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This work presents the new exact solutions of nonlinear partial differential equations (PDEs). The solutions are acquired by using
an effectual approach, the first integral method (FIM). The suggested technique is implemented to obtain the solutions of space-
time Kolmogorov Petrovskii Piskunov (KPP) equation and its derived equations, namely, Fitzhugh Nagumo (FHN) equation
and Newell-Whitehead (NW) equation. The considered models are significant in biology. The KPP equation describes genetic
model for spread of dominant gene through population. The FHN equation is imperative in the study of intercellular trigger
waves. Similarly, the NW equation is applied for chemical reactions, Faraday instability, and Rayleigh-Benard convection. The
proposed technique FIM can be applied to find the exact solutions of PDEs.

1. Introduction

The nonlinearity in the world prevails thoroughly; thus, it is
significant to develop nonlinear models including partial dif-
ferential equations [1–4]. Nonlinear conformable PDEs
attracted the interest of many researchers because of their
vast applications in different fields, for example, in chemistry,
acoustic, fluid dynamics, image processing, biology, physics,
vibration, and control [5–7]. Nonlinear conformable PDEs
have a great potential to apply in several fields; thus,
researchers put noteworthy attention for their analytical
and numerical solutions [8–12]. Different effective and reli-
able techniques are proposed like the homotopy analysis
method [13], homotopy perturbation technique [14],

extended hyperbolic tangent method [15, 16], hyperbolic
function method [17], subequation method [18], and expo-
nential rational function method [19] to get solutions.

Feng presented an effective technique to obtain travelling
wave solutions of NPDEs, known as the FIM method [20–
22]. FIM is based on the ring theory and commutative alge-
bra. FIM provides first integral of explicit form having poly-
nomials as coefficients by applying the division theorem.
Contrary to other methods, the benefits of FIM are to
produce exact and explicit solutions without complicated
and lengthy calculations [23–25]. Despite several advantages,
FIM can only be applied to integrable PDEs.

The focus of this paper is to find the exact solutions of
conformable biological models. It includes KPP and its
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derived models, namely, FHN and NW. KPP is a general
form of equation and we can obtain different equations from
KPP, for example, FHN, NW, and Cahn Allen. The consid-
ered models are significant in biology. KPP describes the
genetic model for spread of dominant gene through popula-
tion. The graphical solutions of the KPP equation can be used
for diallel analysis as diallel analysis requires graphical solu-
tions of genes. In diallel analysis, graphical representation
of genes is required and some further calculations enable
researchers to have point estimation of recessive genes and
dominant genes instead of providing an interval of estima-
tion [26]. The FHN equation is used in the study of intercel-
lular trigger waves. Trigger waves are pulses and oscillatory
waves; these waves switch from one stable steady state to
another [27]. Similarly, the NW equation is applied for Fara-
day instability, chemical reactions, Rayleigh-Benard convec-
tion, and biological systems [28]. Various techniques have
been established for solving the KPP equation, for instance,
the discrimination algorithm [29], the homotopy perturba-
tion technique [30], the differential transform method [31],
the (G′/G)-expansion method [32], and the homotopy anal-
ysis method [33]. Generally, the solutions of KPP equations
are based on series solutions or numerical solutions. In this
work, an effective technique named as FIM was adopted to
acquire the exact solutions of KPP, FHN, and NW equations.
The work is novel as the exact solutions of considered models
using FIM are not presented before in the literature.

This paper consists of the following sections. Conform-
able derivative is described in Section 2; the proposed tech-
nique FIM is discussed in Section 3; the solutions of
conformable KPP, FHN, and NW equations are presented
in Section 4, and Section 5 contains summary and further
recommendations.

2. Preliminaries

2.1. Derivative: Conformable. Conformable derivative is
defined by Khalil et al. [34, 35].

Definition 1. The conformable derivative for function
h : ½0,∞Þ→ R of order β is given as

Tβ hð Þ tð Þ = lim
ε→0

h t + εt1−β
� �

− h tð Þ
ε

, ð1Þ

whereas β ∈ ð0, 1Þ having t > 0. If function h is β-differen-
tiable in ð0, pÞ, here p > 0 and limt→0+h

ðβÞðtÞ exists, then at
0, conformable derivative is represented as hðβÞð0Þ = limt→0+

hðβÞðtÞ.

The conformable integral for function h is given as

Ipβ hð Þ tð Þ =
ðt
p

h xð Þ
x1−β

dx, ð2Þ

where p ≥ 0 and β ∈ ð0, 1�.
Khalil et al. further proposed the succeeding theorem

[34–36].

