed to simulate air-sea interactions
[14–16]. Several of these fully coupled models have been
implemented for the simulation of TCs or for operational
forecasts. For example, the 3-dimensional Coupled Ocean/
Atmosphere Mesoscale Prediction System (COAMPS) was
developed by the United States Naval Research Laboratory
(NRL) in the mid-1990s [17]. )e COAMPS model included
a data assimilation system, wave models, and other im-
provements to previous models and was used for operational
forecasting in the U.S. navy [18–20]. )e University of
Miami Fully Coupled Atmosphere-Wave-Ocean Modeling
(UMCM) system was developed with two modes, including
different atmosphere-wave-ocean model options [21].
UMCM-MWP, one mode of UMCM, included the fifth-
generation Pennsylvania State University-National Center
for Atmospheric Research Mesoscale Model (MM5), the
third-generation wave model (WAVEWATCH III), and the
three-dimensional Price-Weller-Pinkel ocean model
(3DPWP). It used an improved wind-wave coupling scheme
that was verified using Hurricane observations [22]. Liu et al.
established a coupled atmosphere-wave-ocean modeling
system (CAWOMS) that included a sea-spray model and
studied the effects of atmosphere-wave-ocean coupling on
TC intensity.

Among these fully coupled ocean-atmosphere-wave
models, the Coupled Ocean-Atmosphere-Wave-Sediment
Transport (COAWST) model, developed by Warner et al.,
has a high potential for application in forecasting [23, 24].
)e model is open-access on the website (https://code.usgs.
gov/coawstmodel/COAWST) and is being updated con-
tinuously. )e COAWSTmodel has been widely applied in a
number of fields, such as TC hindcasts [25, 26], air-sea
interaction mechanisms during TCs or other extreme events
[27–29], coastal hydrodynamic processes [30, 31], and
sediment-dynamics simulations [32]. According to studies
on TC simulation, the fully Coupled Ocean-Atmosphere-
Wave-Sediment Transport (COAWST) model provided
lower SSTs and better general performance regarding TC
intensity in comparison to uncoupled atmosphere models.

Owing to the good performance of the COAWSTmodel,
some agencies or research groups implemented this model
in operational forecasting products. For example, the Ocean
Observing andModeling Group (OOMG) in North Carolina
State University developed two forecasting systems, the
Coupled Northwest Atlantic Prediction System (CNAPS)
and the South Atlantic Bight-Gulf of Mexico (SABGOM)
model, and provided the three-dimensional forecasting
products [33]. )e Madeira Oceanic Forecasting System,
which was developed by the Oceanic Observatory of Ma-
deira, Portugal, utilized the COAWSTmodel with an offline
river routing model for operational predictions of

hydrometeorological environment and suspended particu-
late matter (SPM) concentration near the Madeira Island
[34, 35]. In addition, the Woods Hole Coastal and Marine
Science Center, U.S. Geological Survey, where the COAWST
model was developed, and the Hydro and Agro Informatics
Institute, )ailand, also released regional operational
products based on the COAWST model.

)is paper attempts to establish an experimental fore-
casting system over coastal areas of China based on the
COAWST model. One real-time forecast test, lasting for a
month, was conducted in a coastal area of South China to
evaluate the forecasting potential of the COAWST model
during routine operation. )e rest of this paper introduces
the descriptions of the COAWSTmodel, forecasting system
flow, and experimental design and subsequently provides
results, conclusions, and discussions.

2. Methodology

2.1. Model Description. )e COAWST model includes one
atmosphere model, the Weather Research and Forecasting
(WRF) model; one ocean model, the Regional Ocean
Modeling System (ROMS); one wave model, the Simulating
Waves Nearshore (SWAN) model; and one sediment-
transport model, the Community Sediment Transport
Model (CSTM).

)e WRF model is a nonhydrostatic, quasi-compressible,
mesoscale atmosphere model with a number of physical
schemes. In the COAWST model, the dynamic core of the
Advanced Research WRF (ARW) model is used [36]. )e
ROMS model is a free-surface, topography-following-coordi-
nate model that solves the three-dimensional Reynolds-aver-
aged Navier-Stokes equations using hydrostatic and Boussinesq
approximations [37, 38]. )e SWAN model is a spectral-wave
model that simulates the generation and propagation of wind-
induced waves in coastal waters by solving the spectral-density
evolution equation [39]. )e CSTM is a sediment-hydrody-
namic model that simulates the erosion, deposition, and
transport processes across different sizes and types of sediments
[24]. In this study, the CSTM was not utilized.

)e COAWST model utilizes the model-coupling toolkit
(MCT) to achieve communication among the submodels via the
message passing interface (MPI) [40]. In addition, the Spherical
Coordinate Remapping Interpolation Package (SCRIP) is used
to support variable interpolations in different coordinate sys-
tems [41]. In the coupling process, WRF receives sea-surface
roughness from SWAN and the SST from ROMS, while it
provides wind at a 10m level (W10m) to SWAN and surface
stress and net heat fluxes to ROMS. To facilitate this variable
exchange between ROMS and SWAN, ROMS receives the
surface- and bottom-wave direction, height, length, period,
percentage breaking, energy dissipation, and bottom orbital
velocity from SWAN, while it provides bathymetry, bottom
elevation, sea-surface height, and depth-averaged currents to
SWAN.

2.2. Forecasting System Flow Description. Based on the
COAWST model, an experimental forecasting system was
established in this study, the system flowchart of which is
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shown in Figure 1. )e system is controlled by executable
shell scripts with timers and consists of one data server, one
compute server, and the user client.

)e data server downloads and preprocesses the global
forecast data every day from the public data server of the
National Centers for Environmental Prediction (NCEP).
)e downloaded data includes the Global Forecast System
(GFS) data and the Global Data Assimilation System
(GDAS) data for WRF (available online: https://www.nco.
ncep.noaa.gov/pmb/products/gfs/), the Real-Time Ocean
Forecast System (RTOFS) data for ROMS (available online:
https://www.nco.ncep.noaa.gov/pmb/products/rtofs), and
NCEP operational wave-product data from the global
WAVEWATCH III model for SWAN (available online:
https://www.nco.ncep.noaa.gov/pmb/products/wave/). )e
resolution information of the downloaded data is listed in
Table 1.

In the compute server, the GFS and GDAS data are
processed by the WRF Preprocessing System (WPS) and 3-
dimensional Variational data assimilation system (3DVar),
respectively, to produce WRF’s initial and boundary con-
ditions. )e GFS data, RTOFS data, and NCEP operational
wave-product data are processed in the ROMS and SWAN
preprocessing module to produce the boundary files for
SWAN, along with the initial and boundary files of for
ROMS.

In this study, the initial file for SWAN was provided by the
previous restart file from 72 hours earlier—instead of the default
idealized initialization—as many previous studies on the
COAWST model have done [26, 42, 43]. )e bathymetry
dataset for ROMS used the DTU10 dataset, with a resolution of
0.125° × 0.125°, from the Technical University of Denmark
(available online: https://www.space.dtu.dk/english/Research/
Scientific_data_and_models/Global_Bathymetry_Model). )e
tide dataset for ROMS was derived from the TPXO7.0 dataset,
with a resolution of 0.25° × 0.25°, which was obtained using the
Oregon State University Tidal Prediction Software (OTPS).)e
TPXO global tide model provides eight primary (M2, S2, N2,
K2, K1, O1, P1, and Q1) and two long (Mf and Mm) period
harmonic constituents as amplitudes of the earth-relative sea-
surface elevation [44, 45]. )e TPXO7.0 dataset can be found
online at http://www−po.coas.oregonstate.edu/∼poa/www−po/
research/po/research/tide/global.html.

)e initial and boundary files for WRF, ROMS, and
SWAN are transferred to the COAWST model for forecast
simulations; subsequently, the simulation results are pro-
cessed using a postprocessing module and are visualized for
the end user.

2.3. Experimental Design. )e configuration parameters for
model gridding and operation are listed in Table 2. )e
COAWST model in this study used two nested grids to
obtain results with a higher resolution via dynamic down-
scaling.)e model was compiled with fully coupling options
and three submodels exchanged variables every 1800 sec-
onds, controlled by the main program via the MCT.

)e default scheme options in the COAWSTmodel were
used without optimization in this study.)e schemes used in

WRF were the WRF Single-Moment 3-class (WSM3) mi-
crophysics scheme [46], the Rapid Radiative Transfer Model
(RRTM) longwave scheme [47], the Dudhia shortwave
scheme [48], the Noah Land Surface Model (LSM) [49], the
modified Kain-Fritsch cumulus scheme [50], the Eta surface
layer scheme [51], and the Mellor-Yamada-Janjic (MYJ)
planetary boundary-layer scheme [52, 53]. For ROMS setup,
the Mellor-Yamada scheme was used to compute vertical
turbulent mixing [53], and the Flather boundary-condition
method was used for barotropic currents to allow the free
propagation of wind-generated currents and tides [54]. For
the SWAN model, the Madsen scheme was used for wave
bottom dissipation parameterization [55], and the Komen
formulation was used to simulate wind-induced wave
growth [56].

)e forecast simulation tests began at UTC 0 : 00 every
day with a forecast lead time of 72 hours and lasted from July
27 to August 31, 2019. )e first three tests (from July 27 to
29) commenced using the default initialization of SWAN,
which regarded the initial wave height as zero. In the fol-
lowing 33 daily forecasts, the initial files of SWAN were
derived from the restart files of simulations three days
earlier.

)e analysis period in this study ran from UTC 0 : 00 on
August 1 to UTC 23 : 00 on August 31. )e 72 h forecast
simulations during the analysis period were divided into
three groups, 24-hour, 48-hour, and 72-hour forecast results,
based on their forecast lead times. )e three groups of
forecast simulations are evaluated separately in the following
sections.

)e model domains, as well as their topography and
bathymetry, are shown in Figure 2. )e outer and inner
domains are namedD01 andD02, respectively.)e land area
of the inner domain with a spatial resolution of 6 km× 6 km
covers Hainan Island, Leizhou Peninsula, and the southern
coastal areas of Guangxi and Guangdong Province in South
China. )e elevation in most land areas is below 500m,
except for the southern mountains of Hainan Island, with an
elevation of 500–1500m.)e sea area of D02 is located in the
northwestern corner of the South China Sea. )e water
depth increases from northwest to southeast, with a maxi-
mum depth of 3000–3500m.

Owing to space- and observation-related constraints,
this study only focuses on the evaluation of surface mete-
orological and hydrological elements in the D02 domain.

