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The existence, nonexistence, and multiplicity of vector solutions of the linearly coupled Choquard type equations

—Av+ Vy(x)v = (I, * [p| NN Ny 4 A, x e RN, are proved, where a€(0,N), N23, V,(x)V,(x) e L®(RY) are

{ —Mu+ Vy(x)u= (I, % [ul VN )Ny 4+ Ay, x € RY,

u,ve HY(RY),
positive functions, and I, denotes the Riesz potential.

1. Introduction

We deal with the linearly coupled Choquard type equations:

—Au+V,(x)u= (Ia * |u|%) ufF " u+ Ay, x € RY,

N
]

—Au+ V,(x)v = (Ioc *|v ¥)|v\%‘lv+}tu,xe RY,

u,vEHl(IRN),
(1)

where N >3, a€(0,N), and V,,V, € L°(R") are positive
functions, (N + a)/N is the lower critical exponent with
respect to a Hardy-Littlewood-Sobolev inequality (see ([1],
Theorem 3.1) or ([2], Theorem 4.3)), and I, denotes the
Riesz potential defined on RV \ {0} by

()= I'((N-a)2)
T 8 NR T (/2) x|V

(2)

The single equation

—Au+ V(x)u= (I [ul?)|uffu, ue H'(RY), (3)

appears in various physical contexts (see [3-6]). Mathemati-
cally, equations of this type have received considerable atten-
tion due to the appearance of the nonlocal term
(I, * |ul’)|u[’u, which makes the problem challenging
and interesting. The readers can refer to [4, 7-18] and refer-
ences therein for research on related problems.

Recently, Chen and Liu [19] established the existence and
asymptotic behavior of the vector ground state of the linearly
coupled system:

—Au+u= (I, * [uf’) [ulf ?u+dv, x e RY,
—Av+v=(I, * |v\‘1)|v|q_2v+/\u, xeRY, (4)

u,veHl(lRN),

where 0 <A< 1, (N+a)/N<p,q<(N+a)/(N-2). Xu, Ma
and Xing [20] extended the results in [19] to (4) in the case that
(I, # [ufP)|ulu and (I, * |u|T)|u|"?u are replaced with
general subcritical nonlinearities (I, * F(u))F' () and (I, * G
(4))G' (u), respectively. Yang et al. [21] obtained the existence
of the vector ground state of (4) in the following three cases:

N+«

_N+0c N+a <
B N-2’

N N

<q
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N+a N+a N+a
p: > <q< >

N-2 N N-2

_N+a  N+a (5)
SV A

They also proved that (4) has no nontrivial solutions if p =
q=(N+a)/Norp=q=(N+a)/(N-2).
As we know, when a« — 0, the local system

~Au+u=|uf?u+lv, xeRY,
—Av+v= |v|q_2v+/\u, xeRY, (6)

u,veHl(]RN),

which has application in a large number of physical problems
such as in nonlinear optics, can be regarded as a limiting sys-
tem of (4). Systems of this type have received great attention
in recent years (see [22-28] for instance). However, linearly
coupled systems with nonlocal nonlinearities have been less
studied.

In this paper, we are interested in the existence, nonexis-
tence, and multiplicity of solutions of system (1) with positive
nonconstant potentials. We assume that

(H1) V;(x) >C>0, V,(x) € L°(R") and lim,,__,, V;(x)
=1,i=1,2

(H2) liminf_(1-
+1)),i=1,2

(H3) 0 < |A | <inf,gvy/ V(%) V,(x)

For simplicity, the integral [,y -dx is denoted by [-.
According to (HI), the norm in H:=H'(RY) x H'(RY)
can be defined by

G )=/ + (VI (7)

Vi(x))xl* = (N*(N - 2))/(4(N

where

= (9 + Vi),

wm=ﬁWW+wwM»

Then, a solution of system (1) can be found as a critical
point of the energy functional E : H — R defined by

So = inf
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1 N
El(u, V) - > ”(u, V)||2—JAuV— mj(([ﬁ % ‘u|(N+(x)/N> |u|(N+o¢)/N
i (Ia * ‘v|(N+a)/N)‘v‘(N+zx)/N).
(9)

Set

N = {(u, v) e H\ {(0,0)} | <Eg(u, V), (1, v)> :o},
€y = iI/lVf Ey(u,v).
(10)
We first show that ¢, is attained.

Theorem 1. Assume that (HI1), (H2), and (H3) hold. Then,
there exists a vector ground state (uy, vy) of system (1). Addi-
tionally, if {A,} C(0,inf gv+/V,(x)V,(x)) is a sequence
satisfying A, — 0% as n — +00, then up to a subsequence,
either (u) ,vy ) — (@,0) or (uy ,v) ) — (0,9) in H as n
— 00, where 1 is a ground state of

—Au+V,(x)u= (I“ s |u|(N+“)/N> |u|“/N_1u, ueH! (]RN),
(11)
and v is a ground state of
~Au+V,(x)u= (I“ % M(Nm)/N) |u|a/N—1u’ ueH! (]RN).
(12)

Remark 2. We call a solution (u, v) € H of system (1) a non-
trivial solution if (u, v) # (0, 0) and a vector solution if u # 0
and v# 0. A nontrivial solution (u,v) satisfying E, (1, v) <
E, (h, k) for any nontrivial solutions (h, k) € H of system (1)
is called a ground state.

