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A Riemann-Hilbert approach is developed to the multicomponent Kaup-Newell equation. The formula is presented of N-soliton
solutions through an identity jump matrix related to the inverse scattering problems with reflectionless potential.

1. Introduction

Many nonlinear partial differential equations especially soli-
ton equations have exact solutions [1–3]. There are a lot of
methods to solve soliton equations such as the Hirota bilinear
method [2–6], Wronskian technique (Casoratian technique)
[5–9], and Darboux transformation [10, 11]. The inverse
scattering transformation (IST) is one of the most powerful
tools and closely connected with those methods mentioned
above [1, 3]. It is also called nonlinear Fourier transform
for its procedure to solve the nonlinear equations is similar
to the linear Fourier transform. One advantage of the IST is
that it can be applied to the whole soliton hierarchies [3].
Recently, researches show that the IST can solve not only
classic soliton hierarchies but also soliton equations with
self-consistent sources [12], nonisospectral soliton hierar-
chies [13], hierarchies mixed with isospectral and nonisos-
pectral ones [14], and nonlocal soliton hierarchies [15].
Furthermore, it can generate both soliton and general matrix
exponent solutions [16, 17].

The Riemann-Hilbert (RH) approach is another effective
method to solve soliton equations. It actually shares a close
relationship with the IST [18–20]. Both of them start from
same matrix spectral problems which possess bounded
eigenfunctions analytically extendable to the upper or lower
half-plane. To get scattering data, we must consider the
asymptotic conditions at infinity on real axis by the IST to
solve soliton equations. In fact, the considered conditions

are used as the solutions to the corresponding RH problems.
When the jump matrix is an identity matrix, the RH problem
is equivalent to the IST with reflectionless potentials, and
N-soliton solutions can be generated [21–23]. Recently, Ma
has already used the method to solve multicomponent soli-
ton equations such as multicomponent AKNS integrable
hierarchies and a coupled mKdV equation [24–26].

It is known to us all that the three famous derivative non-
linear Schrödinger equations, the Chen-Lee-Liu (CLL)
equation [17, 27], Kaup-Newell (KN) equation [28], and
Gerdjikov-Ivanov (GI) equation [29, 30], can be reduced
from the Kundu equation by choosing different value of the
arbitrary parameter [31, 32]. Many properties of them have
been researched such as exact solutions [30, 33], conservation
laws [34], multi-Hamilton structure [31], and τ-symmetry
algebra [32, 34].

In this paper, we will present the multicomponent KN
equation with its ðn + 1Þ × ðn + 1Þ matrix Lax pairs. To for-
mulate an RH problem of the equation, we consider a modify
matrix Lax pairs. The formula of generating the N-soliton
solutions to multicomponent KN equation will be obtained
through taking the identify jump matrix.

The paper is organized as follows. In Section 2, we will
introduce the multicomponent isospectral KN equation and
its Lax pairs. In Section 3, we will construct a multicompo-
nent RH problem to the equation introduced in the previous
section. In Section 4, the expression of N-soliton solutions
will be obtained. We conclude the paper in Section 5.
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2. The Multicomponent KN Equation

In this section, we will present the isospectral multicompo-
nent KN equation from a ðn + 1Þ × ðn + 1Þ matrix spectral
problem by the zero-curvature representation. To our
knowledge, there is another powerful method to build soliton
equation hierarchies through Kac-Moody algebra and princi-
pal gradation [35].

Suppose that pj and qj are smooth functions of variables x
and tðj = 1, 2,⋯nÞ, T denotes the transpose of matric, and In
is an n × n identity matrix. Let us consider the following Lax
pairs

−iϕx =Uϕ,U =
α1λ

2 λp

λq α2Inλ
2

 !
= λ2Λ + λP, ð1aÞ
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α1λ

4 −
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pqq
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0BBB@
1CCCA,

ð1bÞ

where α1 and α2 are two real constants; α = α1 − α2, p =
ðp1, p2,⋯,pnÞ, and q = ðq1, q2,⋯,qnÞT are potential functions;
λ is a spectral parameter; and

Λ =
α1 0
0 α2In

 !
, P =

0 p

q 0

 !
: ð2Þ

Obviously, p and q are smooth component functions of
variables t and x. Assume that p, q, and their derivatives of
any order with respect to x vanish rapidly as x⟶∞.

The compatibility condition of (1), i.e., the zero curvature
equation

Ut −Vx + i U , V½ � = 0, ð3Þ

generates the multicomponent KN soliton equation

pT

q

 !
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= 1
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−ipTxx −
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pqqð Þx
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1CCA: ð4Þ

For example, when n = 2, the spectral problem (1a)
becomes

−ibϕx = