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The extended complex method is investigated for exact analytical solutions of nonlinear fractional Liouville equation. Based on the
work of Yuan et al., the new rational, periodic, and elliptic function solutions have been obtained. By adjusting the arbitrary values
to the constants in the constructed solutions, it can describe the physical phenomena to the traveling wave solutions, since traveling
wave has significant value in applied sciences and engineering. Our results indicate that the extended complex technique is direct
and easily applicable to solve the nonlinear fractional partial differential equations (NLFPDEs).

1. Introduction

The idea of FPDEs has been an area of focus not only among
mathematicians but also among physicists and engineers.
FPDEs have played an important task in numerous fields like
physics, biology, biogenetics, and fluid mechanics [1–3].

Because of their several applications, numerous tech-
niques have been evolved to attain analytical and numerical
solutions for FPDEs, for example, modified extended tanh
method [4], differential transform method [5], Ansatz
method [6], Sine-Gordon expansion method [7], unified
method [8], Q-homotopy analysis Sumudu transform tech-
nique [9], implicit Riesz wavelet-based method [10], first
integral method [11], Backlund transformation [12], Cheby-
shev wavelet operational matrix [13], F-expansion method
[14], homogeneous balance method [15], a generalization
of truncated M-fractional derivative [16], fractional natural
decomposition method [17], iterative method [18], and
Adam’s-type predictor-corrector method [19].

The nonlinear evolution equations have been solved sym-
bolically and numerically by using various methods, for
example, Durur et al. have applied ðm + 1/G′Þ-expansion
method to attain analytical solutions of the hyperbolic non-

linear Schr€odinger′s equation (NLSE) [20]. Taher has
applied simple equation method to the Kadomtsev-
Petviashvili (KP) equation [21]. Miao and Zhang have intro-
duced modified ðG′/GÞ-expansion method to attain the exact
analytical solutions of perturbed nonlinear Schrödinger’s
equation [22]. Khatera et al. have used tanh method to inves-
tigate analytical solutions of nonlinear reaction-diffusion
equation [23]. Zhang et al. have used first integral method
to attain the exact analytical solutions of nonlinear Boussi-
nesq wave packet mode and ð2 + 1Þ-dimensional Zoomeron
equation [24]. Wazwaz has introduced Sine-cosine method
to explore analytical solutions of Benjamin-Bona-Mahony
equation and Phi-four equation [25].

El-Danaf et al. have applied the new numerical treatment
to generalized long-wave equation system [26]. Khalid et al.
have introduced the nonpolynomial spline method to attain
numerical solutions of Coupled Burgers equations [27].
Lakshmi and Ashish have attained numerical solutions of
Burgers equation by using cubic B-spline method [28], and
Raslan et al. have applied the B-spline collocation method
to find numerical solutions of coupled-BBM system [29].

Recently, Hadi et al. have introduced analytical methods
to solve the nonlinear evolution equations [30–32]. Nestor
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et al. have applied modified Kudryashov method to solve per-
turbed nonlinear Schrödinger’s equation [33]. Nauman et al.
have attained analytical solutions for various nonlinear evo-
lution equations [34, 35]. The general form of nonlinear frac-
tional Liouville equation [36] is given by

∂2αv
∂X2α + ∂2βv

∂T2β = e2v, 0 < α, β ≤ 1: ð1Þ

This equation plays an important task in different scien-
tific applications such as solid-state physics, nonlinear optic,
and chemical kinetics. Where v is a function of X and T . The
conformable derivative of order α and β in nonlinear frac-
tional Liouville equation is defined as a conformable deriva-
tive sense, introduced by Khalil et al. [37]. The main
advantages of conformable derivatives is to satisfy the rules
of ODE like quotient, product, and chain rules as well as
other definitions fail to satisfy these rules, and it can be solved
exactly and numerically of other FPDEs. The conformable
order definition can be expressed as follows.