Theorem 2. Let the functions v and u at the point t > 0 be
β-differentiable; for β ∈ ð0, 1� we have the following proper-
ties [34].

(1) Tβðcu + dvÞ = cTβðuÞ + dTβðvÞ∀c, d ∈ℝ
(2) TβðtrÞ = rtr−β∀r ∈ℝ

(3) TβðDÞ = 0∀vðtÞ =D (constant functions)

(4) TβðvuÞ = vTβðuÞ + uTβðvÞ
(5) Tβðu/vÞ = ðvTβðuÞ − uTβðvÞÞ/v2

(6) Furthermore, if we have a differentiable function u,
then TβðuÞðtÞ = t1−βðdu/dtÞ

The conformable derivative of any differential function at
origin is zero; despite this flaw, several studies have been
made on conformable derivative, as it explains higher order
integration, sequential differentiation and integration, con-
nection of differentiation and integration, property of linear-
ity, derivative of constant function, quotient and product
rule, chain rule, and power rule [34, 36–39]. Consequently,
many researchers are working on the applicability of con-
formable derivative for real-world problems, such as Jacobi
elliptical function expansion method used to solve conform-
able Boussinesq and combined Kdv-mKdv equation [40],
conformable space-time fractional (2+1) dimensional disper-
sive long wave equation [41], conformable heat equation
[42], and conformable perturbed nonlinear Schrodinger
equation [43].

3. Methodology

Here, the methodology of FIM is presented.

Step 1. Conformable PDE is given as follows:

H
∂βu
∂tβ

, ∂
βu

∂zβ1
, ∂

βu

∂zβ2
,⋯, ∂

βu

∂zβr
, ∂

2βu

∂t2β
, ∂2βu

∂zβ1∂z
β
1
, ∂2βu

∂zβ2∂z
β
2
⋯

 !
= 0:

ð3Þ

Step 2. Now using the following transformation

u z1, z2,⋯, zr , tð Þ =U Yð Þ: ð4Þ

Specifically in case of conformable derivative, the next
transformation is applied as

Y = m1z
β
1 +m2z

β
2+⋯+mrz

β
r ± ptβ

β
: ð5Þ

The transformation defined in equation (5) will convert
conformable PDE in nonlinear ODE.

F U Yð Þ,U ′ Yð Þ,U ′′ Yð Þ,⋯
� �

= 0, ð6Þ
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where U ′ðYÞ = dUðYÞ/dY and transformed variable is
denoted by Y .

Step 3. We will take other independent variables as

U Yð Þ = Z Yð Þ,
UY Yð Þ = Y Yð Þ:

ð7Þ

As a result, FIM will provide a system of ODEs (nonlin-
ear) as

∂Z
∂Y

= Y Yð Þ,

∂Y
∂Y

= G Z Yð Þ, Y Yð Þð Þ:

ð8Þ

Step 4.We attain general solutions after integrating equation
(8). There is no precise or sound technique to obtain first
integrals in case of plane independent (autonomous) system,
so it is difficult to get even one first integral. To determine the
first integral, the division theorem is utilized. Hence, a first
integral is derived (cf. equation (8)) with the help of the divi-
sion theorem. In this way, nonlinear ordinary differential
equations (ODEs) can be reduced into a first-order ODE sys-
tem (integrable) through the division theorem. Afterwards,
solving the obtained system (cf. equation (8)), the exact solu-
tions can be acquired.

The theorem for complex domain ℂ and two variables is
given as

Division Theorem. Consider polynomials Gðz, yÞ and Rðz, yÞ,
in complex domain ℂ, where GðzyÞ is irreducible. If at all
zero points of Rðz, yÞ, Gðz, yÞ vanishes, then another polyno-
mial Hðz, yÞ exists in ℂðz, yÞ and the following equality
holds:

R z, yð Þ =G z, yð ÞH z, yð Þ: ð9Þ

4. Implementation of FIM: Conformable KPP
Equation and Its Derived Equations

The exact solutions of KPP, FHN, and NW equations are
presented in this section.

4.1. Conformable Space-Time Fractional KPP Equation.
Andrey Kolmogorov, Ivan Petrovsky, and Nikolai Piskunov
proposed a nonlinear PDE called the Kolmogorov Petrovsky
Piskunov (KPP) equation to describe the genetic model for
spread of dominant gene through population. Later, the
KPP equation is applied in different natural sciences like in
physics as combustion, in biology as propagation of nerve
impulses, in chemical kinetics as propagation of concentra-
tion waves, and in plasma as evolution of set of duffing
oscillators.

