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The paper mainly focuses on the synchronization of multiple-weight Markovian switching complex networks under nonlinear
coupling mode. Based on the finite-time stability theory, Itd’s lemma, and some inequality technologies, the synchronization
criterion of network models in the nonlinear coupling mode is obtained; at the same time, unknown parameters of networks are
also identified by an effective controller. In addition, several corollaries are given to illustrate the general applicability of the
control rules in the paper. Finally, two typical numerical simulations are given to prove the rationality and feasibility of

theoretical analysis of network models.

1. Introduction

Complex networks, as an interdisciplinary combination of
nonlinear systems, control theory, graph theory, physics,
and mathematical theory, have attracted the attention of all
sectors of society. In human social activities, complex
networks are closely related to our lives. Among them, real
physical networks (e.g., power networks, transportation
networks, and Internet networks) and abstract networks
(e.g., financial networks, media networks, and interpersonal
networks) both belong to complex networks [1, 2]. In the
many dynamic behaviors of complex networks, synchroniza-
tion is one of the representative and important collective
behaviors on complex networks [3, 4]. The phenomenon of
the network synchronization means that the dynamic status
of the network nodes gradually tends to be consistent
through the interaction between dynamic systems. In [5],
based on the Lyapunov functional method and pinning con-
trol technique, some sufficient conditions are derived to
ensure the synchronization of the network. Synchronization
of nonlinear complex networks with multiple time-varying
delays is achieved in [6]. These literatures mentioned above

are all about the synchronization within one network; this
kind of synchronization is called inner synchronization.
However, it is also very important to study the synchroniza-
tion between two or more networks; this kind of synchroni-
zation is called outer synchronization. At present, many
control strategies have been proposed and applied to the
synchronization of complex networks, such as adaptive
control [7], pinning control [8, 9], sliding control [10], and
intermittent control [11]. In the paper, in order to realize
the antisynchronization of the networks, the adaptive control
method will be adopted.

It is well known that the coupling relationships of com-
plex networks cannot be all linear in real life. In many cases,
the value of the variable x(t) cannot be directly observed, and
the observed value can only be h(x(t)). At this time, the
nonlinear relationship h(x(¢)) is used to achieve complex
network synchronization [12]. Therefore, the nonlinear cou-
pling synchronization problem also has great research value,
and the results are even more practical. In [13], synchroniza-
tion of nonlinear and delayed coupled neural networks with
multiweights is achieved through pinning control technol-
ogy. Based on the Lyapunov stability theory, synchronization
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problem of a nonlinear complex network with multiple time-
varying delays is investigated in [6]. In addition, the topology
of the network also has an important effect on the synchroni-
zation of nonlinear coupled complex networks.

In most of the networks considered above, researchers
assume that the topology of the network is fixed, but this
requirement is very strict in practical applications and only
reflects ideal situations. In actual conditions, due to machine
failure or maintenance, stochastic disturbances, and other
reasons, the topology of the actual network will always
change with time varying [14]. It is found through research
that this random switching may depend on the Markovian
process. In [15], finite-time synchronization of a class of
nonlinear coupled Markovian jump time delay complex
networks with stochastic noises is achieved via pinning con-
trol technology. In [16], by constructing a novel stochastic
Lyapunov-Krasovskii function and employing the linear
matrix inequalities (LMIs), Liu et al. studied cluster synchro-
nization problem of Markovian switching complex networks
with hybrid couplings. Furthermore, in order to research the
complex network closer to the actual system, the unknown
parameters of the Markovian switching complex network
should be paid more attention [17]. This is because the syn-
chronization process of the network may be affected or even
disrupted by these unknown parameters.