Definition 1. Let e: [0,∞)→ R be a function, then conform-
able order can be expressed as

Dβe xð Þ = lim
x→0

e x + δx1−β
� �

− e xð Þ
δ

, ð2Þ

where hβð0Þ = limx→0h
ðβÞðxÞ: From the above conformable

integral function k defined as

Ilβe xð Þ =
ðx
l

e tð Þ
t1−β

dt,  ≥ 0, β ∈ 0, 1ð �: ð3Þ

The significant properties of the conformable derivatives
are introduced as below:

(1) Dβðau + bvÞ = aDβðuÞ + bDβðvÞ, ∀a, b ∈ℝ
(2) DβðxpÞ = pxp−β, ∀p ∈ℝ

(3) DβðAÞ = 0, ∀uðxÞ = Aðconstant functionsÞ

D uvð Þ = uDβ vð Þ + vDβ uð Þ ð4Þ

(4) Dβðu/vÞ = vDβðuÞ − uDβðvÞ/v2, moreover, if the
function u is differentiable, then

(5) DβðuÞðxÞ = x1−βdu/dx
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Figure 4: 3D graph of Vr,2ðzÞ for the fixed values v = 1, z0 = −0:2,
and z1 = 1 represent the exact traveling wave solutions.
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Figure 1: 3D graph ofVr,1ðzÞ for the fixed values v = 1, z0 = 0:5, and
z1 = 1 represent the exact traveling wave solutions.
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Figure 2: 3D graph of Vr,1ðzÞ for the fixed values v = 1, z0 = −0:5,
and z1 = 1 represent the exact traveling wave solution.
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Figure 3: 3D graph ofVr,2ðzÞ for the fixed values v = 1, z0 = 0:2, and
z1 = 1 represent the exact traveling wave solutions.

2 Advances in Mathematical Physics



In present work, our goal is to solve the nonlinear frac-
tional Liouville equation by using the extended complex
method based on the work of Yuan et al. [38–43]. This is a
beneficial technique to attain exact analytical solutions. This
method’s application can be used in the discipline of mathe-
matical physics and engineering. The whole article is orga-
nized as mention below: In Section 2, methods and
materials are explained. In Section 3, analytical solutions
for the given problem are computed. Section 4 graphical
structures of our results are given, and we have mentioned
the conclusions in Section 5.

2. Methods and Materials

In this section, we introduce the extended complex method
for solving FPDE. Let us consider that the general FPDE form
is expressed as

f v,Dα
Tv,Dα

X1
v,Dβ

X2
v,Dγ

X3
v,Dδ

X4
v⋯⋯

� �
= 0, 0 < α, γ, δ, β ≤ 1:

ð5Þ

Where v is an unknown function of X1, X2, X3 ⋯⋯Xn
and T , f is a polynomial of v and its fractional partial deriv-
atives. The FPDE has been solved by the following steps.into
Eq. (8), respectively, then the systems of algebraic equations
are calculated by equating the coefficient to zero. These alge-
braic equations are solved with the help of maple packages.
Finally, elliptic function solutions, rational function solu-
tions, and simply periodic solutions with the pole at z = 0
are determined. As γ−ij are obtained by (9), E2

i = 4F3
i − g2Fi

− g3 and ∑i=1 γ−i1 = 0 and VðzÞ, VðeαzÞðα ∈ℂÞ have rð≤pÞ
distinct poles of multiplicity q.

Step 1. The transformation z = ðTα/αÞ + ðXβ
1 /βÞ +⋯⋯ z0 is

applied to Eq. (5), it becomes NPDE and this equation can
be expressed as

s v, vt , vx , vy, vz , vtt , vxx ⋯⋯⋯
� �

: ð6Þ

Step 2. A transformation T : vðx, tÞ→ VðzÞ is applied, ðx, tÞ

can be explained in different criteria. By this way, we have
defined the following transformation

v x, tð Þ = V zð Þ, z = x + νt: ð7Þ

Step 3. This transformation changes Eq. (6) into nonlinear
ODE:

S V , V ′, V ′′, V ′′′,⋯
� �

= 0, ð8Þ

where V prime are the derivatives in Eq. (8) with respect to z.
Equation (8) can be reduced by integrating with respect to z.