Consider conformable space-time fractional KPP equa-
tion defined as [32, 44]

∂βu
∂tβ

−
∂2βu
∂x2β

+ μu + ηu2 + δu3 = 0, x > 0, t > 0, ð10Þ

where μ, η, and δ are constants and β ∈ ð0, 1Þ.
First, we use conformable derivative with the following

transformation:

Y = mxβ

β
+ ptβ

β
,

u Yð Þ = u x, tð Þ,
ð11Þ

where the transformation variable is Y . The transformation
represented in equation (11) will provide the following con-
versions:

∂β :ð Þ
∂tβ

= p
d :ð Þ
dY

, ∂
2β :ð Þ
∂x2β

=m2 d
2 :ð Þ
dY2 : ð12Þ

Here, m and p are constants. Then, we get ODE by using
equation (12) in equation (10):

p
du
dY

−m2 d
2u

dY2 + μu + ηu2 + δu3 = 0: ð13Þ

Now, we acquire a 2D system from equation (7) as

dZ
dY

= Y , ð14Þ

dY
dY

= μ

m2 Z + η

m2 Z
2 + δ

m2 Z
3 + p

m2 Y : ð15Þ

Afterwards, the division theorem will provide first inte-
gral. According to FIM, Z and Y are supposed to be nontriv-
ial solutions of the system given (cf. equations (14) and (15)).
Now, the division theorem provides us an irreducible poly-
nomial RðZ, YÞ =∑n

r=0 arðZÞYr in ℂ½Z, Y � given as

R Z Yð Þ, Y Yð Þð Þ = 〠
n

r=0
ar Z Yð Þð ÞY Yð Þr = 0, ð16Þ

where arðZÞ ≠ 0 and r = 0, 1,⋯, n. Now, we have a poly-
nomial of form wðZÞ + qðZÞY in ℂ½Z, Y � such that

∂R
∂Y

= ∂R
∂Z

∂Z
∂Y

+ ∂R
∂Y

∂Y
∂Y

= w Zð Þ + q Zð ÞYð Þ 〠
n

r=0
ar Zð ÞYr

 !
: ð17Þ

Using n = 1 in equation (17) and equating coefficients for
Yrðr = 0, 1Þ, then we have following equations:

a1′ Zð Þ = a1 Zð Þq Zð Þ, ð18Þ

a0′ Zð Þ =w Zð Þa1 Zð Þ + q Zð Þa0 Zð Þ − a1 Zð Þ p
m2 , ð19Þ
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w Zð Þa0 Zð Þ = a1 Zð Þ μ

m2 Z + a1 Zð Þ η

m2 Z
2 + a1 Zð Þ δ

m2 Z
3:

ð20Þ
Here, arðZÞ are polynomials in Z. As equation (18) shows

a1ðZÞ has constant nature, hence qðZÞ = 0 and we can take
a1ðZÞ = 1. We conclude that deg ðwðZÞÞ can only be 0 or 1
by using a1ðZÞ and qðZÞ in equations (19) and (20) and after
balancing the functions wðZÞ and a0ðZÞ degrees. Now, we
can take wðZÞ = A1Z + A0; therefore, equation (19) takes
the following form:

a0 Zð Þ = 1
2A1Z

2 + A0Z −
p
m2 Z + A2, ð21Þ

where A2 is an integrating constant.
Afterwards, the substitutions of values of a0ðZÞ, wðZÞ in

equation (20) provide a system of nonlinear algebraic equa-
tions by equating the power of Z. Thus, as a result, we obtain
various values of constants given as follows.

A2 = 0,

A1 =
ffiffiffiffiffi
2δ

p

m
,

A0 =
η

m
ffiffiffiffiffi
2δ

p +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
m

ffiffiffiffiffi
2δ

p ,

p = ηm

2
ffiffiffiffiffi
2δ

p + 3m
2
ffiffiffiffiffi
2δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
:

ð22Þ

Case 1. The following constants are acquired as follows:

Substituting equations (21) and (22) into equation (16),
we get

Y Yð Þ = −
1
2A1Z

2 − A0Z + p
m2 Z: ð23Þ

Substitution of equation (23) into equation (14) provides
the first solution of conformable fractional KPP equation.