In the real world, a number of networks can be modeled
by complex dynamic networks with multiple weights, such as
power networks, social networks, and communication net-
works. Each node in these networks is connected by multiple
weights. In other words, there are multiple forms of coupling
between nodes in multiple-weight networks. In the following,
we take a power network in Figure 1 as an example to build a
complex network with multiple weights. If the power
network is viewed as a collection of many high-voltage trans-
mission lines and various power stations, then all kinds of
high-voltage transmission lines can be called “edge,” and
the connection points of these high-voltage transmission
lines (transmission or consuming power stations, substations
that distribute power) can be called “node,” so that the power
system is abstracted as a complex network in the general
sense. On the other hand, power transmission lines can
transmit power through high-voltage direct current, flexible
axial current, and AC/DC hybrid. Because each transmission
method has different weights, a complex dynamic network
model with multiple weights can describe the power network
more accurately. From the above analysis, it is very necessary
and valuable to study complex dynamic networks with
multiple weights. In [18], the author establishes a global
synchronization criterion for a multiweighted public trans-
port route network. In [19], the author considered the global
synchronization problem of multiweight urban transport
networks. Moreover, it should be noted that the time of the net-
work synchronization is very important in the actual system.

In the actual engineering field, the time of the network
synchronization is concerned by people, and scholars are
eager to know the time of network synchronization. The
finite-time control technology can realize this idea. In fact,
finite-time synchronization means the optimal convergence
time and finite-time control scheme can better reflect the
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robustness of the network [20, 21]. Hence, it is very valuable
to study the finite-time synchronization of complex
networks. In [14], based on an M-matrix technique and
stochastic analysis technique, synchronization of Markovian
jumping complex networks was achieved in a finite time. In
[22], finite-time synchronization for Markovian jumping
complex dynamical frameworks with hybrid couplings is
studied. In addition, time delays and stochastic disturbances
always exist in the actual networks, and they also have a great
impact on the network synchronization process [23, 24].
Thus, stochastic disturbances should be considered in the
network synchronization process.

Inspired by the above discussion, the paper mainly focuses
on that the finite-time antisynchronization and parameter
identification of a class of nonlinear coupled multiple-
weight Markovian switching complex networks with stochas-
tic perturbations. To the best of our knowledge, until now,
there are rarely studies on the finite-time antisynchronization
of nonlinear coupled multiple-weight Markovian switching
complex networks with unknown parameters. Therefore, the
research has significance in terms of theory and practice.

This paper is organized as follows. Some notations and
necessary conditions will be given in Section 2. In Section 3,
finite-time antisynchronization analysis for nonlinear
coupled multiple-weight Markovian switching complex net-
works is discussed. In Section 4, in order to prove the validity
of the above theoretical analysis, two numerical examples are
given. The conclusions are drawn in Section 5.

2. Preliminaries

In order to complete the theoretical proof, some important
mathematical notations and necessary conditions are given
in this section. Firstly, some important mathematical nota-
tions are introduced as follows. Define matrix AT (orx7) as
the transpose matrix of A(or x). Let E represent mathematical
expectations. The Kronecker product of matrix is represented
by the notation ®. Let ||x||, as the 2-norm of x. I,, € R™" is
defined as the n-dimensional identity matrix. The maximum
eigenvalue of the matrix A is denoted by A, (A). Secondly,
some necessary conditions are given below.

Assumption 1 ([25]). Assume that a Lipschitz condition is
satisfied by noise intensity function o,(t,e;(t),r(t)), and
there exists a constant p, >0 such that

trace[o,” (¢, e;(1), r(1))0i(t e,(£), ()] < py(r(1))es” (De(t):
(1)
Assumption 2 ([26]). Let 0 <y <1 and & >0. Assume that

there exists a continuous function g : [0,00) — [0,00) with
g(0) > 0 such that, forany 0<t, <t,

t
u

wo—wws—q<mﬂvm- 2)

Assumption 3 ([25]). For arbitrary x(t) € R” and y(¢) € R",
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FIGURE 1: Power network diagram.

and nonlinear equation f(t,x, «) satisfies f(t,—x, &) = —f(t,
X, @), we can get

where v is a nonnegative constant, and P is a positive definite
matrix.