Step 4. The weak hp, qi condition is determined. Let p, q ∈ℤ,
and let us consider the meromorphic solutions V of Eq. (8)
have at least one pole. Inserting the Laurent series

V zð Þ = 〠
∞

k=−q
Bkz

k, q > 0, B−q ≠ 0, ð9Þ

into Eq. (8), if it has been found out p distinct Laurent singu-
lar parts

〠
−1

k=−q
Bkz

k, ð10Þ

then the weak hp, qi condition of Eq. (8) holds. Weierstrass
elliptic function ℘ðzÞ≔ ℘ðz, k2, k3Þ with double periods of
the following equation as mentioned below:

℘′ zð Þ
� �2

= 4℘ zð Þ3 − k2℘ zð Þ − k3: ð11Þ

Step 5. Substitute the indeterminate formulas

V zð Þ = 〠
r−1

i=1
〠
q

j=2

−1ð Þjγ−ij
j − 1ð Þ!

dj−2

dzj−2
1
4

℘′ zð Þ + Ei

℘ zð Þ − Fi

" #2
−℘ zð Þ

 !

+ 〠
r−1

i=1

γ−i1
2

℘′ zð Þ + Ei

℘ zð Þ − Fi
+ 〠

q

j=2

−1ð Þ jγ−r j
j − 1ð Þ!

dj−2

dzj−2
℘ zð Þ + γ0,

ð12Þ
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Figure 6: 3D graph of Vs,1ðzÞ for the fixed values v = 1, z0 = −1/6,
z1 = 1, and α = 1 represent traveling wave solutions.
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Figure 5: 3D graph of Vs,1ðzÞ for the fixed values v = 1, z0 = 1/6,
z1 = 1, and α = 1 represent traveling wave solutions.
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V zð Þ =〠
i=1

〠
j=1

γij

z − zið Þj
+ γ0, ð13Þ

V eμzð Þ = 〠
s

i=1
〠
q

j=1

γij

eμz − eμzið Þj
+ γ0, ð14Þ

Step 6.Meromorphic solutions are obtained with an arbitrary
pole, then the inverse transformation T−1 is inserted into
meromorphic solutions, and exact analytical solutions of
FPDE are explored.

3. Application of the Method

In this section, we will seek exact analytical solutions of non-
linear fractional Liouville equation by the extended complex
technique. Suppose nonlinear fractional Liouville equation is
given

∂2αv
∂X2α + ∂2βv

∂T2β = e2v , 0 < α, β ≤ 1: ð15Þ

By applying the transformation (16) into Eq. (15)

x = Xα

α
, t = Tβ

β
, ð16Þ

then, we have

∂2v
∂x2

+ ∂2v
∂t2

= e2v, ð17Þ

if we consider u = ev , it represents Eq. (17) into

uxð Þ2 + utð Þ2 − uuxx − vvtt + u4 = 0, ð18Þ

using wave transformation vðx, tÞ =VðzÞ, z = x + νt, Eq. (18)
is reduced to

1 + ν2
� �

VV ′′ − 1 + ν2
� �

V ′
� �2

−V4 = 0: ð19Þ

Substituting (9) into (19), then we have p = 2 and q = 1
and then the weak h2, 1i condition of (19) holds. By the weak
h2, 1i and (13), we have defined the forms of the rational
solutions

Vr zð Þ = γ12
z

+ γ11
z − z1

+ γ10, ð20Þ

with at z = 0. Putting the VrðzÞ into the Eq. (19), then we
have

〠
9

i=1
c1iz

−i−3 z − z1ð Þ−4 = 0, ð21Þ

where

c11 = γ412z
4
1 − γ212v

2z41 − γ212z
4
1,

c12 = 4γ312γ10z41 − 2γ12γ10v2z41 − 4γ412z31 − 4γ312γ11z31 + 4γ212v2z31
+ 2γ12γ11v2z31 − 2γ12γ10z41 + 4γ212z31 + 2γ12γ11z31,

c13 = 6γ212γ210z41 − 16γ312γ11z31 − 12γ212γ11γ10z31 + 8γ12γ10v2z31
+ 6γ412z21 + 12γ312γ11z21 + 6γ210γ211z21 − 6γ212v2z21
− 4γ12γ11v2z21 + 8γ12γ10z31 − 6γ212z21 − 4γ12γ11z21,