u1 x, tð Þ
= −

2μδ
δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
+ δη − 2γμδe −

ffiffi
2

p /4m ffiffi
δ

pð Þ ffiffiffiffiffiffiffiffiffiffiffi
η2−4μδ

p
−ηð Þ mxβ/βð Þ+ ptβ/βð Þð Þ :

ð24Þ

A2 = 0,

A1 =
ffiffiffiffiffi
2δ

p

m
,

A0 =
η

m
ffiffiffiffiffi
2δ

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
m

ffiffiffiffiffi
2δ

p ,

p = ηm

2
ffiffiffiffiffi
2δ

p −
3m

2
ffiffiffiffiffi
2δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
:

ð25Þ

Case 2. We get

Substituting equations (21) and (25) into equation (16),
we obtain

Y Yð Þ = −
1
2A1Z

2 − A0Z + p
m2 Z: ð26Þ

Substitution of equation (26) into equation (14) provides
the second solution of conformable fractional KPP equation.

u2 x, tð Þ
= 2μδ
δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
− δη + 2γμδe

ffiffi
2

p /4m ffiffi
δ

pð Þ ffiffiffiffiffiffiffiffiffiffiffi
η2−4μδ

p
+ηð Þ mxβ/βð Þ+ ptβ/βð Þð Þ :

ð27Þ

A2 = 0,

A1 = −
ffiffiffiffiffi
2δ

p

m
,

A0 = −
η

m
ffiffiffiffiffi
2δ

p +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
m

ffiffiffiffiffi
2δ

p ,

p = −
ηm

2
ffiffiffiffiffi
2δ

p + 3m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
2
ffiffiffiffiffi
2δ

p :

ð28Þ

Case 3. We have

Substituting equations (21) and (28) into equation (16),
we get

Y Yð Þ = −
1
2A1Z

2 − A0Z + p
m2 Z: ð29Þ

Substitution of equation (29) into equation (14) provides
the third solution of conformable fractional KPP equation.

u3 x, tð Þ
= 2μδ
δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
− δη + 2γμδe −

ffiffi
2

p /4m ffiffi
δ

pð Þ ffiffiffiffiffiffiffiffiffiffiffi
η2−4μδ

p
+ηð Þ mxβ/βð Þ+ ptβ/βð Þð Þ :

ð30Þ

A2 = 0,

A1 = −
ffiffiffiffiffi
2δ

p

m
,

A0 = −
η

m
ffiffiffiffiffi
2δ

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
m

ffiffiffiffiffi
2δ

p ,

p = −
ηm

2
ffiffiffiffiffi
2δ

p −
3m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
2
ffiffiffiffiffi
2δ

p :

ð31Þ

Case 4. We obtain

Substituting equations (21) and (31) into equation (16),
we obtain

Y Yð Þ = −
1
2A1Z

2 − A0Z + c
m2 Z: ð32Þ
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Substitution of equation (32) into equation (14) provides
the fourth solution of conformable fractional KPP equation.

u4 x, tð Þ
= −

2μδ
δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4μδ

p
+ δη − 2γμδe

ffiffi
2

p /4m ffiffi
δ

pð Þ ffiffiffiffiffiffiffiffiffiffiffi
η2−4μδ

p
−ηð Þ mxβ/βð Þ+ ptβ/βð Þð Þ :

ð33Þ

A0 = 0,

A1 =
ffiffiffiffiffi
2δ

p

m
,

A2 =
μ

m
ffiffiffiffiffi
2δ

p ,

p = −
ηmffiffiffiffiffi
2δ

p :

ð34Þ

Case 5. We get

Substituting equations (21) and (34) into equation (16),
we obtain

Y Yð Þ = −
1
2A1Z

2 + p
m2 Z − A2: ð35Þ

Substitution of equation (35) into equation (14) provides
the fifth solution of conformable fractional KPP equation.

u5 x, tð Þ

=
−η − tan mxβ/β

� �
+ ptβ/β
� �� �

+ γ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8μδ − 2η2
p� �

/4m
ffiffiffi
δ

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μδ − η2

p
2δ :

ð36Þ

A0 = 0,

A1 = −
ffiffiffiffiffi
2δ

p

m
,

A2 = −
μ

m
ffiffiffiffiffi
2δ

p ,

p = ηmffiffiffiffiffi
2δ

p :

ð37Þ

Case 6. We have

Substituting equations (21) and (37) into equation (16),
we obtain

Y Yð Þ = −
1
2A1Z

2 + c
m2 Z − A2: ð38Þ

Substitution of equation (38) into equation (14) provides
the second solution of conformable fractional KPP equation.

u6 x, tð Þ

=
−η + tan mxβ/β

� �
+ ptβ/β
� �� �

+ γ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8μδ − 2η2
p� �

/4m
ffiffiffi
δ

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μδ − η2

p
2δ :

ð39Þ

The solutions u1, u2, u3, u4, u5, u6 are presented in
Figure 1. For larger values of β, the solutions attain more
height which is depicted in Figure 2. Figure 3 shows the
graphical presentation in 2D plot of genes for the KPP equa-
tion. The graphical solutions of the KPP equation can be used
in diallel analysis as observed in [26].