Remark 3. Under assumptions (H1) and (H2), the exis-
tence of ground states of equations (11) and (12) has been
proved by Moroz and Van Schaftingen ([17], Theorem 3
and Theorem 6).

To prove Theorem 1, it is crucial to give an estimate of
the upper bound of the least energy c, due to the lack of com-
pactness. In our case, the estimate is quite involved, since we
are dealing with a coupled system, which is more complex
than a single equation. The method we follow can be
sketched as follows. We first study the minimizing problem

f(|u|2 + \1/|2 - 2/\uv)

(wv)eL? (RN )xL2 (RV)\{(0,0)} (f(la " |u|(N+oc)/N)|u|(N+zx)/N+f<Ia " |V|(N+zx)/N)|V|(N+oc)/N

)N/(N+oc) > (13)
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which can be considered an extension of the classical problem

S,= inf [l .
uel? (R¥)\{0} (I(Ia . ‘u|(N+a)/N) ‘u|(N+a)/N)N/<N+a>

(14)

By the results that S, is attained if and only if

N/2
b ) N

b+ |x - a|2

M@=UA@=A<

where A >0 is a fixed constant, a € RN, and b € (0,00) (see
([1], Theorem 3.1) or ([2], Theorem 4.3)), and studying the
minimum point of a function h(7) defined on [0, +00) by

1+2-2| AT

h(t) = , (16)

(1 + T(2(N+a))/N)N/(N+"‘)

we show that S, is attained at (U, 1,,;,,U,) if 0<A<1 and
at (Uy,—TpinUp) if =1 <A <0 (see Theorem 7 in Section 2),
which combined with the existence of ground states for
equations (11) and (12) enables us to obtain the precise
upper bound of c,.

Our second goal is to show the existence of a higher
energy vector solution of (1).

Theorem 4. Assume that (HI1) and (H2) hold. Then, for

some A" € (0,inf g/ V;(x)V,(x)), there exists a vector
solution (u1y,vy) of system (1) if 0<A<A*. Additionally,
if {A,}c(0,A") is a sequence satisfying A, — 0" as n
— +00, then up to a subsequence, (i, ,v, )— (u,V)
in H, where u is a ground state of (11) and v is a ground
state of (12).

Remark 5. For A > 0 sufficiently small, it is trivial to see that
the solutions obtained in Theorem 1 and Theorem 4 are dif-
ferent, which implies that there exists at least two vector solu-
tions of system (1) if A > 0 is small enough.

Finally, we prove the nonexistence of the nontrivial solu-
tion of system (1) by establishing the Pohozaev type identity.

Theorem 6. Assume that (H3) holds. If V;(x) € W!(RN) n
L®(RN), i=1,2 and
N-2)
sup [x|°VV;(x) - x < ( 5 ) ,i=1,2, (17)

xeRN

then, system (1) has no nontrivial solutions in H.

This paper is structured as follows. Some preliminary
results are provided in Section 2. The proofs of Theorems

1 and 4 are presented in Section 3 and Section 4, respec-
tively. In Section 5, we show the nonexistence of nontrivial
solutions.

2. Preliminary Results

In this section, we show the sharp constant S, defined in
(13) is attained and give an estimate of the upper bound
Of Cy-

Theorem 7. If 0 < |A | <1, then S, is attained. Moreover, (U,
s TminUyp) (01 (Up,—7,0,U)) is a solution of (13) for 0 < A <
1 (or =1 < A<0), where T, > 0 is a minimum point of h(t)
defined on [0, +c0) by

min

1+7°-2|A|T
T) = . (18)
(1 + T(Z(N+oc))/N)N/(N+“)

Proof. First, we show that there exists 7,;, > 0 such that

min

h(T ) = minh(7). (19)

min
720

Calculating directly, we have

T—|A|+|A | TEN+)IN _ 1 (N+2a)/N

K (7) (20)

2<1 + T(2(N+oc))/N) (2N+a)/(N+a)

Set f(t) =7~ |A|+|A| r@GNFIN _ 7 (N+20)/N Tt can be
easily seen that f(1) — —|A| as T—0, and f(7) — +
00 as T —> +00. Then, there is 7,,;,, > 0 such that f (7
0, and h(7,,;,) = min__,h(7).