c14 = 4γ12γ311z41 − 24γ212γ210z31 − 12γ12γ11γ210z31 + 24γ312γ10z21
+ 36γ212γ11γ10z21 + 12γ12γ211γ10z21 − 12γ12γ10v2z21
− 4γ412z1 − 12γ312γ11z1 − 12γ212γ211z1 + 4γ212v2z1
− 4γ12γ311z1 + 4γ12γ11v2z1 − 12γ12γ10z21 + 4γ212z1
+ 4γ12γ11z1,

c15 = γ410z
4
1 − 16γ12γ310z31 − 4γ11γ310z31 + 36γ212γ10z21

+ 36γ12γ11γ210z21 + 6γ211γ210z21 − 16γ312γ10z1
− 36γ212γ11γ10z1 − 24γ12γ211γ10z1 + 8γ12γ10v2z1
− 4γ311γ10z1 + 2γ11γ10v2z1 + γ412 + 4γ312γ11 + 6γ212γ211
− γ212v

2 + 4γ12γ311 − 2γ12γ11v2 + γ411 − γ211v
2 + 8γ12γ10z1

+ 2γ11γ10z1 − γ212 − 2γ12γ11 − γ211,

c16 = −4γ410z31 + 24γ12γ310z21 + 12γ11γ310z21 − 24γ212γ210z1
− 36γ12γ11γ210z1 − 12γ211γ210z1 + 4γ312γ10 + 12γ212γ11γ10
+ 12γ12γ211γ10 − 2γ12γ10v2 + 4γ311γ10 − 2γ12γ10v2

− 2γ12γ10 − 2γ11γ10,

c17 = 6γ410z21 − 16γ12γ310z1 − 12γ11γ310z1 + 6γ212γ210
+ 12γ12γ11γ210 + 6γ211γ210,

c18 = −4γ410z1 + 4γ12γ310 + 4γ11γ310,

c19 = γ410: ð22Þ

Setting the coefficients of the identical powers about z in
Eq. (21) to zero, then attain the number of following equations:

c1i = 0, i = 1, 2,⋯,9ð Þ: ð23Þ
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By solving the following equations, we attain

γ12 =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
, γ10 = 0, γ11 =

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
,

γ12 = v + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
, γ11 = v + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
,

ð24Þ

then

Vr10 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z
+

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z1
,

Vr20 zð Þ = v + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z
+ v + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z1
,

ð25Þ

where γ12/a − 1 = v is the first case and γ11/a − 1 = v is the sec-
ond case. Applying VðzÞ = RðηÞ into Eq. (19), then

1 + ν2
� �

α2R ηR′ + η2R′′
� �

− 1 + ν2
� �

α2 R′η
� �2

− R4 = 0,

ð26Þ

inserting

Vs ηð Þ = γ12
η − 1 + γ11

η − η1
+ γ10, ð27Þ

into the Eq. (26), we attain that

〠
9

i=1

c2iα
2ηi

η − 1ð Þ4 η − η1ð Þ4 = 0, ð28Þ

where

c21 = γ412η
4
1 − 4γ312γ10η41 + 6γ212γ210η41 − 4γ12γ310η41 + γ410η

4
1

+ 4γ312γ11η31 − 12γ212γ11γ10η31 + 12γ12γ11γ210η31
− 4γ11γ310η31 + 6γ210γ211η21 − 12γ12γ211γ10η21 + 6γ211γ210z21
+ 4γ12γ311η1 − 4γ311γ10η1 + γ411,

c22 = −γ212α
2η41v

2 + γ12α
2γ10η

4
1v

2 − γ12α
2γ11η

3
1v

2 + 4γ312γ10η41
− γ212α

2η41 − 12γ212γ210η41 − γ12α
2γ11η

2
1v

2 + γ12α
2γ10η

4
1

+ 12γ12γ310η41 + α2γ11γ10η
2
1v

2 − 4γ410η41 − 4γ412η31
− 4γ312γ11η31 + 16γ312γ10η31 + 24γ212γ11γ10η31 − 24γ212γ210η31
− γ12α

2
1γ11η

3
1 − 36γ12γ11γ210η31 + 16γ12γ310η31 − α2γ211η1v

2

+ 16γ11γ310η31 − 4γ410η31 − 12γ310γ11η21 − 12γ212γ211η21
+ 36γ212γ11γ10η21 − γ12α

2γ11η
2
1 + 36γ12γ211γ10η21

− 36γ12γ11γ210η21 + α2γ11γ10η
2
1 − 24γ211γ210η21

+ 12γ11γ310η21 − 12γ212γ211η1 − 12γ12γ311η1
+ 24γ12γ211γ10η1 − α2γ211η1 + 16γ311γ10η1 − 12γ211γ210η1
− 4γ12γ311 − 4γ411 + 4γ311γ10,

c23 = 4γ212α2η31v2 − 4γ12α2γ10η31v2 + 6γ212γ210η4l + 8γ12α2γ11η21v2

− 12γ12γ310η41 − 4α2γ11γ10η21v2 + 6γ410η41 − 16γ312γ10η31
+ 4γ210α2η31 − 12γ212γ11γ10η31 + 48γ212γ210η31 − 4γ12α2γ10η31
+ 36γ12γ11γ210η31 − 48γ12γ310η31 + 4α2γ211η1v2

− 24γ11γ310η31 + 16γ410η31 + 6γ412η21 + 12γ312γ11η21
− 24γ312γ10η21 + 6γ212γ211η21 − 72γ212γ11γ10η21 + 36γ212γ210η21
+ 8γ12α2γ11η21 − 36γ12γ211γ10η21 + 108γ12γ11γ210η21
− 24γ12γ310η21 − 4α2γ11γ10η21 + 36γ211γ210η21 − 48γ11γ310η21
+ 6γ410η21 + 12γ312γ11η1 + 24γ212γ211η1 − 36γ212γ11γ10η1
+ 12γ12γ311η1 − 72γ12γ211γ10η1 + 36γ12γ11γ210η1
+ 4α2γ211η1 − 24γ311γ10η1 + 48γ211γ210η1 − 12γ11γ310η1
+ 6γ212γ211 + 12γ12γ311 − 12γ12γ211γ10 + 6γ411 − 16γ311γ10
+ 6γ211γ210,

c24 = −γ12α
2γ10η

4
1v

2 + γ12α
2γ11η

3
1v

2 − 6γ212α2η21v2

− 7γ12α2γ11η21v2 − γ12α
2γ10η

4
1 + 6γ12α2γ10η21v2

+ 4γ12γ310η41 + 6α2γ11γ10z21v2 − 4γ410η41 − 24γ212γ210η31
+ γ12α

2γ11η
3
1 − 7γ12α2γ11η1v2 − 12γ12γ11γ210η31

+ 48γ12γ310η31 − 6α2γ211η1v2 + 16γ11γ310η31 − 24γ410η31
+ 24γ312γ10η21 − 6γ212α2η21 + 36γ212γ11γ10η21 − 72γ212γ210η21
− 7γ12α2γ11η21 + γ12α

2γ11v
2 + 6γ12α2γ10η21

+ 12γ12γ211γ10η21 − 108γ12γ11γ210η21 + 72γ12γ310η21
+ 6α2γ11γ10η21 − α2γ11γ10v

2 − 24γ211γ210η21 + 72γ11γ310η21
− 24γ410η21 − 4γ412η1 − 12γ312γ11η1 + 16γ312γ10η1
− 12γ212γ211η1 + 72γ212γ11γ10η1 − 24γ212γ210η1
− 7γ12α2γ11η1 − 4γ12γ311η1 + 72γ12γ211γ10η1
− 108γ12γ11γ210η1 + 16γ12γ310η1 − 6α2γ211η1 + 16γ311γ10η1
− 72γ211α2η1 + 48γ11γ310η1 − 4γ410η1 − 4γ312γ11 − 12γ212γ211
+ 12γ212γ11γ10 + γ12α