3. Results

3.1. Evaluation Based on Station Observations. )e hourly
observations of air temperature at a 2m level (T2m), the air
relative humidity at a 2m level (RH2m), and sea level
pressure (SLP) from 29 stations over the study domain were
derived from China Meteorological Data Service Center
(CMDC) (http://data.cma.cn/en). )e locations of the 29
stations are shown in Figure 3(a), and the Taylor diagrams of
forecasted T2m, RH2m, and SLP are shown in Figures 3(b)–
3(d).

)e scatter distributions of T2m and RH2m in the
Taylor diagram (Figures 3(b) and 3(c), respectively) are

Advances in Meteorology 3

https://www.nco.ncep.noaa.gov/pmb/products/gfs/
https://www.nco.ncep.noaa.gov/pmb/products/gfs/
https://www.nco.ncep.noaa.gov/pmb/products/rtofs
https://www.nco.ncep.noaa.gov/pmb/products/wave/
https://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Bathymetry_Model
https://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Bathymetry_Model
http://www-po.coas.oregonstate.edu/%7Epoa/www-po/research/po/research/tide/global.html
http://www-po.coas.oregonstate.edu/%7Epoa/www-po/research/po/research/tide/global.html
http://data.cma.cn/en


GFS GDAS RTOFS Wave

NCEP dataset

Data server
Data preprocessing module

Compute server

User client

GFSGDAS RTOFS Wave

WRF
3DVar
module

WPS
module

ROMS & SWAN
preprocessing

module

WRF initial &
boundary files

SWAN
boundary files

ROMS initial &
boundary files

Forecast product

Postprocessing
module

SWAN
initial file

WRF & ROMS
static dataset

COAWST model

Figure 1: Flowchart of the developed real-time forecast system.

Table 1: Resolution information of the downloaded forecast data.

GFS RTOFS Wave
Spatial resolution 0.25° × 0.25° 0.083° × 0.083° 0.5° × 0.5°
Time resolution 3 hours 3 hours 3 hours
Start time UTC 0 : 00 UTC 0 : 00 UTC 0 : 00
Time range Subsequent 72 hours Subsequent 72 hours Subsequent 72 hours

Table 2: Configuration parameters for each submodel.

WRF ROMS SWAN
Time step 30 s 60 s 180 s
Grid nesting Yes Yes Yes
Outer grid number 100×100 90× 90 90×90
Inner grid number 100×100 90× 90 90×90
Horizontal grid
resolution

18 km for outer grids, 6 km for inner
grids

18 km for outer grids, 6 km for
inner grids

18 km for outer grids, 6 km for inner
grids

Vertical layer number 39 16 None

Initial data source GFS data assimilated by GDAS GFS and RTOFS data Restart file of simulation 3 days
earlier

Variable exchange
frequency 1800 s−1 1800 s−1 1800 s−1
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similar. )e 24 h forecasts (in blue), which are the first 24 h
results of the 72 h simulation conducted every day, have the
highest accuracy. In comparison to hourly station obser-
vation, most of the 24 h forecast series at the corresponding
grids have a temporal correlation coefficient (CC) of 0.8–0.9
and a normalized standard deviation (NSD) of around
0.75–1.0. However, the 48 h and 72 h forecasts (in red and
green, respectively), which are produced one and two days
before the analysis, respectively, have lower accuracies than
the 24 h forecasts. In addition, there are no obvious dif-
ferences in correlation and NSD for the 48 h and 72 h
forecasts.

As shown in Figures 3(b) and 3(c), the scatter distri-
butions of the 48 h and 72 h forecasts can be divided into two
groups using the circle line of an NSD of 0.5. To facilitate
differentiation, the stations with NSDs greater than 0.5 were
colored in red in Figure 3(a), while those with NSDs lower
than 0.5 were colored in blue.Most of the stations with NSDs
lower than 0.5 were located in the southern Hainan Island,
indicating that the 48 h and 72 h forecasts of T2m and
RH2m vary in a lower range than those in observations.

During the analysis period, the Hainan Island and Leizhou
Peninsula were affected by Typhoon Wipha
(20190731–20190802), which passed from the southeast to the
northwest. Further, the inner domain was affected by the pe-
riphery of Typhoon Bailu (20190824–20190826) and Typhoon
Podul (20190828–20190829). To confirm whether the poorer
performances of 48h and 72h forecasts were related to the
typhoon weather, the Taylor diagrams in Figure 3 were
regraphed using the data from August 4 to 16, when no strong
convection events occurred (figure not shown). )e new

diagrams showed no obvious differences compared to the di-
agrams derived from the entire monthly data.)us, irrespective
of strong convection events, the 48h and 72h forecasts of T2m
and RH2m performmore poorly than the 24h forecast in NSD
and CC over the southern part of Hainan Island.

Unlike the T2m and RH2m, the SLP forecasts in
Figure 3(d) have a high concentration with an NSD of 1.0.
)e correlation coefficients drop from 0.95 to about 0.85 for
the 24 h, 48 h, and 72 h forecasts.

)e diagram of precipitation is unavailable in this sec-
tion, because significant data on precipitation is missing in
the station observations. Instead, the reanalysis dataset is
derived in the following section to evaluate the performance
of T2m and precipitation, which are two important ele-
ments of NWP.