Lemma 4 ([27]). Suppose that a continuous, positive definite
function V(t) satisfies the differential inequality V(t) <-a
Ve(t),Vt > ty, V(t,) =0, where a > 0, 0 < & < 1. For any given
ty V(1) satisfies the inequality VI¢(t) < VI¢(t,) — a(1 - ¢)
(t—ty),to<t<t, and V(t)=0,Vt>t, we can get t,

VI (1)
a(l-¢)’

(4)

Lemma 5 ([27]). For any vectors x(t), y(t) € R" and a positive
definite matrix K (K > 0), the following inequality holds

T

x'y< S (x"K'x+y"Ky). (5)

N~

Lemma 6 ([28]). b,, b,, -+, b, € R, are any vectors, the follow-
ing inequality holds

c c c c/2
[y + (b o+ [y 2 (|by] + [bof 4 o+{B, 7)™ (6)
where ¢ (0 < ¢ < 2) is a real number.

3. Finite-Time Antisynchronization between
Two Nonlinear Coupled Double-Weight
Markovian Switching Networks

In the following, finite-time antisynchronization and identi-
fication between two nonlinear coupled double-weight

Markovian switching complex networks with stochastic
perturbations are studied in this section.

3.1. Network Models. Consider the following multiple-weight
Markovian switching complex network with N nodes:

x;(£) = fin (i (1)) + o (xi(2) )i (2) + Z cla;j(r(t))rlxj(t -7)
=

N
+ Z czafj(r(t))l"zh(xj(t)), i=1,2,---,N,
j=1
(7)

where x;(t) = (x;,(t), x;,(£), -+ x;,(t))" €R" is the state
vector of the ith node; f; : R* — R" and f,, : R" — R™"
are continuous vector function and matrix function, respec-
tively; h(-): R* — R" is a nonlinear coupling function; «;
(t) is an unknown parameter vector of the dynamic node;
time delays 7 satisfy 7> 0; c;(c; >0,d=1,2) indicates the
coupling strength for the dth coupling form; I'; € R™"(d
=1,2) is inner coupling matrix of the dth coupling form
Ad(r(t) = (u?j(r(t)))NxN eRV*N(d=1,2) is topological
structure matrix in the dth coupling form, which represents
topological structure of the network at time ¢ in mode r(¢);
A%(r(t)) can be defined as if there exists a connection
between node i and node j(j # i) for the mth coupling form,
then ag. + 0; otherwise, a% = 0. The diagonal elements of A(r

(t)) are defined as

N

aj(r(t)) ==Y al(r(t), d=1,25i=1,2,-N. (8)
j=Lj#

Let {r(¢),t >0} be a right-continuous Markovian pro-
cess in probability space, which takes values in a finite space
§={1,2--- I} with generator IT=(m,,) . The transition

mxXm

probability from the pth mode at time ¢ to the qth mode at



time t + At is defined as follow:

Ty At +o(At), ifq#p,
1+, At + o(At), ifg=p,

©)

where At >0, AI%TOO(At)/At =0, and transition rate 7,,(,,

P{r(t+At)=q|r(t)=p} = {

> 0) satisfies

m
Tpp == Z Mg (10)
q=1.q#p

Network (7) is considered as drive system, then the
response network as

Vi) =fu (i) + fo(i(t Z 1)’,t_ 7)

+ iczbfj(r(t))th(}’j(t)) +

j=1
(), i=1,2,-N,

o;(t: e(1), (1) o (t)
(11)

where y,(t) = (y,, (), y,, () ---,yin(t))T € R" is the state vector
of the ith node; @,(¢) is estimation of the unknown parameter
vector a;(t); B (r(t)) = (bé(r(t)))NxN € RNVN(d=1,2) is the
same as the definition of A%((t)) above; u;(t) is a nonlinear
controller; w(t) = (w,(t), w,(t),-wn(t))" is the n-dimen-
sional Weiner process. o,(t,x;(t), r(t)) is noise intensity
function, which describes the random impact of the environ-
ment on the network.
Define the system synchronization error as follows:

e(1) = x;(t) +y;(1),
where e,(t) =

(en(t)s en(t) -+ e, (1)
of ith node.