2γ11 − 12γ12γ311 + 36γ12γ211γ10
− 12γ12γ11γ210 − α2γ11γ10 − 4γ411 + 24γ311γ10 − 24γ211γ210 + 4γ11γ310,

c25 = 4γ12α2γ10η31v2 − 4α2γ11γ10η21v2 + γ410η
4
1 + 4γ212α2η1v2

+ 8γ12α2γ11η1v2 + 4γ12α2γ11η31 − 4γ12α2γ11η1v2

− 16γ12γ310η31 + 4α2γ211η1v2 − 4γ11γ310η31 + 16γ410η31
+ 36γ212γ210η21 + 36γ12γ11γ210η21 − 72γ12γ310η21 − 4α2γ11γ10η21
+ 4α2γ11γ10v2 + 6γ211γ210η21 − 48γ11γ310η21 + 36γ410z21
− 16γ312γ10η1 + 4γ212α2η1 − 36γ212γ11γ10η1 + 48γ212γ210η1
+ 8γ12α2γ11η1 − 4γ12α2γ10η1 − 24γ12γ211γ10η1
+ 108γ12γ11γ210η1 − 48γ12γ310η1 + 4α2γ211η1 − 4γ311γ10η1
+ 48γ212γ210η1 − 72γ11γ310η1 + 16γ410η1 + γ412 + 4γ312γ11
− 4γ312γ10 + 6γ212γ211 − 24γ212γ11γ10 + 6γ212γ210 + 4γ12γ311
− 36γ12γ211γ10 + 36γ12γ11γ210 − 4γ12γ310 + 4α2γ11γ10 + γ411
− 16γ311γ10 + 36γ211γ210 − 16γ11γ310 + γ410,
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c26 = −6γ12α2γ10η21v2 + α2γ11γ10η
2
1v

2 − γ12α
2γ11η1v

2

− α2γ211η1v
2 − 4γ410η31 − γ212α

2v2 − γ12α
2γ11v

2

− 6γ12α2γ10η21 + γ12α
2γ10v

2 + 24γ12γ310η21 + α2γ11γ10η
2
1

− 6α2γ11γ10v2 + 12γ11γ310η21 − 24γ410η21 − 24γ212γ210η1
− γ12α

2γ11η1 − 36γ12γ11γ210η1 + 48γ12γ310η1 − α2γ211η1
− 12γ211γ210η1 + 48γ11γ310η1 − 24γ410η1 + 4γ312γ10 − γ212α

2

+ 12γ212γ11γ10 − 12γ212γ210 − γ12α
2γ11 + γ12α

2γ10
+ 12γ12γ211γ10 − 36γ12γ11γ210 + 12γ12γ310 − 6α2γ11γ10
+ 4γ311γ10 − 24γ211γ210 + 24γ12γ310 − 4γ410,

c27 = 4γ12α2γ10η1v2 + 4α2γ11γ10v2 + 6γ410η21 + 4γ12α2γ10η1
− 16γ12γ310η1 − 12γ11γ310η1 + 16γ410η1 + 6γ212γ210
+ 12γ12γ11γ210 − 12γ12γ310 + 4α2γ11γ10 + 6γ211γ210
− 16γ11γ310 + 6γ410,

c28 = −γ12α
2γ10v

2 − α2γ11γ10v
2 − 4γ410η1 − γ12α

2γ10 + 4γ12γ310
− α2γ11γ10 + 4γ11γ310 − 4γ410,

ð29Þ

Setting the coefficients of the identical powers about η in
Eq. (28) to zero, then obtain the number of following equa-
tions:

c2i = 0, i = 1, 2,⋯,9ð Þ: ð30Þ

Solve the number of following equations, then attain

γ12 =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α, γ11 =

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α, ð31Þ

where η = eαzðα ∈ℂÞ.

Vs e
αzð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

eαz − 1 +
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

eαz − eαz1
, ð32Þ

hence, we get the simply periodic solutions of Eq. (19) with
pole at z = 0

Vs10 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

2 coth α

2 z − coth α

2 z − z1ð Þ
� �

, ð33Þ

where γ12/a − 1 = v is the first case and γ11/a − 1 = v is the sec-
ond case.

