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The aim of this paper is to introduce a notion of (¢, F)-contraction defined on a metric space with w-distance. Moreover, fixed-
point theorems are given in this framework. As an application, we prove the existence and uniqueness of a solution for the
nonlinear Fredholm integral equations. Some illustrative examples are provided to advocate the usability of our results.

1. Introduction

By a contraction on a metric space (X, d), we understand a
mapping T : X — X satisfying for all x,y € X : d(Tx, Ty)
< kd(x,y), where k is a real in [0, 1).

In 1922, Banach proved the following theorem.

Theorem 1 (see [1]). Let (X, d) be a complete metric space.
Let T : X — X be a contraction. Then,

(i) T has a unique fixed point x € X

(ii) For every x, € X, the sequence (x,,), where x,,,; = Tx,,
, converges 1o X

(iii) We have the following estimate: for every x € X, d(
X X) < ("1 - k)d(xp, %), n€N

As a result of its intelligibility and profitableness, the pre-
vious theorem has become a very celebrated and popular tool
in solving the existence problems in many branches of math-
ematical analysis.

Many mathematicians extended the Banach contraction
principle in two major directions, one by stating the condi-
tions on the mapping T and second by taking the set X as
more general structure.

Recently, Kari et al. [2] give some fixed-point results for
generalized 6 — ¢-contraction in the framework of («,7)
-compete rectangular b-metric spaces.

In 2012, Wardowski [3] introduced the concept of F-con-
traction, using this concept, he proved the existence and unique-
ness of a fixed point in complete metric spaces. This direction
has been studied and generalized in different spaces, and various
fixed-point theorems are developed [4, 5]. Cosentino and Vetro
[6] presented some fixed-point results of Hardy-Rogers type for
self-mappings on complete metric spaces or complete ordered
metric spaces. In 2016, Piri and Kumam [7] introduced the
modified generalized F-contractions, by combining the ideas
of Dung and Hang [8], Piri and Kumam [9], Wardowski [3],
and Wardowski and Van Dung [10], and gave some fixed-
point result for these type mappings on complete metric space.

In 1996, Kada et al. initiated the notion of w-distance on a
metric space; then, many authors used this concept to prove
some results of fixed-point theory [11, 12].

Recently, Wongyat and Sintunavarat [13] introduced a
special w-distance called ceiling distance and proved some
fixed point for generalized contraction mappings with
respect to this distance.

Later, Wardowski [14] studied a new type of contractions
called nonlinear F-contraction.

In this paper, we shall obtain a fixed-point theorem for
(¢, F)-contraction with respect to w-distance on complete
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metric spaces. Various examples are constructed to illustrate our
results. As an application, we prove the existence and unique-
ness of a solution for the nonlinear Fredholm integral equations.

The paper is structured as follows:

In Section 2, we briefly recall some definitions and basic
properties used to prove our main results.

In Section 3, we present our results.

Section 4 is devoted to the application of the result in
nonlinear integral equations.

2. Preliminaries

Kada et al. [15] introduced the concept of w-distance on a
metric space as follows:

Definition 2 (see [15]). Let (X, d) be a metric space. A func-
tion g : X x X — R" is called a w -distance on X, if it sat-
isfies the following three conditions for all x, y,z€ X :

(W) q(x.y) <q(x. 2) +q(z.y)

(W,) q(x,.): X — R* is lower semicontinuous on for all
xeX

(W,) For each &> 0, there exists § > 0 such that g(x, y)
<dand q(x,z) <8 imply d(y,z) <e

Remark 3. Each metric on a nonempty set X is a w-distance
on X.

Example 1 (see [13]). Let (X, d) be a metric space. The func-
tion g : X x X — R* defined by g(x, y) = cfor every x, y € X
is a w-distance on X, where c is a positive real number. But g
is not a metric since q(x, x) = c# 0 for any x € X.

The following lemma is a useful tool for proving our
results.

Lemma 4 (see [15]). Let (X, d) be a metric space, q be a w -dis-
tance on X, {x, } and {y,} be two sequences in X, and x, y, z € X.

() If lim q(x,,x)= lim q(x,,y)=0 then x=y. In
n—-+00 n—+00
particular, if q(z,x) =q(z,y) =0, then x=y
(i) If d(x,,y,) <a, and d(x,,y)<p, for all neN,

where {a,} and {B,} are sequences in [0, +oo[ con-
verging to 0, then {y,} converges to y

(iii) If for each € > 0, there exists N, € N such that m>n
> N, implies q(x,,x,,) <e, then {x,} is a Cauchy
sequence

Definition 5 (see [13]). A w-distance g on a metric space (X
,d) is said to be a ceiling distance of d if and only if

q(x.y) 2 d(x.y), (1)

for all x, y € X.