Outer synchronization means that the behavior of corre-
sponding nodes between two or more networks tends to be
consistent. In other words, the error between the drive net-
work and the response network is zero; the synchronization
and identification of the system will be achieved.

i=1,2,--N, (12)

represents state error

Definition 7. For an arbitrary ¢(t > ¢, > 0), if each node of the
network satisfies the following equation, then the drive

u;(t) = =k(r(t)) sign (e;(t))le;()" = ni(r ch

= i(r(t)) sign (@;(1))(Jan(£)| + M),
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system (7) and response system (11) can achieve synchroni-
zation in a finite time f,.

i=1,2,---,N.

(13)

HmElle,(t) | = TmElxi(£) +,(£)|, = 0.

Remark 8. When the nonlinear coupled double-weight Mar-
kovian switching complex network (7) and (11) gradually
realizes antisynchronization at a finite time ¢;, the unknown
parameter vector a,(t) will be identified, expression as

}LH;Z 13:(t) ~a,) = (14)

3.2. Main Results. In this part, finite-time antisynchroniza-
tion between two nonlinear coupled double-weight Markov-
ian switching complex networks is analyzed and proven
through a designed nonlinear controller with update law.

From the network (7) and (11), the synchronization error
of node dynamics system can be written as:

&(t) =%;(t) +3;(t) = f1u (xi(1) + fio (xi(1) (1) + £ (0i(1))
+fzz( (D) ai(1) + 0t ei(1), (1)) @(t)

+ZC1 1] (t_T)

(15)

Obviously, when the synchronization error (15) con-
verges to zero in a finite time, the finite-time synchronization
of networks will be achieved; at the same time, the unknown
parameters of the system will be identified accordingly.
Therefore, by designing an effective controller u,(¢), the
finite-time antisynchronization problem of the nonlinear
coupled double-weight complex networks will be solved.

Theorem 9. Design the controller with adaptive law as follows

M=

ch )Ly, (t =) + cz(a,?jr(t)—bfjr(t))rzh(yj(t)),

-
I
—

i=1,2,---,N,
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where control parameters 1,(r(t)) >0, k;(r(t)) >0, A, (r(t))
>0, and @,(r(t)) >0 (reS); M, is a known constant and
satisfies the condition |a; <M, and if the following
inequality holds

Y 7q(D(@) = Q(p)) <0,
y (17)
K+A+Q+ (é@(r(t)) +0O —E(r(t))> ®I,<0,

where D(q) is a positive definite matrix of appropriate dimen-
sion, and Q(q) is an arbitrary symmetric matrix. O(r(t)) =
(

diag {p, (r(£)), p,(r(£)),--pn(r(£)) ) sign (¢;(t)) = diag {

sign (e;;(£)), SlgnT(ezg(t))""> sign (e;,(1))}; A =(1/2)c,(A%®
I)KH(A?®T,); O =LKy @, = ¥7,(D(q) - Q(p))/2

Q=vIy®P; K=Iy®a, 5(r(t))=diag {n,(r()), n,(r(1)),
ety (r(8) }-

Then, by controller (16) and inequality condition (17),
the antisynchronization between two nonlinear coupled
double-weight Markovian switching complex networks (7)
and (11) can be achieved in a finite time ¢, and according
to Lemma 4, the finite time ¢, can be expressed as follows:

V(te: r(ty))"
I "

154

where V(t,, r(ty)) = (112)Z1e] (to)es(ty)) + ((1/ 2) ,1(1/
A (r(t)))a! (1)a,(t)), y =min {min (k(r)), €20 min
(@)}
Proof. Construct the Lyapunov function as follows:
1g R G
Vite0p)= 5 2 el (060 + 53 yosal (030 "

According to Itd’s lemma, stochastic stability theory, and
differential operator & [29], we can get

PV(telt) )= Y el (D5(0)+ Y sl (00

(20)

Bringing equation (15) into (20) we can get.