3.2. Evaluation of T2m and Precipitation Based on Reanalysis
Datasets. In this section, two sets of reanalysis data, from
ERA5 and CLDAS (Chinese Land Data Assimilation Sys-
tem), were derived for the evaluation of T2m and precip-
itation. ERA5 is the fifth generation of reanalysis datasets
produced by the European Center for Medium-Range
Weather Forecasts (ECMWF), with a spatial resolution of
0.25° × 0.25° and a temporal resolution of 1 hour.)e dataset
is available online at https://cds.climate.copernicus.eu/
#!/search?text�ERA5&type�dataset. )e CLDAS data is
produced by the National Meteorological Information
Center of China and has a spatial resolution of
0.0625° × 0.0625° in Asia and a temporal resolution of 1 hour.
)e data is available online at http://data.cma.cn/data/
cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html.
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Figure 2: (a) Topography of theWRF submodel; (b) bathymetry for the ROMS and SWAN submodel.)e entire colored domain is D01 and
the area enclosed by the red frame is D02.
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According to related evaluation studies, the CLDAS data had
better performance when compared with the other re-
analysis products in the region of China [57–59].

3.2.1. Spatial Distributions of Mean Bias. Figure 4 shows the
spatial distributions of the mean precipitation bias between
the forecasts and reanalysis data. All of the data was

interpolated into the same resolution of 0.05° × 0.05° through
bilinear interpolation. As shown in Figure 4, all of the
forecasts indicate more precipitation in the land grids than
the reanalysis data. For the bias of forecasts minus ERA5 in
the sea grids (Figures 4(a)–4(c)), lower values are detected,
especially in offshore areas near the northern continental
region. As for the southern open-sea areas, the forecast bias
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Figure 3: (a) Locations of the meteorological stations. )e stations colored in red dots are the stations where the NSDs of T2m and RH2m
for the 48 h and 72 h forecasts are higher than 0.5; those in blue are the others (NSDs lower than 0.5). Taylor diagram of (b) T2m, (c) RH2m,
and (d) SLP for 24 (h), 48 (h), and 72 h forecasts.
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is weak for both sets of reanalysis data. )e mean biases
averaged over the entire domain are –0.01mm/h, 0.08mm/
h, and 0.03mm/h.

In Figures 4(d)–4(f), the bias distributions of forecasts
minus CLDAS are similar to those in Figures 4(a)–4(c).
However, the land-sea differences in Figures 4(d)–4(f) are
not as strong as those in Figures 4(a)–4(c), and a higher bias
is detected over the northern and eastern sea areas.)emean
biases in Figures 4(d)–4(f) are 0.11mm/h, 0.19mm/h, and
0.14mm/h, which are slightly higher than those in
Figures 4(a)–4(c). )e bias distributions of precipitation
indicate that the performances of ERA5 and CLDAS re-
analysis data have greater differences in the sea grids, es-
pecially in offshore regions.

Further, the bias of 24 h forecasts is weaker than that of
the others, while the bias distributions of 48 h and 72 h
forecasts show no obvious differences.

)e spatial distributions of mean T2m bias are shown in
Figure 5. Similar bias distributions—but with more obvious
land-sea differences than those in Figure 4— are detected;
that is, a lower bias is present in the land grids and a higher
bias is present in the sea grids, especially in the northern

offshore regions. Over the domain, the mean T2m of seas is
about 2–3K higher than that over land in August (figure not
shown). Mean lower surface pressure center locates in the
northwestern area of the domain, while the higher-pressure
center locates in the southern sea areas. )e distributions of
cooler land and warmer seas for the forecasts will enlarge the
land-sea thermal differences and the surface pressure gra-
dient from northwest to southeast. As a result, the prevailing
South China Sea summer monsoon, which flows from
southern seas, will be strengthened. More moisture will also
be transported to the northern continental, inducing more
precipitation there.

In Figure 5, it is important to note that the two sets of
reanalysis data do not coincide with each other at all points. In
southern areas of Hainan Island, for example, the mean T2m
differences between the ERA5 and CLDAS data exceed 1K,
leading to a higher spatial heterogeneity. In general, the mean
forecasts are closer to the CLDAS data. )e mean biases of
forecasts minus CLDAS are 0.09K, 0.05K, and 0.06K, while the
biases of forecasts minus ERA5 are 0.22K, 0.18K, and 0.19K.

In addition, the mean bias distributions of the three
forecasts do not differ greatly owing to their differing
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Figure 4: Spatial distributions of mean precipitation biases of (a) 24 (h), (b) 48 (h), and (c) 72 h forecasts minus ERA5 data and biases of
(d) 24 (h), (e) 48 (h), and (f) 72 h forecasts minus CLDAS data.
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forecast lead times, and the slight differences among the
three forecasts can be accounted for by the greater land-sea
differences during the averaging process.

3.2.2. Time Variations of Bias. Figures 6 and 7 show the
hourly bias series of precipitation and T2m, respectively.
Owing to the land-sea differences in bias, Figures 6 and 7
adopted the series averaged in the land and sea grids sep-
arately, instead of the ones averaged over the entire domain.

As shown in Figure 6, the precipitation bias series of
forecasts minus ERA5 are in accordance with the series of
forecasts minus CLDAS. During the analysis period, the bias
series of forecasts minus ERA5 were generally lower in am-
plitude than the series of forecasts minus CLDAS. Taking the
series in the land grids (Figures 6(a), 6(c), and 6(e)) as an
example, themean biases of forecastsminus ERA5 are 0.24mm/
h, 0.30mm/h, and 0.21mm/h for the 24h, 48h, and 72h
forecast series, respectively, while the mean biases of forecasts
minus CLDAS are 0.28mm/h, 0.34mm/h, and 0.25mm/h.

