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In the current manuscript, the notion of a cone b2-metric space over Banach’s algebra with parameter b≻e is introduced.
Furthermore, using α-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings,
which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial
example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of
integral equations.

1. Introduction and Preliminaries

There are many generalizations in the literature about the
concept of metric spaces like b-metric spaces [1], 2-metric
spaces [2], Nb-metric spaces [3], and weak partial b-metric
spaces [4]. Gähler incorporated the notion of a 2-metric
space in [2]. Recall that a 2-metric is not a continuous func-
tion of its variables, whereas a standard metric is. This led
Dhage to implement the D-metric notion in [5]. In [6, 7]
Mustafa and Sims implemented the G-metric notion for
overcoming D-metric flaws. Following that, several fixed-
point theorems were proven on G-metric spaces (see [8]).
The authors in [9] found that fixed-point theorems in G
-metric spaces can potentially be deduced from metric or
quasimetric spaces in a variety of cases. Different researchers
have additionally indicated that the fixed-point results about
cone metric spaces can be acquired in a few cases by dimin-
ishing them to their standard metric partners; see for
instance [10–12]. It is worth noting that a 2-metric space
was not considered to be topologically equivalent to an ordi-
nary metric in the generalizations described above.

Bakhtin [1] analyzed the phenomenon of a b-metric
space. After this theory, Czerwik [13] demonstrated the
contraction mapping method in b-metric spaces which
generalized the renowned Banach contraction principle in b

-metric spaces.
Replacing the set of real numbers by an ordered Banach

space, Huang and Zhang [14] generalized the concept of
metric spaces and defined the cone metric space, where they
studied certain fixed-point results for contractive mapping in
the context of cone metric space. Later, Mustafa et al. [15] set
the space structure b2-metric as a generalization of b-metric
and 2-metric spaces. They illustrated some fixed-point theo-
rems in a partially ordered b2-metric space under different
contractive conditions and provided some smart examples
and an application to integral equations for their main
outcomes.

Recently, the equivalence of cone metric space and metric
space has become an extremely fascinating topic after the
work of several researchers discovered that the fixed-point
results in a cone metric space are special cases of metric
spaces in some cases. They found that ðX, ∂Þ is equivalent
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to any cone metric if the real-valued function ∂∗ is replaced
by a nonlinear scalariztion function ξe or by a Minkowski
functional qe. To address these shortcomings, Liu and Xu
[16] presented the definition of cone metric space over
Banach’s algebra.

Fernandez et al.[17] presented the concept of cone b2
-metric spaces over Banach’s algebra with coefficient b ≥ 1
as an extension of b2-metric spaces and cone metric spaces
over Banach’s algebras. They also presented many fixed-
point results under different contractive conditions in the
said structure. As an application, they discussed the existence
of solutions to the integral equation.

On the other hand, Hardy and Rogers [18] introduced a
new concept of mapping called the Hardy-Rogers contrac-
tion which generalize the Banach contraction principle and
Reich’s [19] theorem in the setting of metric spaces. Samet
et al. [20] initiated the α-admissibility of mappings and gave
a result of α‐ψ-contractive mapping which generalized the
Banach contraction principle. After that, many researchers
worked on the Hardy-Rogers contraction and α-admissibil-
ity of mapping in different settings; for examples, see [21–
27] and the references therein.

Motivated by the work done in [17, 18, 20] we study some
results for the generalized α-admissible Hardy-Roger con-
tractions in cone b2-metric spaces over Banach’s algebras.
We note that some well-known results in the literature can
be deduced by using the presented work.

In the sequel, we need the following definitions and
results from the existing literature.

Definition 1. (see [28]). Let B be a real Banach algebra, and
the multiplication operation is defined according to the
following properties (for all s,m, z ∈B and λ ∈ℝ):

(a1) ðsmÞz = sðmzÞ;
(a2) sðm + zÞ = sm + sz and ðs +mÞz = sz +mz;
(a3) λðsmÞ = ðλsÞm = sðλmÞ;
(a4) ksmk ≤ kskkmk.
We will presume in the course of this article that B is a

real Banach algebra, unless otherwise specified. We call e
the unit of B, if there is s ∈B, such that es = se = s. In this
case, we call B a unital. It is said that an element s ∈B is
invertible if an inverse element m ∈B occurs, such that sm
=ms = e. In such case, the inverse of s is unique and is
denoted by s−1. In the sequel, we need the following
propositions.

Proposition 2. (see [28]). Let e be the unit element of the
Banach algebra B and s ∈B be arbitrary. If the spectral
radius rðsÞ < 1, that is

r sð Þ = lim
n→∞

snk k1/n = inf snk k1/n < 1, ð1Þ

then, e − s is invertible. In fact

e − sð Þ−1 = 〠
∞

k=1
sk: ð2Þ

Remark 3. From [28] we see that, for all s in the Banach
algebra B with unit e, we have rðsÞ ≤ ksk.

Remark 4. (see [29]). In Proposition 2, if we replace “rðsÞ < 1”
by ksk ≤ 1, then the conclusion remains true.

Remark 5. (see [29]). If rðsÞ < 1, then ksnk⟶ 0 as
ðn⟶∞Þ.

Definition 6. Let θ be the zero element of the unital Banach
algebra B and CB ≠∅. Then, CB ⊂B is a cone in B if

(b1) e ∈CB;
(b2) CB +CB ⊂CB;
(b3) λCB ⊂CB for all λ ≥ 0;
(b4) CB ·CB ⊂CB;
(b5) CB ∩ ð−CBÞ = fθg.
Define a partial order relation ⪯ inB w.r.t. CB by s⪯m if

and only if m − s ∈CB and also s ≺m if s⪯m but s ≠m

while s⪻m stands for m − s ∈ int CB, where int CB is the
interior of CB. CB is solid if int CB ≠∅.

If there is M > 0 such that for all s,m ∈CB, we have

θ ≤ s ≤m implies sk k ≤M mk k, ð3Þ

then, CB is normal. IfMis the least and positive among those
cited above, then it is a normal constant of CB [14].

Onward, we assume that CB is a cone in B with int CB

≠∅, and ⪯ is a partial order with respect to the cone CB.

Definition 7. (see [16–14]). Let X ≠∅ and the mapping ∂
: X ×X⟶B be

(c1) ∂ðs,mÞ ⪰ θ for all s,m ∈X, and ∂ðs,mÞ = θ if and
only if s =m;

(c2) ∂ðs,mÞ = ∂ðm, sÞ for all s,m ∈X;
(c3) ∂ðs, zÞ⪯∂ðs,mÞ + ∂ðm, zÞ for all s,m, z ∈X.
Then ∂ is a cone metric and ðX, ∂Þ is a cone metric space

over the Banach algebra B.

Definition 8. (see [13]). LetX ≠∅ and b ≥ 1 be a real number.
Then, the mapping ∂ : X ×X⟶ℝ+ is a b -metric if, for all
s,m, z ∈X, the following holds:

(d1) ∂ðs,mÞ = 0 if and only if s =m;
(d2) ∂ðs,mÞ = ∂ðm, sÞ;
(d3) ∂ðs, zÞ ≤ b½∂ðs,mÞ + ∂ðm, zÞ�.
Here, the pair ðX, ∂Þ is a b-metric space.
The cone b-metric space over a Banach algebra with con-

stant b ≥ 1 is introduced in [30]. Mitrovic and Hussain in
[26] introduced the cone b-metric space over a Banach alge-
bra with constant b ≥ e.