"
M=
=
—_
N
!
—
=
N
=
-
=
¥
M=
o
=N
=
o
=
[
=

|
M= I
"N*I =
= <
S
a2

o

=

=

|

N

+ i
s
:;l
D=

T
=
il
T

+
DMz
|
2

N =

M=

o
o
—

=
=

)
~
S
=
o
-~
=

<
I
T

N

+ %Ztrace o] (t,,(t), p)oi(t (1), p)]

i=1

+ Y qan(r(t)oh(x;(0) + Y e bl(r(H))Ihy;(t =)
Jj=1 j=1
N

+ Y b (r)Lh(y(1) +oilt e(t), r(1)a(T))
=1

+ i ! & (1) + ieT(t)e(t)
i=1 hl(P) ' ' i=1 ' '
N m N ot

= Yel(t-T)e(t-1)+ anqzj el (9)D(q)e;(0)d60
i=1 q=1 i=1 Jt-7

+ %itrace[af(r e (), p)oi(t,;(t) p)]
. n

+ Zﬂpqizetl (t)D(q)ex(t)

<
il
i

(21)

where D(q) is a positive definite matrix with suitable
dimension.

According to controller (16), Assumption 1, and
Assumption 2, equation (21) can be written as

ZLV(te(t),p) = ZefT(f){—m(P)ei(f) +filtsxi(0), o) + fi(tyi(1), )
ftZ(y Zl l](P FZ( ))+h<y]( ))
~k(p) sign (¢;(1))[e(1)"}
N
1 —~ ~
= 9(p) )5 sign (@,(0)(|lany(6)] + M) &(t)
i=1""1
N N
- Del(t- + 2 ¢ (Dfp((D)(t)
i=1 i=1



+

+

IDM=% 1=
T

N —
)
—

S
~—~
~
—
=
o
~
—
~
=
o
—
~
=

I
M=+
)
|
Sl
—~
)
—
=
x
S~—

t), ;) + fi(t yi(t), o)
k(p) sign (e;(t))[e;(t)]" —n;(p)e ( )
}+ Z PqZZe

I
—

J[ (! (8)e;(6))"" o

where H(e;(t)) = h(x;(t)) + h(y;(t)).

According to Lemma 5, we can get

N
Y ca(p)I>H (g(1)) = coe” (1) (A @ T H(e(t))
j=1
< %czeT(t) (4’ eL,)K (aer,) "e(t)
+ 2 HT (e(6) K H(e(t).
(23)

In addition, for arbitrary x(¢), y(¢) € R", if there exists a
constant L > 0, then following inequality will hold

£ (x(®) + f ()N < L[| (x(2) + y(2)]- (24)
Then, we have
HY (e(t))||K|[H(e(t)) < L*||K][e" (t)e(t). (25)

Thus,

N
Z czafj@))FzH(ej(t)) = e’ (t) (A2 ®I,)H(e(t))
=1
< %czeT(t) (A’®I,)K! (Ad ®rd) "e(t)
+ %L2||K||eT(t)e(t).
(26)
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Based on Lemma 6, we have

= el (1) sign (e;(t))e,()]" = - ZZ% (1)]e(t)

i=1 i=1 j=1

"sign (e;(t))

M=
M=
=
~
=
T o
N——
3

[
—
-
[
—

1]

|
N N
M= T

o

[y

=

<

(1+y)/2
i(t)> :

(27)

Due to |a;| < M,,
ships can obtain

and from some inequality, relation-

()] = [@() = e ()] < [@;(8)] + oy (1) < [@;(8)] + M.
(28)
Thus
N
=D (lany(t)] + M,)" sign (&(1))a(t)

I
[\/]z

(I ()] + M, ) (¢

Z lani(t T (1)

Il
M=

=

t(t)‘y+l'

(29)

According to Assumption 3, and bringing the inequality
(23), (27), (29) into equation (22), we can get

N (1+p)2
_ (Zl '[M(ef(e)ei(e))de)
>

(30)

According to conditions (17), the above inequality (30)
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can be simplified to

PV(telt)p) sy Vilte(t)hp) (D)
where e = (1 +y)/2.
From Lemma 4 and inequality (18), if £, = 0, finite time ¢,

can be estimated as

V(0,7(0))"*
< V(o.70) " (32)
y25(1~¢)

Remark 10. When networks (7) and (11) achieve antisyn-
chronization in a finite time #,, the unknown parameter
vector @;(t) of the system will be identified as true value.