)e amplitudes of bias series in the sea grids are smaller
than those in the land grids. For Figures 6(b), 6(d), and 6(f),

the mean biases of forecasts minus ERA5 are –0.09mm/h,
0.01mm/h, and –0.05mm/h for the series of forecasts minus
ERA5, while the biases of forecasts minus CLDAS are
0.05mm/h, 0.14mm/h, and 0.09mm/h. )e precipitation
forecast series are closer to the ERA5 data than the CLDAS
data, irrespective of whether they were over land or sea.

Figure 7 shows the bias series of T2m in land and sea
grids. For the land grids in Figures 7(a), 7(c), and 7(e), the
bias series are majorly negative.)e series of forecasts minus
ERA5 have higher amplitudes and greater mean biases in
comparison to the series of forecasts minus CLDAS, which is
in accordance with the spatial distributions in Figure 5. )e
mean biases of forecasts minus ERA5 in land grids are
−0.38K, −0.33K, and −0.24K, while the biases of forecasts
minus CLDAS are −0.27K, −0.21K, and −0.12K.

For the sea grids in Figures 7(b), 7(d), and 7(f), the
forecasted T2m is overall higher than that in the ERA5 and
CLDAS data. )e mean biases of the two series are 0.44K,
0.37 K, and 0.37K for forecasts minus ERA5 and 0.24K,
0.17K, and 0.17K for forecasts minus CLDAS. )e largest
T2m bias appears during the period of 2019-08-20–2019-08-
25, when a lower precipitation bias is detected in
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Figure 5: Spatial distributions of T2m precipitation biases of (a) 24 (h), (b) 48 (h), and (c) 72 h forecasts minus ERA5 data and biases of
(d) 24 (h), (e) 48 (h), and (f) 72 h forecasts minus CLDAS data.
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Figures 6(b), 6(d), and 6(f). In fact, the time when the
extreme values of T2m bias appear in Figures 7(b), 7(d), and
7(f) roughly coincides with the time when the extreme
values of precipitation bias appear in Figures 6(b), 6(d), and
6(f). )e bias series of T2m in the sea grids indicate that the
COAWST forecast system still needs further improvement
for simulating the quick processes of local cooling in strong
convective weather over the sea.)is drawback of COAWST
can also be found in other studies. For example, according to
the hindcast results comparing observations from a buoy
made by Liu et al. [26], the simulated T2m by the COAWST
model was around 1.5 K–3.5 K higher when a typhoon
passed by the sea area near this buoy, while the bias reduced
to less than 1K after the typhoon.

3.2.3. Statistical Indices over the Domain. )e statistical
indices averaged over the entire domain are presented in
Table 3, and the indices in the land and sea grids are also

presented in Tables 4 and 5, respectively. )e temporal CC,
root mean square error (RMSE), and standard deviation
(STD) are employed for this evaluation. As shown in Table 3,
the indices of precipitation and T2m reduce with increasing
forecast lead times. )e indices derived from forecasts and
ERA5 data are slightly better than those from forecasts and
CLDAS data in general; however, the STDs of forecast tests
are closer to those of CLDAS data. In addition, the STDs of
forecasted T2m are generally lower than those for the re-
analysis data over the entire domain, indicating that the
forecasted T2m has lower deviations and slower amplitude
changes in the diurnal cycle.

For the indices averaged over land grids (Table 4), the
CCs, RMSEs, and STDs are overall higher than the domain-
averaged indices in Table 3. )e averaged CCs of T2m reach
0.7–0.8, which is in accordance with the station observations
in Figure 3(b). )e STDs of T2m are obviously higher than
those in Table 3, because of the more intense diurnal cycle on

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(a)

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(b)

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(c)

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(d)

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(e)

frcst-CLDAS
frcst-ERA5

4.0

2.0

0.0

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

–2.0

–4.0
Aug01 Aug06 Aug11 Aug16 Aug21 Aug26 Aug31

(f )

Figure 6: Precipitation bias series of 24 h forecasts averaged over (a) land grids and (b) sea grids; bias series of 48 h forecasts averaged over
(c) land grids and (d) sea grids; and bias series of 72 h forecasts averaged over (e) land grids and (f) sea grids.
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land. )e indices in sea grids (Table 5) are generally lower
than those in Table 3, in contrast to the values for land grids
found in Table 4. )is indicates that the forecasts in sea grids
have lower mean biases, flatter fluctuations, and weaker
linear correlations with reanalysis data, in comparison to the
indices in Tables 3 and 4.

3.3. Evaluation of Other Surface Elements. In addition to the
precipitation and T2m, the spatial distributions of mean bias
for other surface elements are also presented in Figures 8 and
9; these elements include RH2m, SLP, wind at a 10m level
(W10m), significant wave height (Hwave), SST, and surface
seawater salinity. All observation data for comparison was
obtained from the ERA5 reanalysis dataset, other than the
salinity data, which was derived from the daily ocean re-
analysis data using the GLO-CPL weakly coupled ocean-
atmosphere data assimilation system of the Met Office, UK

[60]. )e salinity reanalysis data, with a spatial resolution of
0.25° × 0.25°, is available online at https://resources.marine.
copernicus.eu/?option�com_csw&task�results. )e spatial
resolution of the Hwave reanalysis data is 0.5° × 0.5�°, while
the resolutions of other elements are 0.25° × 0.25°.

As shown in Figures 8(a)–8(c), the distributions of SST
are similar to the distributions of T2m in Figure 5. Higher
bias is detected in the northern offshore regions and lower
bias is detected in the surrounding offshore regions of
Hainan Island. )e mean bias in the southern open seas,
however, is closer to zero. )e mean bias for the three
forecast tests is 0.03K, 0.08K, and 0.08K over the domain,
which is weaker than the T2m bias.