Example 2 (see [13]). Let X =R with the metric d : X x X
—> R* defined by d(x, y) = |x — y| for all x, y € X, and let a,
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b > 1. Define the function g : X x X — R" by
q(x, y) =max {a(y - x), b(x - y)}, (2)

for all x, y € X. Then, q is a ceiling distance of d.
The following definition was introduced by Wardowski.

Definition 6 (see [3]). Let F be the family of all functions F
: R* — R such that

(i) F is strictly increasing
(ii) For each sequence (x,,), . of positive numbers,

lim x, =0,if andonlyif lim F(x,)=-o00 (3)

n—~oo n—=o00

(iii) There exists k € ]0, 1] such that lim kE(x)=0

XHOx

Recently, Piri and Kuman [9] extended the result of
Wardowski [3] by changing the condition (iii) in Definition
6 as follows.

Definition 7 (see [9]). Let I" be the family of all functions F
: R* — R such that

(i) F is strictly increasing
(ii) For each sequence (x,,), of positive numbers,

lim x, =0,ifandonlyif lim F(x,)=-00 (4)

n—~ao~o n—=~oo

(iii) F is continuous

The following definition introduced by Wardowski [14]
will be used to prove our result.

Definition 8 (see [14]). Let [F be the family of all functions F
:R* — R and @ be the family of all functions ¢ :]0,+00[
— ]0,+00] satisfy the following conditions:

(i) F is strictly increasing

(ii) For each sequence (x,,),. of positive numbers,

lim x,=0,if andonlyif lim F(x,)=-00 (5)

n—~aoo n—~oo

(iii) lim inf, . ¢(s) >0 foralls>0

(iv) There exists k € ]0, 1] such that
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lim x*F(x) =0 (6)

x—0*

By replacing the condition (iii) in Definition 8, we intro-
duce a new class of F-contraction.

Definition 9. Let I be the family of all functions F: R*
—> R and @ be the family of all functions ¢ :]0,+c0[ — |
0,+00] satisfy the following conditions:

(i) F is strictly increasing
(ii) lim inf, . ¢(s) >0 foralls>0
(iii) For each sequence (x,,),.y of positive numbers,

lim x,=0,ifandonlyif lim F(x,)=-00 (7)

n—~aoo n—~:~o

(iv) F is continuous

Example 3.

(i) Let F,(t)=(-1/\/t)+t, F,(t)=(-1/(e' - 1)) +e"".

Then, F;,F, €S
(i) Let ¢, (t) = 1/(t + 1), ¢,(t) = 1/(\/t + 1), and ¢,(¢) =
1/(t* +1). Then, ¢,, ¢, and ¢, € ©

Definition 10 (see [14]). Let (X, d) be a metric space. A map-
ping T : X — X is called a (¢, F) -contraction on (X, d), if
there exist F € F and ¢ € @ such that

F(d(Tx, Ty)) + ¢(d(x,y)) <

for all x, y € X for which Tx + Ty.

F(d(x.y)), (8)

3. Main Result

In this paper, using the idea introduced by Wongyat and Sin-
tunavarat [13], we presented the concept of (¢, F)-contrac-
tion on a complete metric space with w-distance.

Definition 11. Let g be a w-distance on a metric space (X, d).
A mapping T : X — X is said to be a w-generalized (¢, F)
-contraction of type (F) on (X, d) if there exist F € F and ¢
€ @ such that

F(q(Tx, Ty)) + ¢(q(x.y)) < F(9(x.y)), )
for all x, y € X for which Tx + Ty.

Theorem 12. Let (X,d) be a complete metric space and q
: X x X — [0,400[ be a w -distance on X and a ceiling dis-
tance of d, supposing that T : X — X is a w -generalized (¢
, F) -contraction of type (F). Then, T has a unique fixed point
on X.

Proof. Let x, € X be an arbitrary point in X; define a sequence
{xn}ne]N by

X,y = Tx, = T"x,, (10)

for all n € IN. If there exists n, € N such that d(x,,
then the proof is finished.

We can suppose that d(x,,, x,,,) >0 for all n € N.