4.2. Conformable Time-Fractional FHN Equation. Richard
Fitzhugh proposed a model for transmission of impulses
in nerve axon in 1961. Nagumo et al. made the identical
circuit in succeeding years and presented the model of an
excitable system. FHN is derived from KPP on substituting
μ = ξ, η = −ðξ + 1Þ [45, 46].

Consider conformable time-space fractional FHN equa-
tion as

∂βu
∂tβ

−
∂2u
∂x2

− u 1 − uð Þ u − ξð Þ = 0, ð40Þ

where β ∈ ð0, 1Þ and ξ ∈ ð0,0:5�.
First, we use the conformable derivative with the follow-

ing transformation:

Y = x + ptβ

β
,

u Yð Þ = u x, tð Þ,
ð41Þ

where the transformation variable is Y . The transforma-
tion represented in equation (41) will provide the following
conversions:

∂β :ð Þ
∂tβ

= p
d :ð Þ
dY

, ∂
2 :ð Þ
∂x2

= d2 :ð Þ
dY2 : ð42Þ

Here, p is a constant. Then, we get an ODE by using equa-
tion (42) in equation (40):

p
du
dY

−
d2u

dY2 − u 1 − uð Þ u − ξð Þ = 0: ð43Þ

Now, we obtain a 2D system from equation (7) as

dZ
dY

= Y , ð44Þ

dY
dY

= Z3 − Z2 + ξZ − ξZ2 + pY : ð45Þ

Afterwards, the division theorem will give first integrals.
According to FIM, Z and Y are supposed to be nontrivial
solutions of the system given (cf. equations (44) and (45)).
Now, the division theorem provides us an irreducible poly-
nomial RðZ, YÞ =∑n

r=0 arðZÞYr in ℂ½Z, Y � as

R Z Yð Þ, Y Yð Þð Þ = 〠
n

r=0
ar Z Yð Þð ÞY Yð Þr = 0, ð46Þ
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Figure 1: Solutions of conformable fractional KPP equation Cases 1–6 using η = 1:93 − 2:25, m = 1, δ = 1, γ = 1, and β = 0:8:
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where arðZÞ ≠ 0 and r = 0, 1,⋯, n. Now, we have a polyno-
mial of form wðZÞ + qðZÞY in ℂ½Z, Y � such that

∂R
∂Y

= ∂R
∂Z

∂Z
∂Y

+ ∂R
∂Y

∂Y
∂Y

= w Zð Þ + q Zð ÞYð Þ 〠
n

r=0
ar Zð ÞYr

 !
:

ð47Þ

Using n = 1 in equation (47) and equating coefficients of
Yrðr = 0, 1Þ, then we have the following equations:

a1′ Zð Þ = a1 Zð Þq Zð Þ, ð48Þ

a0′ Zð Þ =w Xð Þa1 Zð Þ + q Zð Þa0 Zð Þ − pa1 Zð Þ, ð49Þ

w Zð Þa0 Zð Þ = −a1 Zð ÞZ2 + ξa1 Zð ÞZ + a1 Zð ÞZ3 − ξa1 Zð ÞZ2:

ð50Þ
Here, arðZÞ are polynomials in Z. As equation (48) shows

a1ðZÞ has constant nature, thus qðZÞ = 0 and we can take a1
ðZÞ = 1. We conclude that deg ðwðZÞÞ can only be 0 or 1 by
using a1ðZÞ and qðZÞ in equations (48) and (49) and after
balancing the functions wðZÞ and a0ðZÞ degrees. Now, we
can take wðZÞ = A1Z + A0; therefore, equation (49) takes
the following form:

a0 Zð Þ = 1
2A1Z

2 − A0 Zð Þ − pZ + A2, ð51Þ

where A2 is an integrating constant.
Afterwards, the substitutions of the values of a0ðZÞ, wðZÞ

in equation (50) provide a system of nonlinear algebraic
equations by equating the power of Z. Now, as a result, we
have various constants given as follows.