)e simulated thermal differences have induced the
changes of surface pressure. For the SLP bias in
Figures 8(d)–8(f), the bias is overall negative and decreases
from the northwest to the southeast direction of the domain.
)e mean bias is −0.33 hPa, −0.71 hPa, and −1.15 hPa,
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Figure 7: T2m bias series of 24 h forecasts averaged over (a) land grids and (b) sea grids; bias series of 48 h forecasts averaged over (c) land
grids and (d) sea grids; and bias series of 72 h forecasts averaged over (e) land grids and (f) sea grids.
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respectively, for the 24 h, 48 h, and 72 h forecasts. )e lowest
bias is located in the northwestern areas of the domain. In
the month of August, as referred above, a cooler and lower-
pressure center locates in the northwestern areas of the

domain on average and the warmer and higher-pressure
center locates in the southeast. )e distribution of SLP bias
induces more pressure dropping over the low-pressure area,
enlarging the surface horizontal pressure gradient over the

Table 3: Statistical indices of forecasts averaged over the entire domain.

Element Forecast test Observation CC RMSE
STD

Forecast Observation

Precipitation

24 h forecast ERA5 0.28 1.24mm/h 1.15mm/h 0.82mm/h
CLDAS 0.23 1.53mm/h − 1.18mm/h

48 h forecast ERA5 0.16 1.35mm/h 1.25mm/h −

CLDAS 0.18 1.65mm/h − −

72 h forecast ERA5 0.12 1.34mm/h 1.15mm/h −

CLDAS 0.07 1.64mm/h − −

2m air temperature

24 h forecast ERA5 0.62 1.02K 1.03K 1.20 K
CLDAS 0.59 1.00K − 1.28 K

48 h forecast ERA5 0.56 1.06K 0.93K −

CLDAS 0.54 1.06K − −

72 h forecast ERA5 0.49 1.11K 0.90K −

CLDAS 0.48 1.12K − −

CC: correlation coefficient; CC � (􏽐
n
i�1(xmi − xm)(xoi − xo))/(

�����������������������������

􏽐
n
i�1(xmi − xm)2 · 􏽐

n
i�1 (xoi − xo)2 )

􏽱

; xmi and xoi are the simulated and observed hourly
precipitation, respectively, or 2m air temperature in the time i; and n is the number of hours. RMSE: Root Mean Square Error;

RMSE �

�����������������

1/n 􏽐
n
i�1 (xmi − xoi)

2
􏽱

. STD: standard deviation; STD �

���������������

1/n 􏽐
n
i�1 (xi − x)2

􏽱

.

Table 4: Statistical indices of forecasts averaged over land grids.

Element Forecast test Observation CC RMSE
STD

Forecast Observation

Precipitation

24 h forecast ERA5 0.32 1.67mm/h 1.67mm/h 0.96mm/h
CLDAS 0.26 1.95mm/h − 1.41mm/h

48 h forecast ERA5 0.30 1.69mm/h 1.65mm/h −

CLDAS 0.23 1.97mm/h − −

72 h forecast ERA5 0.22 1.66mm/h 1.50mm/h −

CLDAS 0.17 1.93mm/h − −

2m air temperature

24 h forecast ERA5 0.82 1.33K 2.03K 1.90 K
CLDAS 0.81 1.46K − 2.38 K

48 h forecast ERA5 0.74 1.44K 1.88K −

CLDAS 0.73 1.65K − −

72 h forecast ERA5 0.70 1.52K 1.85K −

CLDAS 0.69 1.74K − −

Table 5: Statistical indices of forecasts averaged over sea grids.

Element Forecast test Observation CC RMSE
STD

Forecast Observation

Precipitation

24 h forecast ERA5 0.27 1.11mm/h 0.99mm/h 0.79mm/h
CLDAS 0.16 1.44mm/h − 1.15mm/h

48 h forecast ERA5 0.19 1.25mm/h 1.12mm/h −

CLDAS 0.09 1.59mm/h − −

72 h forecast ERA5 0.14 1.22mm/h 1.01mm/h −

CLDAS 0.03 1.56mm/h − −

2m air temperature

24 h forecast ERA5 0.56 0.89K 0.62K 0.91 K
CLDAS 0.52 0.82K − 0.86 K

48 h forecast ERA5 0.50 0.91K 0.55K −

CLDAS 0.47 0.83K − −

72 h forecast ERA5 0.42 0.96K 0.51K −

CLDAS 0.41 0.89K − −
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domain. )e changes of pressure gradient will further en-
hance the prevailing south wind and transport more
moisture from the sea to the land.