Since q is a ceiling distance of d, we obtain g(x,, x,,,,) >0
for all n e N.

Substituting x = x,_; and y =x,,, from (9), for all n € N,
we have

4 xn0+1) = 0’

Vn e N.
(11)

F[q(xn’xn+1)] + (p(q(xn—l’xn)) = [F(q(xn—l’xn))]’

Imply that

Flq(x 241)] < [F(q(X-1%4))] = $((Xp-15 %)) < [F(q(%,1-1%4))]-

(12)

Since F is increasing, then q(x,,x,.,,)<q(x,_;>%,).
Therefore, g(x,,x,,,), IS monotone strictly decreasing
sequence of nonnegative real numbers. Consequently, there
exists & > 0 such that

lim ‘Z(xwxrwl) = Q. (13)

n—oo

The inequality (11) implies

F(q(x Xn41)) < (F(q(%-1, %)) = ¢(
(F(q( n-2>Xp— 1)) ¢
<-

= ¢(9(%-2 X,1))

< F(q(x> 1)) =

q(Xy_15 %))
( ( n-12%5))

IN

(14)

M- ]

i
o

P(q(xi> Xir1))-

Since liminf, . .¢(a)>0, we have liminf, | ¢(q(
X,_1>%,)) > 0; then from the definition of the limit, there
exists n, € N and A > 0 such that for all n > n, ¢(q(x,_;,x,))
> A, hence

F(q(xys xp11)) < F(q(%05 x1)) =

n

- Z (p(q(x x1+1)<F(q('x0’xl))

i=ny—1

,72_1 A=F(q(xq,x;)) = (n—ny)A,
(15)

for all n > n,. Taking the limit as # — oo in the above inequal-
ity, we get



hmn—»ooF(q(xn’an)) < nl.gloo[F(q(xO’xl)) - (?’l - nO)A]’
(16)

that is, lim,_, F(q(x,, x,,,1)) = —00; then, from the condition
(i) of Definition 8, we conclude that

lim (xn,xn+1) =0. (17)

n—=o00

Next, we shall prove that {x, },, ., is a Cauchy sequence, ie.,
lim d(x,x,,) =0, for all n,m € N.

n,m——0o0
The condition (iv) of Definition 8 implies that there exists
k €]0, 1] such that

lim [q(xn,xn+1)]kq(xn,xn+l) = 0 (18)

From the inequality (12), we get
1906050 )] F (%> X11)) < (4060, %) [F(9(%00 %)) = (1= 1) AJ.
(19)
Hence,
(4060 %)) F (@00 1) = [0 2000) | F(9(%00 %))

£ _[q('xn,xnﬂ)]k(" - nO)A <0.
(20)

Taking limit # — oo in the above inequality, we con-
clude that

X, %00 ) ¥ (1 = 1) A =0. (21)

hmn—»ooq( n,”'n+1
Then, there exists n; € N, such that for all n>n,,

1
Xy Xpp) S ——m— - 22
) S o myaf ()

Therefore, for m > n > max {n,, n, }, we have

q(xn,xm) < q(xn’xnﬂ) + q(xm+1’xm+2)+'“+q(xm—l,xm)
m—1 ) 00
1
= Q(xi’ Xiy ) < q(xi’xi+ ) < . Nk
2 3 i [(i = ng)A]*
(23)
Since 0 < k < 1, then
lim g(x,,x,,)=0. (24)

n,m——oo

By Lemma 4, we can conclude that {x,} is a Cauchy
sequence in X. By the completeness of (X, d), there exists z
€ X such that

lim d(x,,z) =0. (25)

n—:00
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Now, we show that d(Tz, z) = 0; arguing by contradic-
tion, we assume that

d(Tz,z) >0=q(Tz,z)>0. (26)
From (24), for each r > 0, there is n, € N such that

1
a5, %) <+ @)

for all n, > r. Since g(x,, ,.) is lower semicontinuous and x,,
.
— X as n — 00, we get

q(x,,z) < lim inf q(x,,x,) < % (28)
implying that
lim inf q(x,,z) =0. (29)
Now, by triangular inequality, we get,
q(Tx,,Tz) <q(Tx,,z) +q(z Tz), (30)
a(z Tz) £q(2 x,, ) +q(x,,, Tz). (31)

By letting n — co in inequality (30) and (31), we obtain

q(z, Tz) < lim q(Tx,, Tz) <q(z, Tz). (32)
Therefore,
lim q(Tx,,Tz) =q(z Tz). (33)