Definition 9. (see [26]). LetX ≠∅. A function ∂ : X ×X→B

is a cone b -metric if
(e1) θ⪯∂ðs,mÞ for all s,m ∈X, and ∂ðs,mÞ = θ if and

only if s =m;
(e2) ∂ðs,mÞ = ∂ðm, sÞ for all s,m ∈X;
(e3) There exists b ∈CB, b ⪰ e such that ∂ðs, zÞ⪯b½∂ðs,

mÞ + ∂ðm, zÞ� for all s,m, z ∈X.
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Here, the pair ðX, ∂Þ is a cone b-metric space over B. If
b = e, then ðX, ∂Þ becomes a cone metric space over B.

Definition 10. (see [2]). Let X ≠∅, ∂ : X ×X ×X⟶ℝ+

satisfy the following conditions:
(f1) For s,m ∈X, there is a point z ∈X with at least two

of s,m, z which are not equal, then ∂ðs,m, zÞ ≠ 0;
(f2) ∂ðs,m, zÞ = 0 if at least two of s,m, z are equal;
(f3) For all s,m, z ∈X, ∂ðs,m, zÞ = ∂ðPðs,m, zÞÞ where

Pðs,m, zÞ stands for all permutations of s,m, z;
(f4) For all s,m, z, t ∈X, ∂ðs,m, zÞ ≤ ∂ðs,m, tÞ + ∂ðs, z

, tÞ + ∂ðm, z, tÞ:
Then, the function ∂ is a 2-metric and ðX, ∂Þ is 2-metric

space.

Definition 11. (see [17]). Let X ≠∅ and b ≥ 1 be a real num-
ber. Let ∂ : X ×X ×X⟶B satisfy the following:

(g1) For s,m ∈X, there is a point z ∈X with at least two
of s,m, z which are not equal, then ∂ðs,m, zÞ ≠ θ;

(g2) ∂ðs,m, zÞ = θ if at least two of s,m, z are equal;
(g3) For all s,m, z ∈X, ∂ðs,m, zÞ = ∂ðPðs,m, zÞÞ where

Pðs,m, zÞ stands for all permutations of s,m, z;
(g4) For all s,m, z, t ∈X, ∂ðs,m, zÞ⪯b½∂ðs,m, tÞ + ∂ðs,

z, tÞ + ∂ðm, z, tÞ�.
Then, the function ∂ is a cone b2-metric and ðX, ∂Þ is a

cone b2-metric space over the Banach algebraB with param-
eter b. It reduces to a cone 2-metric space if we take b = 1
mentioned above. For other details about the cone 2-
metric space over the Banach algebra B, we refer the
reader to [31].

Definition 12. (see [32]). Let fsng be a sequence in B, then
(j1) fsng is a c-sequence, if for each c⪼θ there exists a

natural number N such that sn⪻c for all n >N;
(j2) fsng is a θ-sequence, if sn ⟶ θ as n⟶∞.

Lemma 13. (see [33]). Let B be Banach’s algebra and int
CB ≠∅. Also, let fsng be c-sequences inB, then for arbitrary
k ∈CB, fksng is a c -sequence.

Lemma 14. (see [33]). Let B be Banach’s algebra and int
CB ≠∅. Let fsng and fzng be c -sequences in B. Let η and
ζ ∈CB be arbitrarily given vectors, then fηsn + ζzng is a c

-sequence.

Lemma 15. (see [33]). Let B be Banach’s algebra and int
CB ≠∅. Let fsng ⊂CB such that ksnk⟶ 0 as n⟶∞.
Then, fsng is a c -sequence.

Lemma 16. (see [28]). Let e be the unit element of B, and
s ∈B, then limn→∞ksnk1/n exists and the spectral radius
rðsÞ satisfies

r sð Þ = lim
n→∞

snk k1/n = inf snk k1/n: ð4Þ

If rðsÞ < jλj, then ðλe − sÞ is invertible inB, moreover, we
have

λe − sð Þ−1 = 〠
∞

k=0

sk

λk+1
: ð5Þ

Lemma 17. (see [28]). Let e be the unit element of B, and
s,m ∈B. If s,m commute, then

(k1) rðs +mÞ ≤ rðsÞ + rðmÞ;
(k2) rðsmÞ ≤ rðsÞrðmÞ.

Lemma 18. (see [34]). Let e be the unit element ofB, and
CB ≠∅. Let L ∈B, and sn = Ln. If rðLÞ < 1, then fsng is a
c -sequence.

Lemma 19. (see [34]). Let e be the unit element of B, and s

∈B. Let λ be a complex number, and rðsÞ < jλj, then

r λe − sð Þ−1� �
≤

1
λj j − r sð Þ : ð6Þ

Lemma 20. (see [35]). Let CB ⊂B be a cone.
(l1) If s,m ∈B, k ∈CB, and s⪯m, then ks⪯km;
(l2) If s, k ∈CB are such that rðkÞ < 1 and s⪯ks, then

s = 0;
(l3) If k ∈CB and rðkÞ < 1, then for any fixed n ∈ℕ, we

have rðknÞ < 1.

Lemma 21. (see [32]). Let CB ≠∅ and CB ⊂B.
(m1) Let k ∈CB. Then fkng is a θ-sequence if and only if

rðkÞ < 1;
(m2) Every θ-sequence in B is a c-sequence;
(m3) CB is normal if and only if each c-sequence in CB is

a θ-sequence.

Lemma 22. (see [36]). Let B be a Banach algebra and int
CB ≠∅. Then the following are always true:

(n1) If s,m, z ∈B and s⪯m⪻z, then s⪻c;
(n2) If s ∈CB and s⪻c for each c⪼θ, then s = θ.

Definition 23. (see [37]). Let a cone b2 -metric space be ðX, ∂Þ
over the Banach algebraB with parameter b, ðb ⪰ eÞ, CB be a
solid cone, α : X ×X ×X⟶CB, and d : X⟶X be two
mappings. If for any sequence fsng ∈X, with αðsn, sn+1, zÞ
≥ e for each n ∈ℕ and sn ⟶ s as n⟶∞, it follows that
αðsn, s, zÞ ≥ e for all n ∈ℕ and for all z ∈X; then, we say that
ðX, ∂Þ is α -regular.

2. Results and Discussion

We introduced here the notion of cone b2-metric space over
Banach’s algebra with parameter b ≥ e.

Definition 24. LetX ≠∅ and ∂ : X ×X ×X⟶B satisfy the
following:

(h1) For s,m ∈X, there is a point z ∈X with at least two
of s,m, z which are not equal, then ∂ðs,m, zÞ ≠ θ;

(h2) ∂ðs,m, zÞ = θ if at least two of s,m, z are equal;
(h3) For all s,m, z ∈X, ∂ðs,m, zÞ = ∂ðPðs,m, zÞÞ where

Pðs,m, zÞ stands for all permutations of s,m, z;
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(h4) For all s,m, z, t ∈X, there exists b ∈CB, b ≥ e such
that ∂ðs,m, zÞ⪯b½∂ðs,m, tÞ + ∂ðs, z, tÞ + ∂ðm, z, tÞ�.

Then, the function ∂ is a cone b2-metric and ðX, ∂Þ is a
cone b2-metric space over Banach’s algebra with parameter
b. It is reduced to a cone 2-metric space if we take b = emen-
tioned above.

Remark 25. Note that every cone 2-metric space is a cone b2
-metric space with parameter b = e over Banach’s algebra.
But the converse is not true.

Example 26. Let B =ℝ2. For each ðs1, s2Þ ∈B, kðs1, s2Þk
= js1j + js2j. The multiplication is defined by sm = ðs1, s2Þ
ðm1,m2Þ = ðs1m1, s1m2 + s2m1Þ. Then B is a Banach alge-
bra with unit e = ð1, 0Þ. Let CB = fðs1, s2Þ ∈ℝ2 ∣ s1, s2 ≥ 0g.
Then CB is a cone in B.