According to the weak ⟨2.1⟩ condition, we introduce here
elliptic solutions of (12) with z = 0 pole.

Vd,1 zð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

2
℘′ zð Þ + E1
℘ zð Þ − F1

+ γ10, ð34Þ

where E2
1 = 4F3

1 − k2F1 − k3. We can rewrite the Vd,1ðzÞ and
considering the above mentioned results, we have γ10 = 0,
k3 = 0, and E1 = F1 = 0: So, we have

Vd,1 zð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

2
℘′ zð Þ
℘ zð Þ , ð35Þ

where k3 = 0, hence, the elliptic function solutions of Eq. (19)
are

Vd,1 zð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

2
℘′ z − z0 : k2, 0ð Þ
℘ z − z0 : k2, 0ð Þ , ð36Þ

where z0 and k2 are arbitrary constants. By further process,
we attain meromorphic solutions of Eq. (19) with an arbi-
trary pole as follows:

Vr,1 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z0
+

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z1 − z0
,

Vr,2 zð Þ = v + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z0
+ v + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p

z − z1 − z0
,

Vs,1 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 1

p
α

2 coth α

2 z − z0ð Þ − coth α

2 z − z1 − z0ð Þ
� �

,

ð37Þ

where γ12/a − 1 = v is the first case and γ1a/a − 1 = v is the
second case.

4. Description about Figures

In this section, we represent traveling wave solutions for
Vr,1ðzÞ, Vr,2ðzÞ and Vs,1ðzÞ by 3D graphs as in Figures 1–6.
These figures are displayed by maple software to justify our
main results physically.

Figures 1 and 2 show exact traveling wave solutions for
Vr,1ðzÞ, set as fixed values v = 1, z0 = 0:5, and z1 = 1 and v
= 1, z0 = −0:5, and z1 = 1.

Figures 3 and 4 show exact traveling wave solutions for
Vr,2ðzÞ, set as fixed values v = 1, z0 = 0:2, and z1 = 1 and v
= 1, z0 = −0:2, and z1 = 1.

Figures 5 and 6 show exact traveling wave solutions for
Vs,1ðzÞ, set as fixed values v = 1, z0 = 1/6, z1 = 1, and α = 1
and v = 1, z0 = −1/6, z1 = 1, and α = 1.

5. Comparison and Conclusion

Biswas et al. [36] introduced ðG′/GÞ-expansion technique to
explore the analytical solutions of nonlinear fractional Liou-
ville equation. The exact analytical solutions attained by this
proposed method show the inner structure of physical phe-
nomena in applied science. The results indicate the different
types of traveling wave solutions of this proposed method.
For this reason, we compare ðG′/GÞ-expansion method with
extended complex technique.
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We have applied the extended complex technique to
attain the exact analytical solutions of the nonlinear frac-
tional Liouville equation. The 3D graphs are represented by
adjusting the values of arbitrary parameters, and these graphs
have demonstrated the different physical structures such as
Figures 1 and 2 represent multisolitary traveling wave solu-
tions, Figures 3 and 4 represent soliton type traveling wave
solutions, and Figures 5 and 6 show solitary traveling wave
solutions. Figures 1–6 depict that traveling wave solutions
are attained for smaller values of z0, whereas other parame-
ters are fixed. The extended complex method has been solved
by means of maple packages. The proposed technique is an
effective analytical approach in comparison with other ana-
lytical techniques via tanh method and first integral method
[23, 24] because it gives different new traveling wave solu-
tions which have been shown in terms of rational, periodic,
and elliptic function solutions. The results that are attained
by the proposed method play a significant task to show the
deep mechanism of physical phenomena and give tedious
solutions of higher degree NFPDEs.

By extended complex technique, we could find meromor-
phic solutions of numerous DEs which do not satisfy Briot-
Bouquet equation. Therefore, in the future, this proposed
approach plays an important task in mathematical physics.
The intermediate forms of the solutions are applied to
explore meromorphic solutions VðzÞ for the DEs with a pole
at z = 0. After that solve meromorphic solutions for DEs with
an arbitrary pole.
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