In the next step, we prove

min )

SO = h(Tmin)Sl’ (21)

where S, is defined in (14). We employ the idea in ([29], The-
orem 5) to prove (21). For the case A >0, taking (u,v) = (

Ub’ Tmin Ub) gives
S < (1+ Thin = 2ATin) [ [Uy[?
0= ((1 T ) CNFOIN [(Ia . ‘Ub‘(Nﬂx)/N) |Ub|(N+a)/N)N/(N+a>
= h(Tmin)Sl-
(22)
Let (u,,v,) € L*(RY)xL*(RY) be a minimizing

sequence for . Set z, = t,u,, where t, = (| v, |*/ | |un|2)1/2

. Then,
ﬁaf=ﬁﬁ%P=ﬁmﬁ (23)

jam=aj%msjmf=ﬁ%ﬁ (24)

Collecting (23) and (24) leads to



[l + v” = 220, v,)
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So+o(l)=

(f(la " |un|(N+0¢)/N) |un|(N+cx)/N+j(Ia N |vn|(N+rx)/N> |Vn|(N+oc)/N)

62 [zl [V = 228" [ v

>

N/(N+a)

Then, (21) follows from (22) and (25). For the case A <0,
the conclusions follow by replacing (U, T, U;) with (U,
—T,inUp) and repeating the proof previously.

Lemma 8. Assume that (H1) and (H3) holds, then for any (u,
v) € H\ {(0,0)}, there exists t, > 0 such that t,(u,v) € N and

E; (tou, tyv) = rrtl%xEA(tu, tv). (26)
>

Proof. This result is standard and the proof can be found in
([30], Lemma 12). We omit it.

For equations (11) and (12), we set
1
Ji(u) = 3 (lul|? - J(Ia " ‘u|(N+ot)/N) | (VN

(27)

2(N +a)

and B; =inf ; J;(u), where
Ni= {u e H'(RV)/{0} | <]i'(u), u> = 0}, i=1,2. (28)

Then, according to ([17], Theorem 3 and Theorem 6), we
have

B < o S(N+oc)/o¢

"=172’ 29
S IN+a) ! ' (29)

and B; is achieved, where S, is defined in (14). By Theorem 7
and ([17], Theorem 3 and Theorem 6), we are able to get the
following estimate.

Lemma 9. Assume that (H1), (H2), and (H3) hold. Then,

o S(NHX)/“}. (30)

0<c¢y<min<<B,,B,, ———
asm { PP SN+ a)
Proof. We first show the positivity of ¢,. By (H3), we have
2 2_ _ (N+a)/N) |, | (N+a)/N
Cll )" <[ V)" =2 [Auv = {( (Lo * u] |u|
(N+a)/N
+ (Iu % |V|(N+a)/N> ‘V|<N+a>/N) < (SII J |u|2>
(N+a)/N Nea)/N
i (5? J Ivlz) <8N () GO,

(31)

>
_(2(N+a Ni(N+a) =
(tna(m ))/NI(Ia * |Zn|(N+oc)/N>|Zn‘(N+a)/N+J"(Ia N |Vn|(N+oc)/N> |Vn|(N+a)/N) (N+a)

for some C > 0, which suggests that there exists M, >0 such
that ||(u, v)||>M, . Thus, we obtain

. . [%4 2
€ = 19VfE/\(u, V) —151Vf 72(N+ 3 <||(u, Il ZJ)WV)

o
> _CM?>0.
2(N+a) !

(32)

Second, we show
o (N+a)/a
<—8 . 33
NS 2w+ N) (33)

From the assumptions (H1)-(H3), we see that 0 < |A | <1,
and so Theorem 7 holds. For the case A >0, by Lemma 8,
there is t > 0 such that (U, 7,,,,U,) € /; then, we have

min

CASE/\(tUb, It Ub)

min

tZ
_ 5[((1 F72)[VU P+ (V, (%) + 720V (%) = 27 ) | Uy )
2(N+a)IN
(%4
£ 5 , NN 2(N+a)/N
:E(1+Tmin_2TminA)J|Ub| _42(N+(X) (1+Tmin )

tZ
. J(I“ * |Uh|(N+ot)/N>|Uh‘(N+a)/N + 5 [((1 +T2min)‘VUh|2

o S(N+o¢)/a

(Vi) = 1) + 7o (Va (%) - 1) U°) <

" 2(a+N)™°
i %.[ (14 70 VU + (Vi) = 1)
+ Toin (V2 (%) - 1))|Ub‘2).
(34)

The last inequality in (34) follows from Theorem 7 and
direct calculation. Denote

Li(u) = ij(]w 124+ (V,(x) - 1)\u]2),i= 1,2, (39)

To prove (33), it is enough to show

Li(U,) <0, i=1,2, (36)
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for some b > 0. Since

x> N-2 ]
J(l + |x|2)N+2 - 4(N+1) sz(l +x2)N’ (37)

we have
N* (N -2) (|U,[
[ o= S (38)
4(N + 1) |x|
Then, by a transformation x = a + bz, we get
2N 2
Li(uy) = J(M -V (1-V(a+ bz))) C—Ndz.
4(N+1)[z] (1+2%)
(39)

Taking the assumption (H2) into consideration, we see
that that (36) holds. Then, (33) follows from (34).
Now, it remains to show

¢, <min {B,, B,}. (40)

Denote ground states of (11) and (12) by U and V,
respectively. Since (U, 0) € 4 and (0, V) € /#, we have ¢, <
min {B;,B,}. If ¢y =min {B,, B,}, then we see that at least
one of (U,0) and (0, V) is a solution of system (1), which
is impossible since A # 0, so (40) holds.