Let X = fðk, 0Þ ∈ℝ2 ∣ k ≥ 0g ∪ fð0, 2Þg ⊂ℝ2. Define ∂
: X ×X ×X⟶B as follows:

∂ S,M,Zð Þ =
0, 0ð Þ, if at least two of S,M,Z are equal,
∂ P S,M,Zð Þð Þ, P denotes permutations,
Δ, Δð Þ, otherwise,

8>><
>>:

ð7Þ

where Δ = square of the area of triangleS,M,Z. We have

∂ s, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ⪯∂ s, 0ð Þ, m, 0ð Þ, z, 0ð Þð Þ
+ ∂ s, 0ð Þ, z, 0ð Þ, 0, 2ð Þð Þ
+ ∂ z, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ:

ð8Þ

That is, ðs −mÞ2⪯ðs − zÞ2 + ðz −mÞ2, which shows that
∂ is not a cone 2-metric, because ð−9/2,−9/2Þ∈CB for s,m,
z ≥ 0 with s = 5, m = 0, and z = 1/2. But the parameter b =
ðp, 0Þ ⪰ e with p ≥ 2 is a cone b2-metric space over the
Banach algebra B.

Example 27. Let B = C1
ℝ½0, 1�. For each fðtÞ ∈B, kfðtÞk =

kfðtÞk∞ + kf′ðtÞk∞. The multiplication is defined point wise.
Then, B is a Banach algebra with unit e = 1 a constant func-
tion. Let CB = ffðtÞ ∈B ∣ fðtÞ ≥ 0, t ∈ ½0, 1�g. Then, CB is a
cone in B.

Let X = fðk, 0Þ ∈ℝ2 ∣ 0 ≤ k ≤ 1g ∪ fð0, 1Þg. Define ∂ : X
×X ×X⟶B as follows:

∂ S,M,Zð Þ =
∂ p S,M,Zð Þð Þ, p denotes permutations,
Δ · f tð Þ, otherwise,

(

ð9Þ

for all S,M,Z ∈X, where Δ = square of the area of triangle
S,M,Z and f : ½0, 1�⟶ℝ is such that fðtÞ = et. We have

∂ s, 0ð Þ, m, 0ð Þ, 0, 1ð Þð Þ · et⪯∂ s, 0ð Þ, m, 0ð Þ, z, 0ð Þð Þ · et
+ ∂ s, 0ð Þ, z, 0ð Þ, 0, 1ð Þð Þ · et
+ ∂ z, 0ð Þ, m, 0ð Þ, 0, 1ð Þð Þ · et:

ð10Þ

That is, ð1/4Þðs −mÞ2 · et⪯ð1/4Þððs − zÞ2 + ðz −mÞ2Þ · et
, which shows that ∂ is not a cone 2-metric, because −ð3/16
Þet ∉CB for 0 ≤ s,m, z ≤ 1 with s = 1, m = 0, and z = 1/2.
But the parameter b ≥ 2 ∈CB is a cone b2-metric space over
the Banach algebra B.

Definition 28. Let a cone b2 -metric space be ðX, ∂Þ over the
Banach algebra B with parameter b, and let fsng be a
sequence in ðX, ∂Þ, then

(i1) fsng converges to s ∈X if for every c⪼θ there exists
N ∈ℕ such that ∂ðsn, s, aÞ⪻c for all n ≥N. We denote it by

lim
n→∞

sn = s, ð11Þ

or

sn ⟶ s n⟶∞ð Þ: ð12Þ

(i2) If for c⪼θ there isN ∈ℕ such ∂ðsn, sm, aÞ⪻c for all
n,m ≥N, then fsng is a Cauchy sequence.

(i3) If every Cauchy sequence is convergent in X, then
ðX, ∂Þ is complete.

Next in the framework of cone b2-metric space over
Banach’s algebra, we introduce the notion of α-admissibility
of mappings [20] and give the consequence of Hardy and
Rogers [18] through α-admissibility in cone b2-metric spaces
over Banach’s algebras.

Definition 29. Let X ≠∅ and CB be a cone in a Banach
algebra B. We say d is α-admissible if d : X⟶X and
α : X ×X ×X⟶CB, such that

s,m ∈X,
α s,m, zð Þ ⪰ e∀z ∈X⟹ α ds, dm, zð Þ ⪰ e∀z ∈X:

ð13Þ

Definition 30. Let d : X⟶X and ðX, ∂Þ is a cone b2-metric
space over the Banach algebra B. We say d is continuous at
point s0 ∈X, if for every sequence sn ∈X we have dsn ⟶
ds0 as n⟶∞, whenever sn ⟶ s0 as n⟶∞. d is con-
tinuous if it is continuous at every point of X.

Definition 31. Let a cone b2 -metric space be ðX, ∂Þ over a
Banach algebraB with parameter b, ðb ≥ eÞ, let CB be a solid
cone, α : X ×X ×X⟶CB, and let d : X⟶X be two
mappings. Then d is the α -admissible Hardy-Rogers con-
traction with vectors Ak ∈CB, k ∈ f1,⋯, 5g such that ∑5

k=1r
ðAkÞ < 1: If
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α s,m, zð Þ ⪰ e∀z ∈X⟹ α ds, dm, zð Þ ⪰ e∀z ∈X,

α s,m, zð Þ∂ ds, dm, zð Þ⪯A1∂ s,m, zð Þ +A2∂ s, ds, zð Þ
+A3∂ m, dm, zð Þ +A4∂ s, dm, zð Þ
+A5∂ m, ds, zð Þ,

ð14Þ

for all s,m, z ∈X with αðs,m, zÞ ⪰ e.

Next, we ensure the existence of a fixed point for a con-
tinuous generalized α-admissible Hardy-Rogers contraction
mapping in the context of a cone b2-metric space over
Banach’s algebra.

Theorem 32. Let a complete cone b2-metric space be ðX, ∂Þ
over the Banach algebra B with parameter b, ðb ⪰ eÞ, and
int CB ≠∅. Let fdig∞i=1 be a family of self-maps from X to
itself and vectors Ak ∈CB, k ∈ f1,⋯, 5g such that

α s,m, zð Þ∂ di sð Þ, dj mð Þ, z� �
⪯A1∂ s,m, zð Þ +A2∂ s, di sð Þ, zð Þ

+A3∂ m, dj mð Þ, z� �
+A4∂ s, dj mð Þ, z� �
+A5∂ m, di sð Þ, zð Þ,

ð15Þ

for i, j ≥ 1 and for all s,m, z ∈X together with the following:
o1 There is s0 ∈X such that αðs0, diðs0Þ, zÞ ⪰ e for all

z ∈X;
o2fdig∞i=1 are continuous for all i ≥ 1;
o3A1,A2,A3,A4,A5, b commute with each other;
o4rðA3 +A4bÞ < 1 and rðA1 +A2 +A4bÞ < 1.
Then fdig∞i=1 share a common fixed point in X.