Let A=d(z, Tz) >0, from the definition of the limit,
there exists #, € N such that

a(Tx,, Tz) —q(z, Tz)| <A, Vnzn,, (34)
which implies that
q(Tx,,Tz) >0, Vnzn,. (35)
Applying (9) with x =z and y = x, , we have
F(q(Tz Tx,)) +¢(q(2x,)) <F(q(zx,)),  (36)
which implies that
F(q(Tz Tx,)) < F(q(zx, ))- (37)

Since F is increasing, we get

q(Tz, Tx, ) <q(zx, ). (38)
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By letting n — 0o in the above inequality, we obtain

lim q(Tx,,Tz) =q(z Tz)=0. (39)

Which is a contradiction, then d(z, Tz) = q(z, Tz) =0, so
Tz=z.
For uniqueness, now, suppose that z, u € X are two fixed
points of T such that u # z. Therefore, we have
q(Tz, Tu) = q(z,u) > 0. (40)
Applying (9) with x =z and y = u, we have

F(q(Tu, Tz)) = F(q(z, u)) + $(q(z u)) < [F(q(z u))], (41)
implying
q(u z) <q(u. 2), (42)
which is a contradiction. Therefore, u = z.

Example 4. Let X = [0,+00[ with the metric d : X x X — [0,
+00[ defined by

d(x,y) =|x -y, (43)

for all x, y € X. Define a mapping T : X — X by

x
Tx==. 44
X 3 (44)

Suppose that F(t) =In () and ¢(t) = 1/(t + 1), clearly F
€F and ¢ € D. Also, we define a w-distance q:XxX
— [0,+00] by

q(x, y) = max {x, y}, (45)

for all x,y € X. It is easy to see that q is a ceiling distance
of d. Now, we will show that T satisfies the condition (9).

Case 1. If x > y, then q(x,y) = x, q(Tx, Ty) = x/3, and ¢(g(x
,¥))=1/(x+1). Thus,

F(q(x.y)) =1n (x)

F(q(Tx, Ty)) =In (’3_‘) (46)

We prove that T is a (¢, F) contraction mapping of type

(F). Indeed,

F(q(Tx, Ty) + ¢(q(x. ) = F(a(x. y)) -
=in (3)+ o~ ()= - -0 (3)<0. )

3 x+1 x+1
Therefore,
F(q(Tx Ty)) + ¢(q(x. y)) < F(q(x. y))- (48)

Case 2. If x <y, then q(x, y) =y, q(Tx, Ty) = y/3, and ¢(q(x

5
,9)) = 1/(y + 1). Thus,
F(q(x.y)) =1n (y)
F(q(Tx, Ty)) =In @) (49)
Therefore,
F(q(Tx Ty)) + ¢(q(x. ) < F(q(x. y))- (50)

Hence, 0 is the unique fixed point of T.

Example 5. Consider the sequence (S,), - defined as fol-
lows:

$=1x2,
$,=1x2+2x3, -, (51)
n(n+1)(n+2)

S, =1Xx24+2x3++n(n+1)=

Let the metric d : X x X — [0,4+00] defined by
d(x,y) = |x =y, (52)

for all x, y € X.
Define a mapping T : X — X by

{ S, ifn=1,
T(S,) = (53)

S ifn>2.

n-1

Clearly, the Banach contraction is not satisfied. In fact, we
can check easily that

L d(T(S),T(S)) _ . n+1)-6 _
n@mw_ llm =1.

(54)
Suppose that F(¢) =In (t) and ¢(t) = 1/(t + 1), clearly F

€F and ¢ € @. Also, we define a w-distance g : X x X — |
0,4+00[ by

q(x, y) = max {x, y}, (55)

for all x, y € X. It is easy to see that q is a ceiling distance of d.
Now, we will show that T satisfies the condition (9).

Case 1. n=1 and m > 2. In this case, we have

nn+1)(n+2)
3
n(n—1)(n+2)

q(sn’ Sl) =

>




Thus,
Flgls,, ) =1n M2,

(57)

F(q(T(S,), T($,))) = In {%]

On the other hand,

F(q(T(S,), T(S1))) + ¢(d(S,S1))) = F(a(S, S1))
a n(n-1)(n+1) I n(n+1)(n+2)
n [ ] | [7}

3 n—1 N
n(n+1)(n+2)+ n+2 n(n+1)( n+2) +3

<0, foralln>2.