Remark 11. In the finite-time antisynchronization process
between two nonlinear coupled double-weight Markovian
switching complex networks (7) and (11), inequality (17) is
only a sufficient condition, not a necessary condition.

Remark 12. The speed of antisynchronization and unknown
parameters identification depends on the selection of control
parameters #,(r), A;(r), k(r)¢(r) in controller (16).

Corollary 13. When the nonlinear coupling function h(x) = x
in complex networks, the systems (7) and (11) are linear
coupled complex networks. Moreover, under the condition of
Theorem 9, antisynchronization between two linear coupling
multiple-weight Markovian switching complex networks can
also achieved in a finite time t,.

Under the condition of h(x)
error system is as follows

=x, the synchronization

&(t) =%;(t) +3;(t) = fu (xi(1)) + fo (xi(1) (1) + £ (i (1))

+ (i) @i(1) + oyt ¢(t), (1) )a(t)

+ cha}j(r 0))x;(t—7)
j=1
+ Y cal(r(t))Tox;(t)

-
Il
—

+
M=

C1b};( () 1}’]<t_ 7)

-
Il
—

+
M=

Czb?j(r(t))rz}’j(t) + (1)

-
I
—

(33)

Theorem 14. Let h(x) = x and Assumptions 1-3 hold. Then,
networks (7) and (11) achieve antisynchronization under the
set of controller (16) in finite time t, if the following conditions
are satisfied:

(i) The following condition holds:

T

2a(D(q) = Q(P)) <0,

M=

1

q

K+A+Q+ (é@(r(t)) - E(r(t))) ®I,<0,

(34)

where D(q) is a positive definite matrix of appropriate dimen-
sion, Q(g) is an arbitrary symmetric matrix. ©(r(t)) = diag

{p,(r(1)), py(r(1)),-py (r(1))};  sign (e(t)) = diag {sign (
e (1)), sign (e;o(t)).--- sign (e;,(1)) }; i

A=(1/2)(A% + (4%)"); @, =3 (D(q) - Q(p))/2 K =
Iyea, Q=viy®P, E(r(t))=diag {n,(r(t)), n,(r(t)),;,
iy (r(£))}.

(ii)) When the initial time t,= 0, t, is estimated as

_V(o.r(0)"

L= 02¢(1-¢) ’ (35)

(12T e] (to)ei(te)) + (112)ZL, (11

where (to, r(ty)) = e;
t,)), 6 =min {min (k(r)), min (¢(r))}.

Ai(r(to)))af (to)ai(

Proof. Constructed Lyapunov function is the same as equa-
tion (19).

Therefore, under the condition of h(x)
(23) is as follows

=x, inequality

t) Z Cza?j(P)FzH(ej(t))
j=1
ZerT Z )er](f)

i=1

2s 25\ T
=T (1) (A2 8 I3)e(t) < A (%) & (Del),

(36)

where A% = (A?®T,).
The rest of the proof is similar to that of Theorem 9.

Remark 15. In the finite-time antisynchronization and
parameters identification process between two linear coupled
double-weight Markovian switching complex networks,
inequality (34) is only a sufficient condition, not a necessary
condition.

Corollary 16. When the unknown parameter vector o(t) of
the network is known, under the condition of Theorem 9, com-
plex networks (7) and (11) can achieve antisynchronization,
where the adaptive part of the unknown parameter of the



controller is cancelled in Theorem 9.

=
=
-
=
I
|
>
~—
=
—~
=
=
«»
=z
o]
[=]
=~
/'\
~
=
N
K
=
=
~=
I
§
=
=
=
=
=
[
=

Proof. The Lyapunov function is shown below

Vit

)+ i[ 6)do. (38)

=1

Nl —_
Mz

)
—_

The proof process is basically similar to Theorem 9.