Figures 8(g)–8(i) show theW10m bias between forecasts
and ERA5 data. A bias of the south wind is detected over the
domain, and themean bias of wind speed is 0.58m/s, 1.30m/

s, and 1.64m/s. )e south wind bias enhances the moisture
transport from the southern seas and induces higher local
humidity. As shown in Figures 9(a)–9(c), the forecasted
RH2m is generally higher than that in the ERA5 data. )e
mean bias is 3.10%, 4.14%, and 4.00%. Higher bias is detected
in the southern sea grids than in the northern land grids.
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Figure 8: Spatial distributions of SST biases of (a) 24 (h), (b) 48 (h), and (c) 72 h forecasts minus ERA5 data; SLP biases of (d) 24 (h), (e) 48
(h), and (f) 72 h forecasts minus ERA5 data; and W10m biases of (g) 24 (h), (h) 48 (h), and (i) 72 h forecasts minus ERA5 data.
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)e bias of Hwave (Figures 9(d)–9(f )) is slightly lower
than that in the ERA5 data and decreases roughly from the
southwest to the northeast.)emean bias over the domain is
−0.12m, −0.06m, and −0.01m. )e Hwave here is denoted
as the combined height of wind-induced waves with a high

frequency and swells with a low frequency. )e wind-in-
duced wave height is known to be positively correlated with
the wind speed at the sea surface, and the mean bias of wind-
induced wave height is 0.34m, 0.38m, and 0.42m for the
24 h, 48 h, and 72 h forecasts, respectively (figure not
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Figure 9: Spatial distributions of RH2 m biases of (a) 24 (h), (b) 48 (h), and (c) 72 h forecasts minus ERA5 data; Hwave biases of (d) 24 (h),
(e) 48 (h), and (f) 72 h forecasts minus ERA5 data; and surface seawater salinity biases of (g) 24 (h), (h) 48 (h), and (i) 72 h forecasts minus
ERA5 data.
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shown).)e overall higher bias of wind-induced wave height
indicates that the low Hwave bias results from the offsetting
of a higher bias of wind-induced wave height and a lower
one of swell height.

)e ERA5 data has no ocean products; therefore,
Figures 9(g)–9(i) show the bias distributions of surface
seawater salinity between the forecasts and the ocean re-
analysis data from theMet Office.)emean bias is 0.31, 0.33,
and 0.35.)e distributions of salinity bias do not differ in the
three forecast tests, and the bias in the southern open seas is
obviously weaker than that in the northern offshore regions.
)e highest bias of simulated salinity appears in the
northeastern corner of the domain, which is close to the
mouth area of the Pearl River, a river with the second largest
discharge in China. In the COAWSTmodel, the freshwater
horizontal input is inactive by default, which is probably the
primary reason for the bias distributions and requires fur-
ther improvements in the future.

4. Discussion and Conclusion

In this study, an experimental hydrometeorological fore-
casting system was developed based on the ocean-atmo-
sphere-wave coupled model COAWST, which includes the
atmosphere model WRF, the ocean model ROMS, and the
wave model SWAN. )e system downloads the global
forecast data every day from the NCEPwebsite and produces
regional forecasts for the next 72 hours, controlled by shell
scripts with timers. )e system adopts two sets of nesting
grids for dynamic downscaling. )e inner grids in southern
coastal areas of South China, covering Hainan Island,
Leizhou Peninsula, and the northwestern corner of the
South China Sea, were chosen as the study domain. )e 72 h
forecast tests were conducted from July 27 to August 31,
2019, and the forecasts for the entire month of August were
chosen for model evaluation.)ese forecasts, produced once
a day, were then divided into three groups with different
forecast lead times, that is, 24 h, 48 h, and 72 h, for further
analysis.

To facilitate evaluation, the hourly observations of T2m,
RH2m, and SLP within the domain were derived from 29
stations. )e Taylor diagrams indicated that the forecast
system performed well in terms of the CCs and NSDs of the
three surface elements. )e 24 h forecast series had the
highest accuracy with CCs between 0.8 and 0.9 and NSDs
between 0.75 and 1.0 in the forecast tests. )e 48 h and 72 h
forecasts, however, had similar accuracy, with the 48 h
forecasts performing slightly better. In the diagrams of T2m
and RH2m, it can be seen that the 48 h and 72 h forecasts
series in the southern stations of Hainan Island performed
more poorly in terms of time variability and could be easily
discerned from those of other stations owing to their low
CCs and NSDs.

In addition to the station observations, two sets of re-
analysis data, ERA5 and CLDAS, were derived for evaluating
forecasted precipitation and T2m. )e spatial distributions
of bias had obvious land-sea differences for both elements;
that is, more precipitation and lower temperatures were
present on land than on sea. For the sea grids, the bias in the

northern offshore regions was generally stronger than that in
the southern open seas. As for the land grids, the bias in the
southern areas of Hainan Island had high spatial hetero-
geneity, which was obvious from the T2m bias distributions.
In general, the forecasted precipitation was closer to the
ERA5 data and the T2m was closer to the CLDAS data in
terms of their mean.

To evaluate the time variability of forecasted precipita-
tion and T2m, the bias series of forecasts minus reanalysis
data averaged over the land and sea grids have also been
presented. )e bias series revealed that the precipitation bias
of forecasts minus ERA5 had lower amplitudes than others,
but, for the T2m bias, the series of forecasts minus CLDAS
had weaker amplitudes. )e extreme values of the bias series
roughly corresponded with the strong convective weather
over the domain; that is, the bias of precipitation and T2m
was relatively greater during strong convection processes.
)e forecasted T2m did not vary as fast as that in the re-
analysis data. )e forecasting system did not perform well in
severe fluctuations of T2m over the domain, especially in the
sea areas.

Statistical indices, including CC, RMSE, and STD, were
employed to evaluate the statistics of forecasted precipitation
and T2m. )e domain-averaged indices, as well as the ones
averaged over land and sea, were listed in tables. )e indices
derived from forecasts and the two sets of reanalysis data did
not differ greatly. In general, the indices from forecasts and
ERA5 were slightly better than those from forecasts and
CLDAS. )e indices also exhibited obvious land-sea dif-
ferences. )e CCs and STDs in land grids were, in general,
better than those in sea grids, while the RMSEs in land grids
were usually poorer. )is phenomenon indicated that the
forecasted precipitation and T2m in sea grids performed
slightly better in simulating the mean values but performed
worse in simulating their fluctuation characteristics. Addi-
tionally, the performance level of forecasted statistical in-
dices decreased with the forecast lead time, which was in
accordance with the mean bias.