Therefore,
F(q(T(S,), T(S1))) +6(4(S,»S1))) <

Case 2. m > n > 1. In this case, we have

F(q(S, 1) (59)

q(sn’ Sm) = @’
a(T(s,).7(5,)) = "0 (60)
Ba(SS)) =
Thus,
Flgls,, 50 =tn |2
X . (61)
m(m — m+
Flg(1(s,), 1) =1n M=)

On the other hand,

F(q(T(Sn)’ T(Sm))) + ¢(q(sn’ Sn)) - F(q(sn’ Sn))
m(m—1)(m+1) m(m+1)(m+2)
N

3 -1 3
Tmmr)mr2+3 {m+2] T amt D)(m+2)+3
<0, foralln > 2.

(62)

Therefore,
F(q(T(S,)» T(S))) +(a(Su S))) < F(A(S> ). (63)
Thus, the inequality (9) that is satisfied implies that T has

a unique fixed point. In this example, S, is the unique fixed
point of T.
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Definition 13. Let q be a w -distance on a metric space (X, d).
A mapping T : X — X is said to be a w -generalized (¢, F)
-contraction of type () on (X, d) if there exist F € S and
¢ € @ such that

F(q(Tx, Ty)) + ¢(q(x.y)) < F(q(x.p)).  (64)
for all x, y € X for which Tx + Ty.

Theorem 14. Let (X,d) be a complete metric space and q
: X x X —]0,4+00[ be a w -distance on X and a ceiling dis-
tance of d. Suppose that T : X — X is a (¢, F) -contraction
of type (3). Then, T has a unique fixed point on X.

Proof. As in the proof of Theorem 12, we can conclude that

lim d(x,,x,,,)=0. (65)

n—=oo

Next, we show that (x,,) is a Cauchy sequence, i.e.,

lim d(x,,x,)=0. (66)

n,M—00

Now, we claim that lim,,, , q(x,,,x,) = 0. Arguing by
contradiction, we assume that there exists € > 0 we can find
and sequences (m(k)), and (n(k)), of positive integers such
that for all positive integers, n(k) > m(k) > k,

q(xm(k),xn<k>) >¢, (67)

q (xm(k)’ xn(kH) <e. (68)

Again by triangular inequality and using (65), (67), and
(68), we get

€=q (x'”<k> ’ x”<k>) =4 (x”% > gy 1) " q( xm(k)) (69)
<eétq <xn(k)—1’ xm(k)) :
So,
1 ( , ) =€. 70
G\ Xk Xn(k) ) = € (70)

Again by the triangular inequality, for all #n € N, we have
the following two inequalities

q (xm(k)ﬂ ’ x”(k)ﬂ) <q <xm[k)+l ? x"’U‘)) tq (xm(k)’ x”(k)) +q (x"(k) > x”(km ) >
q<xmm (k) ) = q( > * q( (k1> Xy, 1) * q(x"<k>+1’x”(k>)'

(71)

Letting k — oo in the above inequalities, using (65) and
(70), we obtain

lim d (xm(k)*1 ,

k—00

X ) =e. (72)



Advances in Mathematical Physics

Hence, from the definition of the limit, there exists n, €
N such that

d(xm@”, xn(k)”) >¢, foralln > n,. (73)

Applying (64) with x = Xmgy and y = X > WE obtain

F [q (X’"<k>+l > Fg ) } ve [q <x’”<k> gl ) } <F (q <x'“<k> > K, ) ) '

(74)

Letting k — oo the above inequality, we obtain

lim F {q (xm(w1 , xn(km)} < lim F(q (xm(k), xn(k))) - khlnoogb

k—00 k—00

' [q (x’”<k>’x”<k>)}

= lim F (q (xm(k) , xn(k>>> — liminf ¢

k—00 k—00

' [q (x’”vf)’x%” '

(75)

Since F is a continuous and lim inf k—>m¢[q(xm(k)’xn(k)>]

> 0, we conclude that
e<e, (76)
which is a contradiction. Then,

lim q(x,,x,)=0. (77)

n,m—00

By the condition (iii) of Lemma 4, we can conclude that
{x,,} is a Cauchy sequence. Since (X, d) is a complete metric
space, there exists u € X such that x, — x as n — co.