A1 =
ffiffiffi
2

p
,

A0 = 0,

A2 =
μffiffiffi
2

p ,

p = 1 + ξffiffiffi
2

p :

ð52Þ

Case 7. We get

Substituting equations (51) and (52) into equation (46),
we get the following equation.

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 + 1 + ξffiffiffi
2

p Z −
ξffiffiffi
2

p : ð53Þ

Substitution of equation (53) into equation (44) provides
the first solution of conformable fractional FHN equation.

u7 x, tð Þ

= −ξ + e
ffiffi
2

p
ξ/2ð Þ x+ ptβ/βð Þð Þ− ffiffi

2
p

/2ð Þ x+ ptβ/βð Þð Þ+γξ ffiffi
2

p
/2ð Þ−γ ffiffi

2
p

/2ð Þ
−1 + eξ

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ− ffiffi
2

p
/2ð Þ x+ ptβ/βð Þð Þ+γξ ffiffi

2
p

/2ð Þ−γ ffiffi
2

p
/2ð Þ :

ð54Þ

A1 = −
ffiffiffi
2

p
,

A0 = 0,

A2 =
−ξffiffiffi
2

p ,

p = − 1 + ξð Þffiffiffi
2

p :

ð55Þ

Case 8. We get
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Figure 2: Solutions of conformable fractional KPP equation (Case 1)
considering η = 2:1, m = 1, δ = 1, μ = 1, γ = 1, β = 1, β = 0:8, β = 0:6,
and β = 0:4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

x

t

Case 1 2D plot

Figure 3: 2D plot of conformable fractional KPP equation (Case 1)
using η = 2:1, m = 1, δ = 1, μ = 1, γ = 1, and β = 0:8.
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Substituting equations (51) and (55) into equation (46),
we get the subsequent equation.

Y Yð Þ =
ffiffiffi
2

p

2 Z2 −
1 + ξffiffiffi

2
p Z + ξffiffiffi

2
p : ð56Þ

Substitution of equation (56) into equation (44) provides
the second solution of conformable fractional FHN equation.

u8 x, tð Þ

= −ξ + e
ffiffi
2

p
ξ/2ð Þ x+ ptβ/βð Þð Þ− ffiffi

2
p

/2ð Þ x+ ptβ/βð Þð Þ+γξ ffiffi
2

p
/2ð Þ−γ ffiffi

2
p

/2ð Þ
−1 + eξ

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ− ffiffi
2

p
/2ð Þ x+ ptβ/βð Þð Þ+γξ ffiffi

2
p

/2ð Þ−γ ffiffi
2

p
/2ð Þ :

ð57Þ

A1 =
ffiffiffi
2

p
,

A2 = 0,
A0 = −

ffiffiffi
2

p
ξ,

p = 1ffiffiffi
2

p − ξ
ffiffiffi
2

p
:

ð58Þ

Case 9. We have

Substituting equations (51) and (58) into equation (46),
we obtain the following equation.

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 + 1ffiffiffi
2

p Z: ð59Þ

Substitution of equation (59) into equation (44) provides
the third solution of conformable fractional FHN equation.

u9 x, tð Þ = 1
1 + γe−

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð60Þ

A1 =
ffiffiffi
2

p
,

A2 = 0,
A0 = −

ffiffiffi
2

p
,

p = −
ffiffiffi
2

p
+ ξ

1ffiffiffi
2

p :

ð61Þ

Case 10. We obtain

Substituting equations (51) and (61) into equation (46),
we get

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 + ξffiffiffi
2

p Z: ð62Þ

Substitution of equation (62) into equation (44) provides
the fourth solution of conformable fractional FHN equation.

u10 x, tð Þ = ξ

1 + γξe− ξ
ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð63Þ

A1 = −
ffiffiffi
2

p
,

A2 = 0,
A0 =

ffiffiffi
2

p
ξ,

p = −
1ffiffiffi
2

p + ξ
ffiffiffi
2

p
:

ð64Þ

Case 11. We get

Substituting equations (51) and (64) into equation (46),
we obtain

Y Yð Þ =
ffiffiffi
2

p

2 Z2 −
1ffiffiffi
2

p Z: ð65Þ

Substitution of equation (65) into equation (44) provides
the fifth solution of conformable fractional FHN equation.