3. Proof of Theorem 11

Lemma 10. Assume that (H1), (H2), and (H3) hold. Then,
there exists a vector ground state of system (1).

Proof. According to Ekeland’s variational principle, there
exists {(u,,v,)} C A such that

Ey(u,,v,)) — ¢y, By (s v,)|, — 0asn —co. (41)

N

(Ex' (1), (1, ).

For simplicity, we denote I,(u,v):=
First, we prove E, ' (u,, v,) — 0. Indeed,

0(1) = E/\’(un Vn)‘/;/ = E/\/(un’ Vn) - onIA,(un’ Vn) (42)

for some o, and sufficiently large n. Particularly,
0(1) = <E/\,(un Vn)’ (un’ vn)>

=0, (I (0¥, (107,)) (43)
=0, (1 (4 ¥), (4 7,))-

From the proof of Lemma 9, we observe that there exists

My, M, > 0 such that M, <||(u,,

(1809, () =2 (9 =2 A,
Z(NI\;-“)J((Ia * [u, |N+oc/N>|u |N+oc )IN
(I x|v, |N+ot /N)‘Vn|(N+ot)/N>

-5 (16 =2 [,

<—C||(tt, v,)|]* < ~CM, < 0.

v,)I<M,. Then, we have

(44)

Taking (43) into consideration, we obtain that ¢, — 0
as n — 00. Then, from (42), we get E; ' (u,,v,) — 0.
We may assume that

(u,5v,) — (u,v)in H,
(u,v)in L, (RY) x L, (RY) (2 <7< 2%),
(un’ Vn) -

(Uns Vi) =
(u,v)a.ein RY.

(45)
Then, E'y (u,v) =

to prove that (u,v) # (0,
Fatou’s lemma, we get

) SE,\(M, 1/) = ﬁj((la ¥ ‘u|(N+0t)/N) |u|(N+o¢)/N

(I " |V| (N+a) /N)M (N+a) /N)

L o N
shirigfmj((la * |un‘(N+ )/N) |un|(N+a)/N

4 (Ia " |Vn|(N+1x)/N> |Vn‘(N+a)/N) =¢,.

0. To complete the proof, it is sufficient
0). Actually, if (u,v)#(0,0). By

(46)

Furthermore, since E,' (1, v) =0 and A # 0, we see from
(1) that u=0 and v=0, that is, (4, v) is a vector ground state
of (1).

Suppose the assertion is false, that is, (1, v) = (0,0). On
the one hand, we know from (H1) that
Jor@u s v = (Vi e vaend)
B,(0
+J X)up + Vy(x)v7)
RM\B, (0

=L@uumw+wwM)
+J (uﬁ+vﬁ)+o(1)
RN\B,(0)

= J(ui +v2) +0o(1),

(47)



as n — 00. Then, it follows
J(|Vun|2 + |V, |2+ up + v = 2Au,v,) +o(1)
2
=t ) =2 [y,

as n — 00. Using Theorem 7, we obtain

1
c,=E)(u,v,) - 3 <E;(un, V,)s (U vn)> +0o(1)
_ a (N+a)/N (N+a)/IN
2QV+a)J(( |

+ (Ia * |Vn|(N+a)/N)|Vn|(N+a)/N)

a (N+a)N (N+a)/N
+o(1)$2(N+ S (J(i+v —2/\141/))
®)

o —(N+a)/N
1)< N
TS TNy

(N+a)/N
. <J(|Vun|2 + Vv, [P+l v - ZAunvn)>

(44 —(N+a)/N (N+a)/N
+o(1)= S (Nl -2 | A,
2(N +a)
+0o(1)
(49)
On the other hand,

“a= 2(N+(x) (”( V”)Hz _ijunvn> +o(1). (50)

Collecting (49) and (50) yields

24 (N+a)/ax
>———§ 5 51
2(N+a) ™ (1)

which contradicts Lemma 9. Thus, (1, v) # (0,0).

Proof of Theorem 11. By Lemma 10, we need only show the
asymptotic behavior of the vector ground state when A —
0". First, we claim that ¢, decreases strictly monotonically

with respect to A € (0, inf gv+/V,(x)V,(x)). Indeed, fix A,
Ay € (0,inf, gy / V4 (x)V,(x)) with A, <A,. Denoting a
vector ground state of system (1) when A=A, by (u, ,v; )
and letting >0 be the constant such that (tu, ,tv, )€
N)-»,» we obtain

[, =2 [,
_ J((I(x . ’u,\ | N+tx/N>| N |N+oc VIN

n (Ia " |V,\1 |(N+a)/N) ’V/\I ‘(N+zx)/N)’

Advances in Mathematical Physics

I, 22 =2 [ A,
_ 2N J((Ia N |u)l1 |(N+a)/N) |u/\1 ‘(N+tx)/N (52)

(I « ’v,\ | (N+a) /N) |VA1‘(N+a)/N)'

Then, by A, < A,, we deduce that ¢ < 1, which gives

CAZ < EAZ (tu)h, tV)‘l)

o o (N+a)/IN (N+a)/IN
:2(N+a)t2(N+ VNJ((LX*‘”)L‘ +a)/ >‘ )\| +a)/

n (I‘x « |v)‘1 ‘(Nﬂx)/N) |V)t1 ’(Nﬂx)/N)

[0
< | (e i o [

(I " |VA ‘ N+:x/N)| N ’N-Hx N) =q,,.