In addition to the evaluations of precipitation and T2m,
the bias distributions of other surface elements have also
been presented, including SST, SLP,W10m, RH2m, Hwave,
and surface seawater salinity. )e reanalysis data for com-
parison was still ERA5 data, except for the salinity, for which
the ocean product released by Met Office was used. Higher
SST bias was detected, especially in northern offshore areas,
which was similar to the distribution pattern of T2m bias in
sea grids. )e land-sea thermal differences also induced
changes of surface pressure. Lower SLP bias was detected
over the domain and the lower bias decreased most in the
northwestern areas of the domain, which were a center of
low pressure. )e distribution pattern of SLP bias enhanced
the horizontal pressure gradient and induced a higher bias in
wind speed at the surface. )e W10m flowing from
southwest to northeast was strengthened with more mois-
ture transported to land areas, increasing RH2m over the
domain.

)e mean Hwave bias of forecasts minus ERA5 was
rather weak, varying from −0.12m to −0.01m for different
lead times. )is weak bias resulted from the offsetting of the
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higher bias of wind-induced waves and lower bias of swells.
For the salinity bias at 0m depth between forecasts and
reanalysis data from the Met Office, a systematic difference
seemed to exist, and there were no obvious differences
among the bias distributions for 24 h, 48 h, and 72 h fore-
casts. Stronger bias was detected in the offshore regions near
coastal lines because the freshwater input was inactive in this
study.

Overall, the proposed forecast system provided a high
accuracy for simulating the surface meteorological and
hydrological elements. )e COAWST model had a high
potential for operational NWP.

It is important to note that there were still some un-
certainties or limitations in the forecasting results of this
study, including the reliability of reference data, model
structural deficiencies, and issues with the experimental
design.

With regard to the reference data, the hourly precipi-
tation data of station observations was unavailable. )is lack
of station precipitation data led to the absence of a basis of
real data in subsequent analyses. In the future, more ob-
servational data should be obtained for sea areas, such as
buoy observations, to make up for the lack of marine data.
Although the ERA5 and CLDAS reanalysis data had high
accuracy, there was still some bias between the two datasets
and station observations. For example, in Section 3.1, the
mean T2m biases of forecasts in the corresponding grids of
29 stations were –0.65K, 0.37 K, and 0.39K for 24 h, 48 h,
and 72 h forecasts, respectively. In comparison, the mean
bias of ERA5 minus station observations was 0.47K, while
the bias of CLDAS was 0.56K. )us, the bias in Sections 3.2
and 3.3, which was the difference between forecasts and
reanalysis data, differed in accuracy from the bias in Section
3.1. According to the assessment report, the salinity re-
analysis data used for comparison in Figures 9(g)–9(i)
demonstrated some issues regarding accuracy, because
their system adopted the surface and subsurface runoff
generated from a land-surface model as the freshwater input
of the ocean model, which introduces some uncertainties
[60]. In the future, more precise data should be obtained for
further evaluation.

)e deficiencies of the model proposed herein include
the absence of some functional modules and the defects of
characterization schemes in COAWST. )e experimental
forecast system developed in this study lacked certain data
assimilation modules for ROMS and SWAN. )e default
initialization of ROMS may lead to lower accuracy in the
beginning periods of ocean simulation, while the procedure
of reading SWAN’s restart files continuously could also lead
to an accumulation of errors during wave simulation. Nu-
merous studies have informed the ocean and wave-assim-
ilation methods of ROMS and SWAN [61, 62]. In the future,
the assimilation modules should be introduced, as done in
these previous studies, to constrain the simulation of the
ocean and waves. In addition, as shown in Figures 9(g)–9(i),
the freshwater input has not been factored in and the salinity
simulation needs further improvements, too.

)ere were also some limitations regarding the char-
acterization schemes in the COAWST model. Firstly, the

atmosphere-wave coupling in the COAWST model only
considered momentum-related factors, without considering
thermal processes. However, the wave-dissipative heating
and sea-spray processes could increase the sensible and
latent heat fluxes at the sea surface, which should be included
in future studies. Secondly, as mentioned in Section 3.2.2,
the COAWST model still requires improvements when
simulating in extreme events, such as TCs. )e Hurricane
WRF model (code available online at http://www.dtcenter.
org/community−code/hurricane−wrf−hwrf/download), for
instance, provides an excellent example of cyclone simula-
tion by introducing vortex-related schemes, forcing data
correction, and utilizing characterization optimization. )e
COAWSTmodel should optimize its dynamic core in WRF
as the Hurricane WRF model did, in order to promote the
simulation level of TCs.

For the experimental design in this study, the COAWST
model was configured with its default parameters, without
optimization. Some new scheme choices and parameter
adjustments were required for further optimization in the
simulations over South China. We noted that the forecast
simulations in this study are not sufficiently generalizable,
because they only lasted for one month within a small area.
More simulations, conducted over a longer period and in a
larger domain, should be conducted for more detailed
evaluations. Further, in addition to surface elements, at-
mospheric and ocean elements—at different heights and
depths—should be addressed in future studies.
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