Proof. Choose s0 ∈X in such a way that

α s0, di s0ð Þ, zð Þ ≥ e for all z ∈X: ð16Þ

Now, let s1 = d1ðs0Þ. Then, αðs0, s1, zÞ ⪰ e for all z ∈X.
Again, we put s2 = d2ðs1Þ and using α-admissibility of di,
we have

α d1 s0ð Þ, d2 s1ð Þ, zð Þ = α s1, s2, zð Þ ≥ e: ð17Þ

Putting s3 = d3ðs2Þ and using α-admissibility of di, we
have

α d2 s1ð Þ, d3 s2ð Þ, zð Þ = α s2, s3, zð Þ ⪰ e: ð18Þ

By induction, we construct a sequence fsng in X by
sn+1 = dn+1ðsnÞ for n ∈ℕ such that

α sn, sn+1, zð Þ ≥ e for all z ∈X: ð19Þ

From condition (3) we obtain

α sn−1, sn, zð Þ∂ dn sn−1ð Þ, dn+1 snð Þ, zð Þ⪯A1∂ sn−1, sn, zð Þ
+A2∂ sn−1, dsn sn−1ð Þ, z� �

+A3∂ sn, dn+1 snð Þ, zð Þ
+A4∂ sn−1, dn+1 snð Þ, zð Þ +A5∂ sn, dn sn−1ð Þ, zð Þ,

ð20Þ

that is

α sn−1, sn, zð Þ∂ sn, sn+1, zð Þ⪯A1∂ sn−1, sn, zð Þ
+A2∂ sn−1, sn, zð Þ
+A3∂ sn, sn+1, zð Þ
+A4∂ sn−1, sn+1, zð Þ:

ð21Þ

Since, αðsn−1, sn, zÞ ⪰ e, then we obtain for all z ∈X and
for all n ∈ℕ

∂ sn, sn+1, zð Þ ≤ α sn−1, sn, zð Þ∂ sn, sn+1, zð Þ: ð22Þ

Therefore, (21) becomes

e −A3ð Þ∂ sn, sn+1, zð Þ⪯ A1 +A2ð Þ∂ sn−1, sn, zð Þ
+A4∂ sn−1, sn+1, zð Þ

⪯ A1 +A2ð Þ∂ sn−1, sn, zð Þ
+A4b ∂ sn−1, sn+1, snð Þ½
+ ∂ sn−1, sn, zð Þ + ∂ sn, sn+1, zð Þ�:

ð23Þ

Assume that for any t ∈ℕ, we have

α st−1, st, st−1ð Þ∂ dt st−1ð Þ, dt+1 stð Þ, st−1ð Þ⪯A1∂ st−1, st, st−1ð Þ
+A2∂ st−1, dt st−1ð Þ, st−1ð Þ +A3∂ st, dt+1 stð Þ, st−1ð Þ
+A4∂ st−1, dt+1 stð Þ, st−1ð Þ +A5∂ st, dt st−1ð Þ, st−1ð Þ,

ð24Þ

that is

α st−1, st, st−1ð Þ∂ st, st+1, st−1ð Þ⪯A3∂ st, st+1, st−1ð Þ: ð25Þ

Since, αðst−1, st, zÞ ⪰ e for all z ∈X, particularly, if
z = st−1 for t ∈ℕ, then we have αðst−1, st, zÞ ≥ e, and hence

∂ st, st+1, st−1ð Þ⪯A3∂ st, st+1, st−1ð Þ, ð26Þ

which is possible only when ∂ðst, st+1, st−1Þ = θ by Lemma
20. Therefore, (5) becomes

e −A3 −A4bð Þ∂ sn, sn+1, zð Þ⪯ A1 +A2 +A4bð Þ∂ sn−1, sn, zð Þ:
ð27Þ

Since rðA3 +A4bÞ ≤ rðA3Þ + rðA4ÞrðbÞ < 1, from Propo-
sition 2, we have
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∂ sn+1, sn, zð Þ⪯L∂ sn, sn−1, zð Þ, ð28Þ

where L = ðe −A3 −A4bÞ−1ðA1 +A2 +A4bÞ.
Similarly, ∂ðsn, sn−1, zÞ⪯L∂ðsn−1, sn−2, zÞ, and hence we

have for all z ∈X

∂ sn+1, sn, zð Þ ≤ Ln∂ s1, s0, zð Þ: ð29Þ

In this case, for all l < k, proceeding in a similar way as
above, we have

∂ sk, sk−1, slð Þ⪯Lk−l−1∂ sl+1, sl, slð Þ = θ, ð30Þ

that is

∂ sk, sk−1, slð Þ = θ: ð31Þ

Therefore, for all m < n, we have

∂ sn, sm, zð Þ⪯b ∂ sn, sm, sn−1ð Þ + ∂ sn, sn−1, zð Þ + ∂ sn−1, sm, zð Þ½ �
= b∂ sn, sn−1, smð Þ + b∂ sn, sn−1, zð Þ + b∂ sn−1, sm, zð Þ

⪯b∂ sn, sn−1, zð Þ + b b∂ sn−1, sm, sn−2ð Þ½
+ b∂ sn−1, sn−2, zð Þ + b∂ sn−2, sm, zð Þ�

⪯b∂ sn, sn−1, zð Þ + b2∂ sn−1, sn−2, zð Þ+⋯+bn−m∂ sm+1, sm, zð Þ
⪯ bLn−1 + b2Ln−2 + b3Ln−3+⋯+bn−mLm
� �

∂ s1, s0, zð Þ
= bn−mLm e + b−1L + b−1L

� �2+⋯+ b−1L
� �n−m−1h i

∂ s1, s0, zð Þ

= bn−mLm 〠
∞

k=0
b−1L
� �k" #

∂ s1, s0, zð Þ

= e − b−1L
� �−1

bn−mLm∂ s1, s0, zð Þ:
ð32Þ

From Lemma 17 and Lemma 19, we have

r Lð Þ = r e −A3 −A4bð Þ−1 A1 +A2 +A4bð Þ� �
≤
r A1ð Þ + r A2ð Þ + r A4ð Þr bð Þ
1 − r A3ð Þ − r A4ð Þr bð Þ < 1:

ð33Þ

As rðLÞ < 1, so that in the light of Remark 5, we can get
to know kbn−mLm∂ðs1, s0, zÞk ≤ kbn−mLmkk∂ðs1, s0, zÞk
⟶ 0 as (n⟶∞), by Lemma 15 we have fbn−mLm∂ðs1,
s0, zÞg, a c-sequence in X. At last, by using Lemmas 13
and 22, we get that fsng is a Cauchy sequence in X. In addi-
tion, ðX, ∂Þ is complete; therefore, there exists some s∗ ∈X
such that

lim
n→∞

sn = s∗: ð34Þ

Since di′s are continuous for i = 1, 2, 3,⋯ .
Therefore, for sn ⟶ s∗, we have dn+1ðsnÞ⟶ dn+1ðs∗Þ

as n⟶∞. But as sn+1 = dn+1ðsnÞ⟶ dn+1ðs∗Þ as n⟶
∞, therefore, from the uniqueness of the limit, we get dn+1
ðs∗Þ = s∗, that is, s∗ is a common fixed point of fdig∞i=1.

Remark 33. Our Theorem 32 generalizes Theorem 1 in [38]
from a cone b -metric space over a Banach algebra to a cone
b2 -metric space over a Banach algebra.

Theorem 34. Let a complete cone b2 -metric space be ðX, ∂Þ
over a Banach algebra B with parameter b, ðb ≥ eÞ, and int
CB ≠∅. Let fdg∞i=1 be a family of self-maps from X to itself.
Assume that fmig∞i=1 is a nonnegative integer sequence and
vectors Ak ∈CB, k ∈ f1,⋯, 5g such that

∂ d
mi

i sð Þ, dmj

j mð Þ, z
� �

⪯A1∂ s,m, zð Þ +A2∂ s, dmi

i sð Þ, z� �
+A3∂ m, dmj

j mð Þ, z
� �

+A4∂ s, dmj

j mð Þ, z
� �

+A5∂ m, dmi

i sð Þ, z� �
,

ð35Þ

or

∂ di sð Þ, dj mð Þ, z� �
⪯A1∂ s,m, zð Þ +A2∂ s, di sð Þ, zð Þ

+A3∂ m, dj mð Þ, z� �
+A4∂ s, dj mð Þ, z� �

+A5∂ m, di sð Þ, zð Þ,
ð36Þ

for i, j ≥ 1 and for all s,m, z ∈X together with
p1A1, A2, A3, A4, A5, and b commute with each other;
p2rðA3 +A4bÞ < 1, rðA1 +A2 +A4bÞ < 1, rðbA2Þ < 1,

and rðA1 +A4 +A5Þ < 1.
Then fdig∞i=1 share a unique common fixed point in X.