(53)

The claim is proved.

Now, choose {A,,} € (0, inf,gv+/ V,(x)V,(x)) satisfying
A, — 0" as n — 0o and denote a vector ground state of
system (1) when A=A, by (u, ,v, ). Then ¥(h;, h,) € H
we have

lim <EO'(u,\n,vAn),(hl,h2)>

n—oo
= nlinoo<EAn ’ (”An’ Van)’ (hys h2)> =
Jim Eq(uy,,vy,) = Hm Ey (wy,v). (54)

By ¢, <min {B,,B,} and (29), we obtain

lim E;(uy ,v )= lim ¢, <min {B,, B,}

n—oo n " n—o00
@ (N+a)/a (55)
<——78 .
2(N+a)

Repeating an argument as in Lemma 10, we deduce that
(up vy ) — (#,0) or (uy,v, ) — (0,7) in H, where @
and ¥ are ground states of (11) and (12), respectively.

4. Proof of Theorem 18

In this section, we study the existence of a higher energy vec-
tor solution of system (1) for A > 0 sufficiently small. We sup-
pose that B, < B, without loss of generality. Let U, V be
ground states of (11) and (12), respectively. Then, we may
assume that U and V are positive since |U | and |V | are also
ground states of (11) and (12), respectively. Now, we set

d=d,xd,, (56)
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where
o= {u eH'(RY), ], (u) =0, ,(u) =Bi}- (57)

Then (U, V) € of. Moreover, by a similar argument as
that in ([28], Lemma 12), we obtain the following.

Lemma 12. Assume that (H1) and (H2) hold. Then, o/ C H is
compact, and there exist 0 < a, < a, such that

< ||l [[V], < apV (u,v) € A. (58)

Proof. The proof can be found in ([28], Lemma 12) and will
be omitted here.

By the definition of U and V, we know that

B, =],(U) = Iflj)xfl(tU)’Bz =L(V)= I{L%X]z(tv)’ (59)
Bl
]1 (tU) S Za
Vt € (0,t,] U [ty +00), (60)
J,(sV)< —=
Vs € (0,5,] U [s,,+00),

for some t,, t,, s, ands, satisfying 0 <t; <1<t, and 0<s,
<1<s,. Denote A:=0,t,] X [0,s,] and define y : A— H by

(¥1(1), ¥2(5)) = (tU, sV). (61)

Y(bs) =
Then, max, 417 (£, s)I<a, for some a, > 0. Define

G —ir:ﬁ f maxEy (y(6:5)), my = max B (¥ (£5)), (62)

where
T= {y € C(A, H)I({gg”y(t, s)|| £2a, + ay,
P(e) =76 for(65) €4V (0 1) X ()
(63)

and a, is defined in Lemma 12. Obviously, 7 (¢, s) € I'. More-

over, we havethe following.

Lemma 13. Assume that (H1), (H2), and 0<A<inf g~

v/ V,(x)V,(x) hold. Then,

lim ) = lim m, =2,=m, =B, +B,. 64
Jlim Ty = lim my =2y=my=B, +B, (64)

7
Proof. By A >0, we see that E, (Y (t,5)) < E,(¥(t,5)) and
my < mo = max Ey o(V(5:9))
= 65
= max Ji(71(0) + max L(7,(9)) - (69)
=J1(U) +],(V) =B, +B,.
Observing that ¢, <m, since y € T, we deduce

lim sup¢; < h)bm 1(1)1fm/\ <lim supm, <my, ¢y <my.  (66)

A—0" A—0*

Now, for y(t,s)=(y,(t),y,(s)) € T, define a function

f(y) on [t ;] x [s1,5,] by
F)(t5) = (1(y1 (1)) = 2(¥2(5))> €1 (1 (1)) + $2(12(5)) = 2)s
(67)
where ¢,,¢, : H— R are given by
% |y (N+a)/N u (N+a)/N
I ) ifu#0,
¢1(u) = [(1Vu? + v, (x)u?)
0,ifu=0,
(68)
J‘(Ia % |u|(N+0¢ )|u| (N+a)/ .
5 ,ifu#+0,
¢y (u) = J(IVul* + vV, (x)u?)
0, ifu=0.