As in the proof of Theorem 12, we conclude that for each
I'> 0, there exists n, such that lim, ,,q(Tx,, Tu) =q(u, T

u), lim, ., ,q(x,,u) =0, and q(Tx,, Tu) >0 for all n; > n,.
Now applying (64) with x =x, and y = u, we get

Fla(Tx,, Tu)] +¢[a(x,, u)] < Fla(x,, u)],  (78)
which implies that

lim F[q(Tx,,Tu)] < lim Fq(x,,u)].  (79)

n—00 n—-00

Therefore, lim F[q(Tx,, Tu)] = 0. Hence, q(u, Tu) =0
n—+00

,80 Tu=u.
Following the proof of Theorem 12, we know that u is a
unique fixed point of T. This complete the proof.

Example 6. Let X = [0,+00[ with the metric d : X x X — [0,
+00[ defined by

d(x,y) =|x -y, (80)

7
for all x, y € X. Define a mapping T : X — X by
x
Tx=—. 81
= (s1)

Suppose that F(t) =t — (1/t) and ¢(t) = 1/(t + 1), clearly
FeS and ¢ € D. Also, we define a w-distance q: X xX
— [0,+00[ by

q(x,y) = max {x, y}, (82)

for all x, y € X. It is easy to see that q is a ceiling distance of d.
Now, we will show that T satisfies the condition (64).

We prove that T is a (¢, F)-contraction mapping of type
(3).

Case 1. If x>y, then q(x,y)=x, q(Tx, Ty) = (x/2) — (2/x),
and ¢(q(x,y)) = 1/(x+ 1). Thus,

1
Flq(xy))=x-
, (53)
X
F(q(Tx, Ty)) = 2 X
On the other hand,
x 2 1 1
F(a(Tx, Ty)) + $(q(x.y)) = F(a(xy)) = 5 = =+ 7 —x+ <0
(84)
Therefore,
F(q(Tx, Ty)) + ¢(q(x.y)) < F(q(x. y))- (85)

Case 2. If x <y, then q(x,y) =y, q(Tx, Ty) = (y/2) — (2/y),
and ¢(q(x,y)) =1/(y + 1). Thus,

Fla(e )=y,
5 (86)
_J
F(q(Tx, Ty)) = 2y
On the other hand,
F(q(Tx, Ty)) + ¢(4q(x.y)) — F(q(x.y))
y 2 1 1y +2 1
=L -+ —— =Y+ -—== + <0<0.
2y y+1 y 2y y+1
(87)
Therefore,
F(q(Tx, Ty)) + ¢(q(x. ) < F(q(x. y))- (88)

Hence, 0 is the unique fixed point of T.



Example 7. Let X be the set defined by
X={A, : neN}, (89)

where

Let the metric d : X x X — [0,+00][ defined by
d(xy) =|x -y, (1)
for all x, y € X. Define a mapping T : X — X by
ifn=1,

1
T(A,)= { n(n—1) (92)
2

ifn>2.

Clearly, the Banach contraction is not satisfied. In fact, we
can check easily that

2 _py—
o AT TAY) _ on=2

— =1.
n—>00 d(/\n, Al) n—ocon+n-—2 (93)

Suppose that F(t)=(-1/t)+¢t and ¢(¢)=1/(t+1),
clearly F € § and ¢ € @. Also, we define a w-distance g : X
x X — [0,4+00[ by

q(x,y) = max {x, y}, (94)

for all x, y € X. It is easy to see that q is a ceiling distance of d.
Now, we will show that T satisfies the condition (64).

Case 1. n=1 and m > 2. In this case, we have

nn+1
alho )= "0,

; (95)

(96)

On the other hand,

F(q(T(A,), T(A))) + $(q(An A1) = E(a(A, A1)
_ —4n _ 2 <0 (97)
~ (n-1)(n2+n) (R R
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Therefore,
F(q(TA,» TAy)) + ¢(A,, A1) < F(q(Ays Ay)). (98)
Case 2. m > n > 1. In this case, we have

m(m+1)

Ak d) = R,

AT(A), T(A) = ——— (99)

Thus,

F(q(Ap An)) =

—m?—
m*—m 2 (100)

2 m-—m

F(@(TA TA) = =+ "

On the other hand,

F(q(T(A,), T(A))) + (A Ayn)) = F(q(Ays Aya))

—4m N 2
= -m
(m? + m)(m* —m)

(101)

<0.
m?+m+2

Therefore,

F(q((TA)s T(An))) + (A A)) < F(q(Aps Ay))- - (102)

Thus, the inequality (64) that is satisfied implies that T
has a unique fixed point. In this example, A, is the unique
fixed point of T.