Proof. On taking α = e in Theorem 32, set Θi = d
mi

i for
i = 1, 2, 3,⋯. Then (35) becomes

∂ Θi sð Þ,Θj mð Þ, z� �
⪯A1∂ s,m, zð Þ +A2∂ s,Θi sð Þ, zð Þ

+A3∂ m,Θj mð Þ, z� �
+A4∂ s,Θj mð Þ, z� �

+A5∂ m,Θi sð Þ, zð Þ:
ð37Þ

Choose s0 ∈X arbitrarily and construct a sequence fsng
by sn+1 =Θsn+1

ðsnÞ for n ∈ℕ, then using the same method
as the proof of Theorem 32, one can easily show that fsng
is a Cauchy sequence, and hence from the completeness of
ðX, ∂Þ, there exists s∗ ∈X such that

lim
n→∞

sn = s∗: ð38Þ

Now, we show that s∗ is a fixed point for a family of self-
maps fΘig∞i=1:
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∂ Θn s∗ð Þ, s∗, zð Þ⪯b ∂ Θn s∗ð Þ, s∗, sm+1ð Þ½
+ ∂ Θn s∗ð Þ, sm+1, zð Þ + ∂ sm+1, s∗, zð Þ�

= b∂ sm+1, s∗, zð Þ + b∂ Θn s∗ð Þ,Θm+1 smð Þ, zð Þ
+ b∂ Θn s∗ð Þ,Θm+1 smð Þ, s∗ð Þ⪯b∂ sm+1, s∗, zð Þ
+ bA1∂ s∗, sm, zð Þ + bA2∂ s∗,Θn s∗ð Þ, zð Þ½
+ bA3∂ sm, sm+1, zð Þ + bA4∂ s∗, sm+1, zð Þ
+ bA5∂ sm,Θn s∗ð Þ, zð Þ� + bA1∂ s∗, sm, s∗ð Þ½
+ bA2∂ s∗,Θn s∗ð Þ, s∗ð Þ + bA3∂ sm, sm+1, s∗ð Þ
+ bA4∂ s∗, sm+1, s∗ð Þ + bA5∂ sm,Θn s∗ð Þ, s∗ð Þ�

⪯b∂ sm+1, s∗, zð Þ + bA1∂ s∗, sm, zð Þ
+ bA2∂ s∗,Θn s∗ð Þ, zð Þ + bA3∂ sm, sm+1, zð Þ
+ bA4∂ s∗, sm+1, zð Þ + bA5∂ sm,Θn s∗ð Þ, zð Þ
+ bA3∂ sm, sm+1, s∗ð Þ + bA5∂ sm,Θn s∗ð Þ, s∗ð Þ:

ð39Þ

That is,

e − bA2ð Þ∂ Θn s∗ð Þ, s∗, zð Þ⪯ b + bA4ð Þ∂ sm+1, s∗, zð Þ
+ bA1∂ s∗, sm, zð Þ
+ bA3∂ sm, sm+1, zð Þ
+ bA5∂ sm,Θn s∗ð Þ, zð Þ
+ bA5∂ sm,Θn s∗ð Þ, s∗ð Þ
+ bA3∂ sm, sm+1, s∗ð Þ:

ð40Þ

Since rðbA2Þ ≤ rðbÞrðA2Þ < 1, so by Proposition 2, we
have ðe − bA2Þ which is invertible:

∂ Θn s∗ð Þ, s∗, zð Þ⪯ e − bA2ð Þ−1 b + bA4ð Þ∂ sm+1, s∗, zð Þ½
+ bA1∂ s∗, sm, zð Þ + bA3∂ sm, sm+1, zð Þ
+ bA5∂ sm,Θn s∗ð Þ, zð Þ + bA5∂ sm,Θn s∗ð Þ, s∗ð Þ
+ bA3∂ sm, sm+1, s∗ð Þ�:

ð41Þ

Keeping n fixed and using Lemma 13 and Lemma 14, the
right-hand side of the above inequality is a c-sequence.

Therefore, for any c ∈X with c⪼θ and using Lemma 22,
we have ∂ðΘnðs∗Þ, s∗, zÞ = θ for all z ∈X. Hence, Θnðs∗Þ =
s∗ for all n = 1, 2, 3,⋯, that is, s∗ is a fixed point of Θn.

Assume that o∗ be another fixed point of Θn, that is,
Θnðo∗Þ = o∗. Then using (37), we have

∂ s∗, o∗, zð Þ = ∂ Θn s∗ð Þ,Θ o∗ð Þ, z
� �

⪯A1∂ s∗, o∗, zð Þ
+A2∂ s∗, s∗, zð Þ +A3∂ o∗, o∗, zð Þ
+A4∂ s∗, o∗, zð Þ +A5∂ o∗, s∗, zð Þ

= A1 +A4 +A5ð Þ∂ s∗, o∗, zð Þ,

ð42Þ

that is, ∂ðs∗, o∗, zÞ = θ for all z ∈X.
Therefore, s∗ = o∗ is the unique fixed point of fΘng∞n=1.
Thus, we have Θnðs∗Þ = dmn

n ðs∗Þ = s∗.
Also, dnðs∗Þ = dnðdmn

n ðs∗ÞÞ = dmn
n ðdnðs∗ÞÞ =Θnðdnðs∗ÞÞ:

That is, dnðs∗Þ =Θnðdnðs∗ÞÞ, which implies that dnðs∗Þ
is also a fixed point ofΘn. But the fixed point ofΘn is unique
which is s∗; therefore, we must accept that dnðs∗Þ = s∗.

For uniqueness, let dnðz∗Þ = z∗. That is, dmn
n ðz∗Þ = z∗ =

Θnðz∗Þ.
Since the fixed point of Θn is unique and is s∗, therefore,

s∗ = z∗.

Remark 35.Our Theorem 34 generalizes Theorem 3.2 in [27]
from a cone 2-metric space over a Banach algebra to a cone
b2 -metric space over Banach’s algebra.

From Theorem 34, we obtain the following corollaries.

Corollary 36. Let a complete cone b2 -metric space be ðX, ∂Þ
over the Banach algebra B with parameter b, ðb ⪰ eÞ, and
int CB ≠∅. Let fdig∞i=1 be a family of self-maps from X to
itself. Assume that fmig∞i=1 is a nonnegative integer sequence
and vectors Ak ∈CB, k ∈ f1, 2, 3g such that

∂ d
mi

i sð Þ, dmj

j mð Þ, z
� �

⪯A1∂ s,m, zð Þ +A2∂ s, dmi

i sð Þ, z� �
+A3∂ m, dmj

j mð Þ, z
� �

,

ð43Þ

or

∂ di sð Þ, dj mð Þ, z� �
⪯A1∂ s,m, zð Þ +A2∂ s, di sð Þ, zð Þ

+A3∂ m, dj mð Þ, z� �
,

ð44Þ

for all positive integers i, j and for all s,m, z ∈X with the fol-
lowing conditions:

(q1) A1, A2, A3, and b commute with each other;
(q2) ∑

3
k=1rðAkÞ + 2rðA2ÞrðbÞ < 1.