Noting that ¢, $, are continuous and f(y)(1,1) =0,
we deduce deg (f(9), [t;, t2] X [51> 55}, (0,0)) = 1. Moreover,
we know from (60) that f(y)(t,s)=f(y)(ts) # (0,0) for
any (t,s) € 0([t;, t,] X [s},S,]), which implies deg (f(y), [t
L] X [51,8,],(0,0)) is well defined and

deg (F(1). 1, 2] X152 0,0) )

=deg (f(¥), [ti> ta] X

Therefore, there exists (¢*,s*) € [t;,1,] X [s;,5,] satisfy-
ing f(y)(t*,s") = (0,0), that is, ¢, (y,(t")) = $,(y,(s")) =1
. Recalling the definition of ¢, ¢,, we have y,(t*) e /7,
Y,(s*) € #,. Then, it follows

[s1>5,],(0,0)) =1.

max By (y(t:)) 2 Bo(y(£7,57)) = Ji (1 (£)) + La(v2(s7))
> B, + B, = my,.
(70)
Thus, ¢, > m,. Taking account of (66), we obtain ¢, =

mgy. Now, it remains to prove

liminf¢, > m,. 71
iminfc) > m, (71)

If (12) is not true, there exists a sequence A, — 0%,



Ya(:9) = (71, (), 1,(5)) € T and ¢ 0 satisfying

(rtgi)iEan (y,(t:s)) <my—2e. (72)

For the & given above, the definition of T' leads to

max A, J V1)1, ()| <CA, <&, Vn2N, (73)

(t5)€A
for some N, >0 sufficiently large. Then, it follows

max Ey(y, (t,5)) < max E, (y,(t.s)) +e<my—¢, Vn=N,,

(t.5)€A (ts)eA ™"
(74)
which contradicts (70), implying that (71) holds.
Set
A= {(u,v) € H : dist((u, v), f) <d}, E§ 75)
={(u,v) €H : Ey(u,v) <c}.

Then, we show the compactness of the PS sequence.

Lemma 14. Assume that (HI) and (H2) hold. Denote d, = 1
/12((2(N + «)/a)B,)" and let d € (0,d,). If {A,} satisfies A,
>0 and A,— 0 as n—sco and {(u,,v,)} cA? is a
sequence with

lim E) (u,,

n—00

v,) <Cp lim EA:(un’ v,) =0, (76)

n—-oo

then, there exists (u, v) € o such that (u,,v,) — (u,v) in H.

Proof. Observing that {(u,,v,)} is bounded by the choice of
d and Lemma 12, we assume (u,,, v,,) — (&, v) in H. Then, by
a similar argument as in ([28], Lemma 14), we obtain that

(u,v) € 4. (77)

Moreover, using the definition of d again, we get u #0,
v#0.

We now prove (u,,v,) — (u,v) € 4. Actually, for (h,,
h,) € H, we have

(Exfwv), (hyy o)) = lim (it v,), () )

= lim (B (u,,v,) (hy. ) ) =0,
(78)
nhgr)nooEO(un’ Vn) = nligr)nooE)Ln (un’ Vn) < EO' (79)
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Then, it holds

Bl )= g | (=1

n (Ia " ‘V|(N+a)/N)|V|(N+a)/N>

<lim inf % ((I * |u |(N+"‘)/N)|u |(N+0¢)/N
(N+06) @ n n

n (Ia " ‘Vn‘(Nﬂx)/N) |Vn|(N+a)/N)

=lim inf Ey(u,,, v,).
n—00

(80)

Note that from (78), (u, v) € &/. Then, combining Lemma
13 with (79) and (80), we have E,(u,v)=7¢, and (u,,v,)
—> (u,v) € o/ in H.

Next, we will construct a PS sequence using a perturba-
tion approach.

Lemma 15. Assume that (H1) and (H2) hold. Then, for a d
€ (0,d,/2), where d, was defined in Lemma 14, there are A
€ (0,inf gv/V;(x)V,(x)) and a € (0, 1) such that

IE, (u,v) = a, V(u,v) € EM n (wd \ ﬂ%), Ae (0,2).
(81)

Proof. We prove indirectly. Suppose that there exists {A,}
satisfying lim, A, =0 and {(u,v,)}cC EKT” n (a4
%) with ||E, '(u,,v,)|—0 as n — co. Then, we see
immediately that E \ (u,,v,) <¢, from Lemma 13, and (u,,,
v,) — (u,v) in H for some (u,v) € & by Lemma 14. Thus,
(u,,v,) € 4" for n sufficiently large, which is in contradic-
tion with {(u,,v,)} C E:;“ N (% \ d¥?), so the conclusion
holds.

In the sequel, we assume that d, a, A be fixed such that
Lemma 15 holds.