u11 x, tð Þ = 1
1 + γe

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð66Þ

A1 = −
ffiffiffi
2

p
,

A2 = 0,
A0 =

ffiffiffi
2

p
,

p = −
ξffiffiffi
2

p +
ffiffiffi
2

p
:

ð67Þ

Case 12. We have

Substituting equations (51) and (67) into equation (46),
we get

Y Yð Þ =
ffiffiffi
2

p

2 Z2 −
ξffiffiffi
2

p Z: ð68Þ

Substitution of equation (68) into equation (44) provides
the sixth solution of conformable fractional FHN equation.

u12 x, tð Þ = ξ

1 + γξe ξ
ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð69Þ

The solutions u7, u8, u9, u10, u11, u12 are presented in
Figure 4. For smaller value of β, solutions attain more height
which is depicted in Figure 5.

4.3. Conformable Space-Time Fractional NW Equation. NW
has wide applications in mechanical and chemical engineer-
ing, ecology, and biology [34]. NW can be derived from
KPP by substituting μ = −1, η = 0, and δ = 1.
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Figure 4: Conformable fractional FHN equation Cases 7–12 using β = 0:8, γ = 1, and ξ = 0:5:
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Consider conformable space-time fractional NW equa-
tion as

∂βu
∂tβ

= K
∂αu
∂xα

+ au − buq, ð70Þ

where β ∈ ð0, 1Þ and α ∈ ð0, 2�, β > 0, α > 1, a, b, K > 0 and q is
a positive integer. For a = 1, b = 1, K = 1, and α = 2, equation
(70) becomes

∂βu
∂tβ

= ∂2u
∂x2

+ u − u3: ð71Þ

First, we use the conformable derivative with the follow-
ing transformation:

Y = x + ptβ

β

u Yð Þ = u x, tð Þ, ð72Þ

where the transformation variable is Y . The transforma-
tion represented in equation (72) will provide the following
conversions.

∂β :ð Þ
∂tβ

= p
d :ð Þ
dY

, ∂
2 :ð Þ
∂x2

= d2 :ð Þ
dY2 , ð73Þ

where p is a constant. Then, we get ODE by using equa-
tion (73) in equation (71).

p
du
dY

−
d2u

dY2 − u + u3 = 0: ð74Þ

Thus, we obtain a 2D system from equation (7) as

dZ
dY

= Y , ð75Þ

dY
dY

= Z3 − Z + pY : ð76Þ

Afterwards, the division theorem will give first integrals.
According to FIM, Z and Y are supposed to be nontrivial
solutions of the system given (cf. equations (75) and (76)).
Hence, the division theorem provides us irreducible polyno-
mial RðZ, YÞ =∑n

r=0 arðZÞYr in ℂ½Z, Y � given as

R Z Yð Þ, Y Yð Þð Þ = 〠
n

r=0
ar Z Yð Þð ÞY Yð Þr = 0, ð77Þ

where arðZÞ ≠ 0 and r = 0, 1,⋯, n. Now, we have a polyno-
mial of form wðZÞ + qðZÞY in ℂ½Z, Y � such that

∂R
∂Y

= ∂R
∂Z

∂Z
∂Y

+ ∂R
∂Y

∂Y
∂Y

= w Zð Þ + q Zð ÞYð Þ 〠
n

r=0
ar Zð ÞYr

 !
:

ð78Þ

Using n = 1 in equation (78) and equating coefficients of
Yrðr = 0, 1Þ, then we have following equations:

a1′ Zð Þ = a1 Zð Þq Zð Þ, ð79Þ

a0′ Zð Þ =w Zð Þ − p, ð80Þ
w Zð Þa0 Zð Þ = a1 Zð ÞZ3 − a1 Zð ÞZ: ð81Þ

Here, arðZÞ are polynomials in Z. As equation (79) shows
a1ðZÞ has constant nature, thus qðZÞ = 0 and we can take a1
ðZÞ = 1. We conclude that deg ðwðZÞÞ can only be 0 or 1 by
using a1ðZÞ and qðZÞ in equations (80) and (81) and after
balancing the functions wðZÞ and a0ðZÞ degrees. Now, we
can take wðZÞ = A1Z + A0; therefore, equation (80) takes
the following form:

a0 Zð Þ = 1
2A1Z

2 + A0Z − pZ + A2, ð82Þ

where A2 is an integrating constant.
Afterwards, the substitutions of the values of a0ðZÞ, wðZÞ

in equation (81) provide a system of nonlinear algebraic
equations by equating coefficients of power of Z. Thus, we
have various constants as given below.