Remark 17. Based on the synchronization control rules in this
paper, a class of nonlinear coupled double-weight Markovian
complex networks without unknown parameters can achieve
finite-time antisynchronization.

Corollary 18. Under the conditions of Corollary 13, Corollary
16, and I'; =T,, complex networks (7) and (11) become single-
weight Markovian complex networks. According to Theorem 9
and Theorem 14, finite-time antisynchronization between two
linear coupled single-weight Markovian complex networks can
be achieved. In addition, the proof process is basically similar
to Theorem 9.

4. Simulink Results

In this section, we will give some typical numerical examples
to illustrate the effectiveness of the above model analysis.

4.1. Example 1. Firstly, a three-dimensional network state
equation is given, and the dynamics equations of each nodes
can be described by a chaotic system.

X1 () = oy (xi (1) = ;1 (1))
Xip () = =1 (£)x;3(F) + a3xp (1), (39)

X3 (1) = x;1 (£) X (F) — i xi3(1).

Both of the driving system and the response system can
be expressed by the Chen system above, and the system
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FIGURE 2: Switching of system mode.

(39) can be expressed as:

x; (1) 0
Xp(t) | = | —xu()xi(t)
x;3(t) X1 (£)x;(1)
xp(t) —x;y(t) 0 0 &
+ 0 0 xp(t) | x| &y |>
0 —x3(t) 0 %3
(40)

where a; is an unknow parameter vector, and the identification
value of the unknow parameter is a; = (36, 3,20)". Moreover,
the number of system nodes is 30 in numerical simulation,
the coupling strengths of the networks are taken as ¢; =¢, =
10, and the other relevant parameters are as follows.

2 -2
Where  h(x)=sin (x), II= [ L ], r,=
0.5 0 0 1 0 0
0 05 0 |,andIL,=|0 1 0],
0 0 0.5 0 0 1
V2 V2 V2
(t, e;(t), 1) = diag (—eil, Teiz, - e |
(41)

0,(t, ¢(t),2) = diag (\/Eeil’ Ve, \/EeiS)'

The switching of network mode is shown in Figure 2. In
the following, according to the controller (16) and condition
(17), some control parameters of controller (16) are selected
as follows: (1) =#(2) = 40; k(1) =23, k(2) =25; A(1) =20
A2) =25; ¢(1) =9(2) = 10; y = 0.6; M, = 50. In this simula-
tion process, the start time of the simulation is selected at f,
=0, and time delay 7 =0.01. In addition, through Lemma 4
and (32), we can obtain synchronization time ¢, < 10.9854.
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The time-varying curves of network synchronization
errors e;(t)(i=1,2,3) are shown in Figure 3, and we can
observe that synchronization error curves of networks grad-
ually converge to zero. Furthermore, Figure 5 is the identifi-
cation process of the unknown parameter vectors
a;(i=1,2,3), and the unknown parameter vector is finally

identified as &, = (36, 3,20)". From the enlarged pictures of
Figures 4 and 6, it can be clearly seen that the network syn-
chronization and parameter identification are achieved at
about ¢ = 10. By comparing calculated values with simulated
values, the theoretical proof of the third part is also verified.

Secondly, in order to prove the superiority of this control
method, the following comparison simulation is given, and
the control method in [15] will be adopted. In addition, the
network model, the topology switching mode, and all param-
eters are kept consistent in the two simulations. Figure 7
shows the system mode switching process.

In this simulation process, the control parameters of the
network are basically the same as the above example. In addi-
tion, the start time of the simulation is selected at f, = 0, and
time delay 7 = 0.01. In addition, through Lemma 4 and (32),
we can obtain synchronization time #; < 18.4358.

The time-varying curves of networks synchronization
errors ¢;(t)(i=1,2,3) are shown in Figure 8, and we can
observe that synchronization error curves of networks grad-
ually converge to zero. In addition, Figure 10 is the identifica-
tion process of the unknown parameter vectors o;(i =1, 2, 3),

and the unknown parameter vector is finally identified as «;

= (36,3,20)". From the enlarged pictures of Figures 9 and
11, it can be clearly seen that the networks synchronization
and parameter identification are achieved at about t=17.
By comparing calculated values with simulated values, the
theoretical proof of the third part is also verified.