Lemma 16. Assume that (H1) and (H2) hold. Then, there exist
A €(0,A) and 8 > 0 such that VA € (0, 1)

Ey(J(t,s)) 2Ty — Simpliesy(t,s) e S¥?.  (82)

Proof. Arguing indirectly, we suppose that there exist A,
— 0,8, — 0 and (t,,s,) € A satisfying

E)L,, (?(tn’ Sn)) ZEA,, - 811’ i}\(tn’ Sn)e'%d/z' (83)

We may suppose (t,,s,) — (£3) € A. Then, from
Lemma 13 and (83), we deduce

Ey(y(£3)) = lim (¢, -98,) =B, +B,. (84)
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Recalling the definition of Y (t,s), we have (£,3) = (1, 1),
and so

lim [7(t,05,) = F(L )] = lim [[5(t,5,) - (U, V)] =0,

n—aoo
(85)
which is in contradiction with y(t,,s, )ef/%?.
For 8 and A given in Lemma 16, we define
d B 1
8y=min <=, -, —da* }. (86)
2" 48

Then,
[¢, —my| <8y, [¢, — (B, +B,)| <8, VA€ (0,A%), (87)
for some 1* € (0, X]

Lemma 17. Assume that (H1) and (H2) hold. For fixed A
€ (0,1"), there is {(u,,v,)} c A NE}* with

Ey'(u,,v,) — 0,asn —> 0. (88)

Proof. For A€ (0,1%), suppose contradictorily that [E,"(u
,V)I2I(A) for all (u,v) e Y NE)* and some 0<I(A)<1.
Then, there is a pseudogradient vector field h, for E, on
neighborhood S, of &/ NE)"* such that

E/\'(u, 1/)H}HEA,(M, V)H
(89)

|| (6 v)|| < 2 min {1, E) (u,v)]

<E,\'(u, v), by (u, v)> > min {1,

Define a function #, on H satisfying 0<#, <1, ;, =1
on #“NEY and 7,20 on H\S,, and a function {, on
R with 0<0,(t) <1, {(t) =1 if |t -2, ]<5/2, and (,(¢)
=0 if [t =T, | 8. Then both #, and {, are Lipschitz con-
tinuous. Set

() = VB D36 7). (1) €5y,
MEITTV 0, wv) eH\ S,

(90)
Then, the initial problem
d 0) = 0
{ Z5¥a1,6) =g, (¥ (. .0)), o)
V(11,0 = (1)

has a global solution y, on Hx[0,400) with the
properties:

(1) v, (u,v,0) = (u,v) if 0=0 or (u,v) e H\S, or |E(
u,v) —Cy | =6

(i) [|(d/d0)y (u, v, 0)]| <2

(ii) (d/d0)E, (v (1,v,6)) = (Ey (, (1 v,6)). g (v (,
v,0))) <0

Now, the proof can be divided into two steps.
Step 1. We show that there exists 0, > 0 such that

Yy (3 (65),0p) € B (92)

for (t,s) € A and &, defined in (86).
Arguing indirectly, we suppose

Ex(v2(¥(t:5),6)) >, = 8¢, V0 20, (93)

for some (t,s) € A. Noting 8, < § and applying Lemma 16,
we get Y (t,s) € %, By property (iii) and the fact that

E,\(Y(t,s)) <my <y +6,, (94)
we have

EA_SO <E)t(ll/)‘(5/\(t,s),6))§m/\ <EA+80,VQZO. (95)

Then, §,(Ey(y,(7(£5),0))) = 1. If y,((t,5),6))et?
for all 6 >0, then

MmWA(7(1:5),0))) = LIE, (v,(¥(t5),0)) 2 [(1),¥6 > 0.

(96)
Thus,
N F) R E) S/1(1)? ~ )
E, <1//A (y(t,s), I(A)2)> <Gt 3 —JO P(M)do <t - 3
(97)

which contradicts (93). Hence, y,(7(t,s),6,) e/ for some
6, > 0. Observing that (¢, s) € /%2, we deduce that for some
6,,0, with 0<6, <6, <0,, it holds v, (y(ts),6,) € 972,
v, (Y(t,5),0,) € 049, and v, (P(t,5),0) € 4*\ A4 for all
0 € (0,,0,). Then, according to Lemma 15, we get

[EA(wA(P(t:5),0))[| > a ¥ € (6, 6,). (98)

Moreover, we deduce from property (ii) that

NSRIRNW

<va(¥(5:9),01) =y (¥ (t:5),6,)[ <216, = 6,],  (99)
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which yields |0, — 0, | >d/4. Then, we obtain
Ex(ya(¥(5:9),6,)) <Ey(v2 (Y (£9),6,))
6, 4
J deEA(%(“’ v,0)) <T +8, - a’(0,-0,) <%y
+68, - Zdaz, <% — 0y
(100)

which contradicts (93), and the proof of this step is complete.
By step 1, we define

G(t,s)=inf {8>0: E)(y,(Y(t,5),0)) <¢, —,} (101)
and y(t,s) =y, (Y(ts), G(t,s)). Obviously, E,(y(t,s)) <¢,
-4, forall (t,s) € A.

Step 2. We prove
y(t,s)€T. (102)
Noting that

Ex(y(t:5)) < Eo(Y(£:5)) = 1y (¥, (1) + 12(¥5(9))

B, (103)
< Z +B,<B;+B,—-38,<¢), -6
for all (t,5) € A\ (t,,t,) X (s1,$,), we have G(¢,s) =0 and y

(t5) =y(t5).