A1 =
ffiffiffi
2

p
,

A0 = 0,

A2 = −
1ffiffiffi
2

p ,

p = 0:

ð83Þ

Case 13. We acquire
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Figure 5: Conformable fractional FHN equation (Case 10)
considering γ = 1, ξ = 0:45, β = 1, β = 0:6, and β = 0:3:

10 Advances in Mathematical Physics



Substituting equations (82) and (83) into equation (77),
we get

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 + 1ffiffiffi
2

p : ð84Þ

Substitution of equation (84) into equation (75) provides
the first solution of conformable fractional NW equation.

u13 x, tð Þ = tanh
ffiffiffi
2

p

2 x + ptβ

β

� �
+ γ

ffiffiffi
2

p

2

 !
: ð85Þ
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Figure 6: Conformable fractional NW equation Cases 13–18 using β = 0:8 and γ = 1:
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A1 = −
ffiffiffi
2

p
,

A0 = 0,

A2 =
1ffiffiffi
2

p ,

p = 0:

ð86Þ

Case 14. We get

Substituting equations (82) and (86) into equation (77),
we obtain

Y Yð Þ =
ffiffiffi
2

p

2 Z2 −
1ffiffiffi
2

p : ð87Þ

Substitution of equation (87) into equation (75) provides
the second solution of conformable fractional NW equation.

u14 x, tð Þ = − tanh
ffiffiffi
2

p

2 x + ptβ

β

� �
+ γ

ffiffiffi
2

p

2

 !
: ð88Þ

A1 =
ffiffiffi
2

p
,

A2 = 0,
A0 =

ffiffiffi
2

p
,

p = 3ffiffiffi
2

p :

ð89Þ

Case 15. We have

Substituting equations (82) and (89) into equation (77),
we get

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 + 1ffiffiffi
2

p Z: ð90Þ

Substitution of equation (90) into equation (75) provides
the third solution of conformable fractional NW equation.

u15 x, tð Þ = 1
1 + γe−

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð91Þ

A1 = −
ffiffiffi
2

p
,

A2 = 0,
A0 =

ffiffiffi
2

p
,

p = 3ffiffiffi
2

p :

ð92Þ

Case 16. We obtain

Substituting equations (82) and (92) into equation (77),
we get

Y Yð Þ =
ffiffiffi
2

p

2 Z2 + 1ffiffiffi
2

p Z: ð93Þ

Substitution of equation (93) into equation (75) provides
the fourth solution of conformable fractional NW equation.

u16 x, tð Þ = 1
−1 + γe−

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð94Þ

A1 =
ffiffiffi
2

p
,

A2 = 0,
A0 = −

ffiffiffi
2

p
,

p = −
3ffiffiffi
2

p :

ð95Þ

Case 17. We get

Substituting equations (82) and (95) into equation (77),
we obtain

Y Yð Þ = −
ffiffiffi
2

p

2 Z2 −
1ffiffiffi
2

p Z: ð96Þ

Substitution of equation (96) into equation (75) provides
the fifth solution of conformable fractional NW equation.

u17 x, tð Þ = 1
−1 + γe

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð97Þ
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Figure 7: Conformable fractional NW equation (Case 15)
considering γ = 1, β = 1, β = 0:8, β = 0:4, and β = 0:1.
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A1 = −
ffiffiffi
2

p
,

A2 = 0,
A0 = −

ffiffiffi
2

p
,

p = −
3ffiffiffi
2

p :

ð98Þ

Case 18. We have

Substituting equations (82) and (98) into equation (77),
we obtain

Y Yð Þ =
ffiffiffi
2

p

2 Z2 −
1ffiffiffi
2

p Z: ð99Þ

Substitution of equation (99) into equation (75) provides
the sixth solution of conformable fractional NW equation.

u18 x, tð Þ = 1
1 + γe

ffiffi
2

p /2ð Þ x+ ptβ/βð Þð Þ : ð100Þ

The solutions u13, u14, u15, u16, u17, u18 are presented in
Figure 6. In Figure 7, the results reveal that the peaks are get-
ting sharper and sharper by reducing the value of β.

5. Conclusion

The purpose of this paper was to find new exact solutions of
some conformable biological models. The considered models
were KPP, FHN, and NW. FIM was employed to obtain the
solutions of fractional KPP, FHN, and NW equations. The
proposed method was found brief and direct. The results
indicate that FIM is one of the best techniques to calculate
exact solutions of nonlinear fractional order problems
appearing in biology, physics, and engineering.
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