Taking g = d in Theorems 12 and 14, we obtain the fol-
lowing result.

Corollary 15. Let (X, d) be a complete metric space and T
: X — X be a (¢, F)-contraction of type F. Then, T has a
unique fixed point.

Corollary 16. Let (X, d) be a complete metric space and T
: X —> X be a (¢, F)-contraction of type 3. Then, T has a
unique fixed point.

4. Application to Nonlinear Integral Equations

In this section, we endeavor to apply Theorems 12 and 14 to
prove the existence and uniqueness of the integral equation
of Fredholm type:

x(1) =AJb K(t,s,x(s))ds, (103)

a

where a, b € R, x € C([a, b], R),and K : [a,b]° x R — R isa
given continuous function.
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Theorem 17. Consider the Fredholm integral equation (103)
and assume that the kernel function K satisfies the condition
IK(t,5,x(s))| + K (8,5, y(s))] < e " EOFVOD ([x(1)] + |y (1)]
) forall t, s € [a, b] and x, y € R. Then, the equation (4.1) has a
unique solution x € C([a, b] for some constant A depending on
the constants a, b.

Proof. Let X = C([a, b] and T : X — X defined by
b

T(x)(t) = AJ K(t,s, x(s))ds,

a

(104)

for all x € X. Clearly, X with the metricd : X x X — [0,+00]
given by

d(x,y) = sup |x(t) = y(£)], (105)

tefab]

for all x, y € X, is a complete metric space. Next, define the
function q : X x X — [0,+00] by

q(x,y) = sup [x(£)[+]y(t)]; (106)

te[a,b]

for all x, y € X.

Clearly, q is a w-distance on X and a ceiling distance of d.
We will find the condition on A under which the operator has
a unique fixed point which will be the solution of the integral
equation (103). Assume that x,y € X and t,s € [a, b]. Then,

we get

b
+ J K(t,s, y(s))ds

a

b
J K(t,s, x(s))ds

a

wam+WAm=w(

b b

< 1405 )]+ | K6 (60|
b

<[ (e ()] 1)) ) s,

(107)

which implies that

b
|| Kyt

a

+

)

s (7<) + 1(0) = s (w\ (jb K(t,x(s))ds

b

< sup < WJ |K(t, s, x(s))ds|
tefa,b] a

b b

| IR (e s y)as| < 1 |

- Sup (1/(|x(s)|+|y(s)[+1))
) (e sefab] (sup |x(s)| + |J’(5)> ) ds.

s€fa,b]

(108)

Since by the definition of the w-distance on X and a ceil-
ing distance of d, we have g(Tx, Ty) >0 and q(x, y) > 0 for
any x # y, then we can take natural logarithm sides and get

9

In [q(Tx, Ty)] <In [/\(b —a)e 1 g(x, y)

=T T (G- gt y))

(109)

provided that |A|(b — a) < 1, which implies that
In [q(Tx, Ty)] < TSI +1n (q(x,y)). (110)

Hence,

F(q(Tx, Ty)) + ¢(a(x.y)) < F(q(x. 7)), (111)

for all x,y € X. It follows that T satisfies the condition (9).
Therefore, there exists a unique solution of the nonlinear
Fredholm inequality (103).

Example 8. Let [a, b] = [0, ¢?]. Consider the equation

_[Fx0)
x(t) = Jo - x(s)2 ds.

Here, K (s, £, x(s)) = x(s)/(11 + x(s)*) and we have
x(s) y(s)
L+x(s)?] [1+y(s)°

< (X[ +|x(s)])
< e—l/(IX(S)|+|y(S)|+1)(|x(s)| +|x(s)))-
(113)

(112)

[K(s: £ x(5))[ + [K (s, £, y(s))| =

Then, the condition (9) holds. From Theorem 17, the
nonlinear integral equation (103) has a unique solution for
|A] < 1/€%.

By using direct computation, let

C ()
= ds. 114
P Jo 1+x(s)2 ) (114)
Then, we have x(#) = A and hence,
:J deszez.Lz, (115)
o 1+ (B) L+ ()
which implies that
VB - (EA-1)=0o B[1+A*f —e’A] =0.  (116)
Therefore,
= 0’
P (117)
MR +1-e*A=0,
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we obtain that this equation has a unique solution when A
<1/(b-a)=1/é.
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