It remains to show ||y(¢,s)|| < 2a, + a,, ¥(t,s) € A, and
G(t,s) is a continuous function of (t,s) € A. For any (¢,s) €
A E,(Y(t5)) T, — 8, then G(t,5) =0 and y(t,5) =y (£, s
)> 0 [[y(&:s)l| = ||y (£, 9)|| <2a, + ag. If Ey(y(£:5)) >©) = &,
then (¢, s) € #* and

€ =0 <E (v, (¥(t,5),0)) <my <) +68,,¥0 € [0, G(1, 5)].
(104)

So we get {y(E\(y,(Y(t,5),0))) =1 for 6€[0,G(t,5)].

Then, we can prove that

Y(:5) =y (¥(59), G(s,

Indeed, if not, by similar arguments as in step 1, we know
that E, (v, (¥ (t,5),6,)) <€, — 8, for some 6,, 0, satisfying 0
<0, <0, <G(t,s), which is in contradiction with the defini-

t))) e . (105)

tion of G(t,s). Thus, y(s, t) € &/ and
Ivs 1) - v d< 2, (106)
for some (u,v) € /. Hence, from Lemma 12,
Iy Ol @)+ 2 <20, 405 (107)

Now, we prove that G(t, s) is continuous. For fixed (Z,5)

€A, if Ey(y(£,5)) <¢, — 8, then G(£,5)=0 and E,(y(£5))
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<€) —9,. Since y is continuous, we have

E\(Y(t:5))<T = 0p,V(t,s) € (-7, +T) X (5— 1,5+ T) NA,
(108)
for some 7 > 0, which implies G(t,s) =0, V(t,s) € (f— 7,1 +

7) x (§= 7,5+ 7) N A. Thus, the continuity of G at (£,5) is
proved. If E,(y(£,5)) =¢) — 8y, then we see from the proof
previously that y(£,5) = v, (¥ (£,5), G(£,5)) € %, so

1E)' (v (9(5:5), G(5:3)))[| 21(A) >0, (109)

and E, (v, (Y(£,5), G(t,5) + w)) <€) - §, for any w>0. By
the continuity of y,, we obtain E,(y,(y(t,5s), G(£,3) + w))
<t -0 V(t,s)e(f-1,t+1)x (5—7,5+7)NA for some
7> 0. Therefore, G(t,s) < G(£,5) + w and

0 < lim sup G(t,5) < G(£,53). (110)
(t5)— (£3)
If G(£,3) =0, then
lim G(t,s) = G(t,53). 111
G659 =GE) (1)
If G(t,5)>0, then E,(y,(Y(£,5),G(£,5) —w)) > + 6,

for any w with 0 < w < G(1,5). Then, since y, is continuous,
we deduce

liminf G(t,s) > G(%,5).

112
(65)— (53) (112)

Combining with (110), we obtain the continuity of G(s, ¢)
at (£,5). Consequently, (102) holds.

By Step 1 and Step 2, we have showed that y(t,s) € T’ and
max, g4 Ex(y(t5)) <€) = &, which is in contradiction with
the definition of ¢,. Thus, the conclusion holds.

Proof of Theorem 18. Denote d = 1/2((2(N+0c))/ocB Y2,
From Lemma 17, we obtain that there exists {(u},v})} ¢
2% such that

E, (u’\ v") < mA,EA(u v’\) —0, (113)
for fixed A €(0,1%), where A" € (0, inf g/ V;(x)V,(x)).
Then, by Lemma 14, (u;\, v’;) — (uy, v,) in H for some (uy,
vy) € > and E, ' (uy, v;) = 0. Moreover, recalling the defini-
tion of d, we have u) #£0, v, #0, that is, (u,,v,) is a vector
solution of system (1.1).

Now, choosing {A,} c (0,A%) such that A, — 0 as n
— 00, by a repeat of the proof in Lemma 14, we obtain (

u vy ) — (4,v) €4 in H, with u and ¥ being ground
states of (11) and (12), respectively, which completes the
proof.
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5. Proof of Theorem 20

Lemma 19. Let N> 3, V;(x) €e Wp/(RY) n L®(RN), i=1,2,
and (u,v) € H be a solution of system (1). If

sup |VV,(x) - x| <00,i=1, 2,

xRN

(114)

then (u, v) satisfies the Pohozaev identity

S v v+ o

1
+ V(%) v - 2Auv) + EJ(VVI (x) - xX[u[+VV,(x) - x[v|)
— ﬁ (I % ‘u|(N+lx)/N|u‘(N+oc)/N
2 24
N+zx)/N| | (N+a)/N) '

+1, % |v\<

(115)

Proof. The lemma can be proved by a similar argument as
that in ([17], Proposition 11).

Proof of Theorem 20. Let (u, v) be a solution of system (1). By
Lemma 19, we have
1
J(|Vu|2 +|Vv[?) = EJ(VVl(x) - X|u[P+VV, (x) - x[v[?).

(116)

Then, the conclusion follows from a classical Hardy
inequality (see ([31], Theorem 6.4.10))

MP”Z < J|Vu|2.

< 117
ral ke (117)
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