By comparing the results of Example 1, the following
conclusions can be drawn. On the one hand, the antisynchro-
nization and identification of the networks can be realized in
a finite time. One the other hand, compared with the control
strategy in [15], the synchronization and identification
performance of the system can be realized faster under the
control strategy proposed in this paper.

4.2. Example 2. In this subsection, in order to prove the wide
applicability of this control method, a four-dimensional
network state equation is given, and the dynamic equations
of each node can be described by a Hyperchaotic system.

)

(42)
)
)

Both of the driving system and the response system can
be expressed by the Hyperchaotic system above, and the sys-
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tem (42) can be expressed as

iy 0
Xiy =X (£)x;3(t)
Xig xip (1) xi2 (1)
Xiy x;1 (£)x33(t)
xpp(£) =X (1) 0 0 xig (1) &
0 0 X () 0 ®p
+ X >
0 —x;3(t) 0 0 Q3
0 0 0 x;4() ay
(43)

where «; is an unknow parameter vector, and the identifica-
tion value of the unknow parameter is a; = (36,3,20,1)".
Moreover, the multiweighted Markovian switching network
is composed of 100 nodes, the coupling strengths of the net-
works are taken as ¢, = ¢, = 10, and the other relevant param-

eters are as follows.

2 =2
Where  h(x) = cos (x), H:l 1, r,=

-1 1

1 0 0 0 2 0 0 O

01 0 O 0 2 0 0

,and Iy = R
0 0 1 0 0 0 2 0
0 0 0 1 0 0 0 2

ot €;(t), 1) = diag (?eil’ \/7261‘2’ \/7561'3)
(44)

0,(t, ¢(t),2) = diag (\/Eeil’ V2e,, \/EeB)'

The switching of network mode is shown in Figure 7. In
the following, some control parameters of controller (16)
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are selected as follows: (1) =#(2) = 32; k(1) =20, k(2) = 18;
A1) =18, A(2)=25; ¢(1)=¢(2)=9; y=0.6; M,=50. In
this simulation process, the start time of the simulation is
selected at t,=0, and time delay 7=0.01. In addition,
through Lemma 4 and (32), we can obtain synchronization
time ¢, < 18.4391.

The time-varying curves of networks synchronization
errors ¢;(t)(i=1,2,3,4) are shown in Figure 12, and we
can observe that synchronization error curves of networks
gradually converge to zero. Furthermore, Figure 14 is the
identification process of the unknown parameter vectors
a;(i=1,2,3,4), and the unknown parameter vector is
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finally identified as &, = (36,3,20,1)". From the enlarged
pictures of Figures 13 and 15, it can be clearly seen that
the networks synchronization and parameter identification
are achieved at about t=16. By comparing calculated
values with simulated values, the theoretical proof of the
third part is also verified.

5. Conclusion

In this paper, the finite-time antisynchronization and
parameter identification of a class of nonlinear coupled
multiple-weight Markovian switching complex networks
with stochastic disturbances is solved. Firstly, by a controller
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with an adaptive law, sufficient and unnecessary conditions
for synchronization of nonlinear coupling networks are
obtained, and at the same time, unknown parameters of net-
works are identified. Secondly, several corollaries show that
the synchronization control method in this paper can be
applied to more general complex networks. Finally, simula-
tion results prove that network models can achieve antisyn-
chronization in a finite time, and the unknown parameter
vector of networks is also identified as true values.

In the future, we will continue to study the following
aspects. On the one hand, it is very challenging to realize
the finite-time antisynchronization and parameters identifi-
cation of the proposed models by controlling a small number
of important nodes. On the other hand, based on the model
proposed in this paper, it is also very interesting to study
the nonlinear coupled multiple-weight Markovian switching
complex network models with parameter and model uncer-
tainties and time-varying delays.
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