Then fdig∞i=1 shares a unique common fixed point in X.

Proof. By taking A4 =A5 = θ in Theorem 34, we can get the
required unique fixed point for fdig∞i=1.

Remark 37.Our Corollary 36 generalizes Theorem 6.1 in [17]
and Theorem 3.1 in [31]. It also extends Corollary 3.1 in [27]
from a cone 2-metric space to a cone b2 -metric space over a
Banach algebra.

Corollary 38. Let a complete cone b2 -metric space be ðX, ∂Þ
over a Banach algebra B with parameter b, ðb ⪰ eÞ, and int
CB ≠∅. Let fdig∞i=1 be a family of self-maps from X to itself.
Assume that fmig∞i=1 is a nonnegative integer sequence and
vectors A1 ∈CB such that

∂ d
mi

i sð Þ, dmj

j mð Þ, z
� �

⪯A1∂ s,m, zð Þ, ð45Þ

or

∂ di sð Þ, dj mð Þ, z� �
⪯A1∂ s,m, zð Þ, ð46Þ
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for all s,m, z ∈X with rðA1Þ < 1. Then fdig∞i=1 shares a
unique common fixed point in X.

Proof. By taking A2 =A3 = θ in Corollary 36, we can get the
required unique fixed point for fdig∞i=1.

Remark 39. Corollary 38 extends Corollary 3.4 in [27] from a
cone 2-metric space to a cone b2 -metric space over a Banach
algebra and Corollary 6.2 in [17].

In the next theorem, the continuity assumption is
relaxed.

Theorem 40. Let a complete cone b2 -metric space be ðX, ∂Þ
over a Banach algebra B with parameter b, ðb ⪰ eÞ, and int
CB ≠∅. Let fdig∞i=1 be a family of self-maps from X to itself
and vectors Ak ∈CB, k ∈ f1,⋯, 5g such that

α s,m, zð Þ∂ di sð Þ, dj mð Þ, z� �
⪯A1∂ s,m, zð Þ +A2∂ s, di sð Þ, zð Þ

+A3∂ m, dj mð Þ, z� �
+A4∂ s, dj mð Þ, z� �
+A5∂ m, di sð Þ, zð Þ,

ð47Þ

for i, j ≥ 1 and for all s,m, z ∈X together with
r1 There is s0 ∈X such that αðs0, diðs0Þ, zÞ ⪰ e for all z

∈X;
r2ðX, ∂Þ is α-regular;
r3A1, A2, A3, A4, A5, and b commute with each other;
r4rðbA3 + b2A4Þ < 1;
Then, fdig∞i=1 shares a common fixed point in X.

Proof. Choose s0 ∈X in such a way that αðs0, diðs0Þ, zÞ ⪰ e

for all z ∈X, and construct a sequence fsng in X by sn+1 =
dn+1ðsnÞ such that αðsn, sn+1, zÞ ⪰ e for all z ∈X and n ∈ℕ
. Then, by using the same method as the proof of Theorem
32, one can get that fxng is a Cauchy sequence in ðX, ∂Þ.
But, as ðX, ∂Þ is complete, there exists s∗ ∈X such that

lim
n→∞

sn = s∗: ð48Þ

Since αðsn, sn+1, zÞ ⪰ e and ðX, ∂Þ is α-regular such that
sn ⟶ s∗ as n⟶∞; therefore, αðsn, s∗, zÞ ⪰ e for all z ∈
X and n ∈ℕ.

Now, we obtain that s∗ is a fixed point of di. Namely, we
have

∂ dn s∗ð Þ, s∗, zð Þ⪯b∂ dn s∗ð Þ, s∗, dn+1 snð Þð Þ
+ b∂ dn s∗ð Þ, dn+1 snð Þ, zð Þ
+ b∂ dn+1 snð Þ, s∗, zð Þ:

ð49Þ

As

∂ dn+1 snð Þ, dn s∗ð Þ, s∗ð Þ⪯α sn, s∗, s∗ð Þ∂ dn+1 snð Þ, dn s∗ð Þ, s∗ð Þ,
∂ dn+1 snð Þ, dn s∗ð Þ, zð Þ⪯α sn, s∗, zð Þ∂ dn+1 snð Þ, dn s∗ð Þ, zð Þ,

ð50Þ

and di′s are the α-admissible Hardy-Rogers contraction;
therefore, (49) becomes

∂ dn s∗ð Þ, s∗, zð Þ

⪯bα sn, s∗, s∗ð Þ∂ dn+1 snð Þ, dn s∗ð Þ, s∗ð Þ
+ bα sn, s∗, zð Þ∂ dn+1 snð Þ, ds x∗ð Þ, zð Þ + b∂ sn+1, s∗, zð Þ

⪯ bA1∂ sn, s∗, s∗ð Þ + bA2∂ sn, sn+1, s∗ð Þ½
+ bA3∂ s∗, dn s∗ð Þ, s∗ð Þ + bA4∂ sn, dn s∗ð Þ, s∗ð Þ
+ bA5∂ s∗, sn+1, s∗ð Þ�

+ bA1∂ sn, s∗, zð Þ + bA5∂ s∗, sn+1, zð Þ½ � + b∂ sn+1, s∗, zð Þ

⪯bA2∂ sn, sn+1, s∗ð Þ + bA4∂ sn, dn s∗ð Þ, s∗ð Þ
+ bA1∂ sn, s∗, zð Þ + bA2∂ sn, sn+1, zð Þ
+ bA3∂ s∗, dn s∗ð Þ, zð Þ + b2A4∂ sn, dn s∗ð Þ, s∗ð Þ
+ b2A4∂ sn, s∗zð Þ + b2A4∂ s∗, dn s∗ð Þ, zð Þ
+ bA5∂ s∗, sn+1, zð Þ + b∂ sn+1, s∗, zð Þ:

ð51Þ

Because limn→∞∂ðsn, s∗, zÞ = θ and limn→∞∂ðsn+1, sn,
zÞ = θ for all z ∈X, we obtain

∂ dn s∗ð Þ, s∗, zð Þ ≤ bA3 + b2A4
� �

∂ dn s∗ð Þ, s∗, zð Þ: ð52Þ

Because, rðbA3 + b2A4Þ < 1, from Lemma 20, we claim
that ∂ðdnðs∗Þ, s∗, zÞ = θ, that is, dnðs∗Þ = s∗.

Example 41. Consider Example 26 which is what we claim a
complete cone b2 -metric space over the Banach algebra
B =ℝ2 with parameter b = ð2, 0Þ ≥ e. Define Γi : X⟶X by

di s, 0ð Þ =
s

i + 4 , 0
� �

, if s ∈ 0, 1½ �,

0, 0ð Þ, otherwise,

8><
>:

di 0, 2ð Þ = 0, 0ð Þ for all s, 0ð Þ ∈X,
 i ∈ℕ:

ð53Þ

Also, define α : X ×X ×X⟶CB by

α s, 0ð Þ, m, 0ð Þ, z1, z2ð Þð Þ =
1, 0ð Þ, if s,m ∈ 0, 1½ �,
0, 0ð Þ, otherwise,

(

ð54Þ

for all z = ða1, a2Þ ∈X.
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Choose A1 = ðð1/2Þ, 0Þ, A2 =A3 = ðð1/4Þ, 0Þ, and A4 =
A5 = ðð1/10Þ, 0Þ. Clearly rðA3 + bA4Þ = ð9/20Þ < 1 and rðA1
+A2 + bA4Þ = ð19/20Þ < 1.

Considering the contractive condition

α S,M,Zð Þd di Sð Þ, dj Mð Þ,Z� �
⪯A1d S,M,Zð Þ +A2d S, di Sð Þ,Zð Þ +A3d M, dj Mð Þ,Z� �

+A4d S, dj Mð Þ,Z� �
+A5d M, di Sð Þ,Zð Þ,

ð55Þ

with A1 = ðð1/2Þ, 0Þ, A2 =A3 = ðð1/4Þ, 0Þ, and A4 =A5 =
ðð1/10Þ, 0Þ, we have the following eight cases:

(i) S ∈A, M ∈A, and Z ∈A

(ii) S ∈B, M ∈B, and Z ∈A

(iii) S ∈A, M ∈B, and Z ∈A

(iv) S ∈B, M ∈A, and Z ∈A

(v) S ∈B, M ∈B, and Z ∈B

(vi) S ∈A, M ∈A, and Z ∈B

(vii) S ∈A, M ∈B, and Z ∈B

(viii) S ∈B, M ∈A, and Z ∈B

All the cases are trivial, except case (vi), in which case we
have

α s, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ∂ di s, 0ð Þ, dj m, 0ð Þ, 0, 2ð Þ� �

⪯
1
2 , 0
� �

∂ s, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ

+ 1
4 , 0
� �

∂ s, 0ð Þ, s

i + 4 , 0
� �

, 0, 2ð Þ
� �

+ ∂ m, 0ð Þ, m

j + 4 , 0
� �

, 0, 2ð Þ
� �� 	

+ 1
10 , 0
� �

∂ s, 0ð Þ, m

j + 4 , 0
� �

, 0, 2ð Þ
� �

+ ∂ m, 0ð Þ, s

i + 4 , 0
� �

, 0, 2ð Þ
� �� 	

:

ð56Þ

Since

s

i + 4 −
m

j + 4

� �2
⪯
1
2 s −mð Þ2 + 1

4
3s + is
i + 4

� �2
+ 3m + jm

j + 4

� �2
" #

+ 1
10

js + 4s −m

j + 4

� �2
+ im + 4m − s

i + 4

� �2
" #

,

ð57Þ

is always true for all i, j ∈ℕ and s,m ≥ 0, case (vi) is also
satisfied.

Themappings di′s are α-admissible. In fact, letS,M ∈X
such that αððs, 0Þ, ðm, 0Þ,ZÞ ⪰ e for all Z ∈X. By definition
of α, it implies that s,m ∈ ½0, 1�. Therefore, for i, j ∈ℕ and
s,m ∈ ½0, 1�, we have diðs, 0Þ = s/i + 4, djðm, 0Þ =m/j + 4
∈ ½0, 1�, and so that αðdiðs, 0Þ, djðm, 0Þ,ZÞ ⪰ e for all Z ∈X.

Further, there is s0 ∈X such that αðs0, diðs0Þ,ZÞ ⪰ e for
all Z ∈X. Indeed, for s0 = ð1, 0Þ, we have

α 1, 0ð Þ, di 1, 0ð Þ, z1, z2ð Þð Þ = α 1, 0ð Þ, 1
i + 4 , 0
� �

, z1, z2ð Þ
� �

⪰ e for all z1, z2ð Þ ∈X:

ð58Þ

Thus, all the assumptions of Theorem 32 are fulfilled, and
we conclude the existence of at least one fixed point for each
di′s. Indeed, ð0, 0Þ is the common fixed point of the family of
mapping fdig∞i=1.

Next, we use the following property [20] to guarantee the
uniqueness of the fixed point of di′s.

(H). Denote FixðdiÞ to be the set of all fixed points of
fdig∞i=1. Assume for all s∗, o∗ ∈ FixðdiÞ, there exists m ∈X
such that αðs∗,m, zÞ ≥ e and αðo∗,m, zÞ ⪰ e for all z ∈X.

Theorem 42. To add condition (H) in Theorem 32 (resp., The-
orem 40) we obtain uniqueness of the fixed point of each
fΓig∞i=1.

Proof. Using related claims to those in the proof of Theorem
32 (resp., Theorem 40), we achieve fixed-point existence. Let
(H) be satisfied and s∗, o∗ ∈ Fixðdi′sÞ and s∗ ≠ o∗. By condi-
tion (H), there exists m ∈X such that

α s∗,m, zð Þ ⪰ e,
α o∗,m, zð Þ ⪰ e, ð59Þ

 for all z ∈X: ð60Þ
Since di′s are α-admissible mappings and s∗, o∗ ∈ Fix

ðdi′sÞ. From (59), we have

α s∗, dni mð Þ, zð Þ ⪰ e,
α o∗, dni mð Þ, zð Þ ⪰ e,

 for all z ∈X and i, n ∈ℕ:

ð61Þ

As, αðs∗, dni ðmÞ, zÞ ⪰ e for all z ∈X, therefore, we have

∂ s∗, dni mð Þ, zð Þ⪯α s∗,m, zð Þ∂ di s
∗ð Þ, di dn−1i m

� �
, z

� �
⪯A1∂ s∗, dn−1i mð Þ, z� �

+A2∂ s∗, di s∗ð Þ, zð Þ
+A3∂ dn−1i mð Þ, di dn−1i m

� �
, z

� �
+A4∂ s∗, di dn−1i m

� �
, z

� �
+A5∂ dn−1i mð Þ, di s∗ð Þ, z� �

:

ð62Þ

That is, we have

∂ s∗, dni mð Þ, zð Þ⪯A1∂ s∗, dn−1i mð Þ, z� �
+A3∂ dn−1i mð Þ, dni mð Þ, a� �

+A4∂ s∗, dni mð Þ, zð Þ +A5∂ dn−1i mð Þ, s∗, z� �
:

ð63Þ
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Hence, we have

e −A4ð Þ∂ s∗, dni mð Þ, zð Þ⪯ A1 +A5ð Þ∂ dn−1i mð Þ, s∗, z� �
+A3∂ dn−1i mð Þ, dni mð Þ, z� �

:
ð64Þ

Similarly, we have

∂ s∗, dni mð Þ, zð Þ ≤A1∂ dn−1i mð Þ, s∗, z� �
+A2∂ dn−1i mð Þ, dni mð Þ, z� �

+A4∂ dn−1i mð Þ, s∗, z� �
+A5∂ s∗, dni mð Þ, zð Þ:

ð65Þ

That is, we have

e −A5ð Þ∂ s∗, dni mð Þ, zð Þ⪯ A1 +A4ð Þ∂ dn−1i mð Þ, s∗, z� �
+A2∂ dn−1i mð Þ, dni mð Þ, z� �

:

ð66Þ

Adding up (64) and (66), we have

2e −A4 −A5ð Þ∂ s∗, ∂ni mð Þ, zð Þ⪯ 2A1 +A4 +A5ð Þ∂ ∂n−1i mð Þ, s∗, z� �
+ A2 +A3ð Þ∂ ∂n−1i mð Þ, dni mð Þ, z� �

:

ð67Þ

Since, rðA4 +A5Þ < 1, therefore, we have

∂ s∗, dni mð Þ, zð Þ⪯ 2e −A4 −A5ð Þ−1 2A1 +A4 +A5ð Þ∂ dn−1i mð Þ, s∗, z� �
+ 2e −A4 −A5ð Þ−1 A2 +A3ð Þ∂ dn−1i mð Þ, dni mð Þ, z� �

:

ð68Þ

That is, we have

∂ s∗, dni mð Þ, zð Þ⪯L1∂ dn−1i mð Þ, s∗, z� �
+L2∂ dn−1i mð Þ, dni mð Þ, z� �

, ð69Þ

where L1 = ð2e −A4 −A5Þ−1ð2A1 +A4 +A5Þ and L2 =
ð2e −A4 −A5Þ−1ðA2 +A3Þ. Hence, we have

∂ s∗, dni mð Þ, zð Þ⪯L1∂ dn−1i mð Þ, s∗, z� �
+L2∂ dn−1i mð Þ, dni mð Þ, z� �

⪯L1
2∂ dn−2i mð Þ, s∗, z� �

+ L2
2∂ dn−2i mð Þ, dn−1i mð Þ, z� �

,

⋮⋮

⪯L1
n∂ m, s∗, zð Þ + L2

n∂ m, di mð Þ, zð Þ: ð70Þ

Since, rðL1
nÞ < 1 and rðL2

nÞ < 1, by Remark 5, it follows
that kL1

nk⟶ 0ðn⟶∞Þ and kL2
nk⟶ 0ðn→∞Þ, and

so

L1
n∂ m, s∗, zð Þ +L2

n∂ m, di mð Þ, zð Þk k
≤ L1

n∂ m, s∗, zð Þk k + L2
n∂ m, di mð Þ, zð Þk k

≤ L1
nk k ∂ m, s∗, zð Þk k + L2

nk k ∂ m, di mð Þ, zð Þk k
⟶ 0 n→∞ð Þ:

ð71Þ

Therefore, based on Lemma 15, we conclude that for any
c ∈B with c⪼θ, there exists N ∈ℕ such that

∂ s∗, dni mð Þ, zð Þ⪯L1∂ dn−1i mð Þ, s∗, z� �
+L2∂ dn−1i mð Þ, dni mð Þ, z� �

⪻c for all i ∈ℕ and z ∈X:

ð72Þ

Hence, dni ðmÞ⟶ s∗ðn⟶∞Þ. Similarly, we get that
dni ðmÞ⟶ o∗ðn⟶∞Þ. Then, by the uniqueness of the limit,
we have s∗ = o∗.

3. Applications

We give here a couple of auxiliary facts that will be used in
our further considerations.

Let B with norm k·kB be a real infinite-dimensional
Banach’s algebra. Let J = ½0,I� and denote C = CðJ,BÞ
the space consisting of all continuous functions defined on
interval J with values in the Banach algebra B =ℝ∞ (the
collection of all real sequences).

The space C will be equipped with kskC =max fksðaÞkB
: a ∈ Jg.

The purpose of this section is to establish and demon-
strate a result on the existence of solutions of a class of an
infinite system of integral equations of the form (74).

Let X = C, and ∂ : X ×X ×X⟶B be defined by

∂ si að Þ,mi að Þ, zi að Þð Þ = min si að Þ −mi að Þj j, mi að Þjf½
− zi að Þj, si að Þ − zi að Þj jg�p,

ð73Þ

where i = 1, 2, 3,⋯ and for all siðaÞ, miðaÞ, and ziðaÞ ∈X.
Then ðX, ∂Þ is a complete cone b2-metric space over
Banach’s algebra. Consider the infinite system of integral
equations

si að Þ = gi að Þ +
ðI
0
Hi t,wð Þfi w, s1 wð Þ, s2 wð Þ,⋯ð Þdw,

ð74Þ

where i = 1, 2, 3,⋯ and let di : X⟶X be defined by

di si að Þð Þ = gi að Þ +
ðI
0
Hi a,wð Þfi w, s1 wð Þ, s2 wð Þ,⋯ð Þds for all i = 1, 2, 3,⋯:

ð75Þ

We assume that d

(1) gi ~ J⟶ℝ are continuous

(2) Hi ~ J ×ℝ⟶ ½0,+∞Þ are continuous and ÐI0 Hiðt
,wÞ ≤ 1

(3) fi ~ J ×ℝ∞ ⟶ℝ are continuous such that

fi w, s1 wð Þ, s2 wð Þ,⋯ð Þ − fi w,m1 wð Þ,m2 wð Þ,⋯ð Þj j
≤ r1/p min si wð Þ −mi wð Þj j, mi wð Þ − zi wð Þj j, si wð Þ − zi wð Þj jf g½ �,

ð76Þ

for all ziðwÞ ∈X, where 0 ≤ r < 1.
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Theorem 43. Under the assumptions (1)–(3), the infinite
system of integral equation (74) has a solution in C.

Proof. Take B =ℝ∞ with norm kok = kðo1, o2,⋯Þk =∑∞
i=1j

oij and multiplication defined by

oq = o1, o2,⋯ð Þ q1, q2,⋯ð Þð Þ = o1q1, o2q2,⋯ð Þ: ð77Þ

Let CB = fo = ðo1, o2,⋯Þ ∈B : o1, o2,⋯≥ 0g. It is clear
thatCB is a normal cone, andB is a Banach algebra with unit
e = ð1, 0,⋯Þ.

Consider the family of mapping di : X⟶X defined by
(75). Let siðaÞ, miðaÞ, and ziðaÞ ∈X.

From (15), we deduce that

∂ di si að Þð Þ, di mi að Þð Þ, zi að Þð Þ
= max

a∈ 0,I½ �
min di si að Þð Þ − di mi að Þð Þj j, di mi að Þð Þjf½

− zi að Þj, di si að Þð Þ − zi að Þj jg�p

⪯ max
a∈ 0,I½ �

di si að Þð Þ − di mi að Þð Þj j
� �p

= max
a∈ 0,I½ �

ðI
0
Hi a,wð Þfi w, s1 wð Þ, s2 wð Þ,⋯ð Þdw






�

−
ðI
0
Hi a,wð Þfi w,m1 wð Þ,m2 wð Þ,⋯ð Þdw






�p

= max
a∈ 0,I½ �

ðI
0
Hi a,wð Þ fi w, s1 wð Þ, s2 wð Þ,⋯ð Þ½






�

− fi w,m1 sð Þ,m2 wð Þ,⋯ð Þ�dw





�p

⪯ max
a∈ 0,I½ �

ðI
0
Hi a,wð Þ fi w, s1 wð Þ, s2 wð Þ,⋯ð Þj

�

− fi w,m1 wð Þ,m2 wð Þ,⋯ð Þjdw
�p

⪯ max
a∈ 0,I½ �

ðI
0
Hi a,wð Þr1/p min si wð Þ −mi wð Þj j, mi wð Þjf½

�

− zi wð Þj, si wð Þ − zi wð Þj jg�dw
�p

⪯

ðI
0

max
a∈ 0,I½ �

Hi a,wð Þr1/p
� �

max
a∈ 0,T½ �

min si wð Þ −mi wð Þj j, mi wð Þjf½
��

− zi wð Þj, si wð Þ − zi wð Þj jg�p
�1/p

dw
�p

⪯

ðI
0

max
a∈ 0,I½ �

Hi a,wð Þr1/p
� �

∂ si að Þ,mi að Þ, zi að Þð Þ½ �1/p
� �p

= r∂ si að Þ,mi að Þ, zi að Þð Þ sup
a∈ 0,I½ �

ðI
0
Hi a,wð Þ

 !p

⪯r∂ si að Þ,mi að Þ, zi að Þð Þ: ð78Þ

Therefore, we have

∂ di si að Þð Þ, di mi að Þð Þ, zi að Þð Þ⪯r∂ si að Þ,mi að Þ, zi að Þð Þ:
ð79Þ

Now, all the hypotheses of Corollary 38 are satisfied, and
the family of mapping fdig∞i=0 has a unique fixed point in X,
which means that the infinite system of integral equations
(74) has a solution.
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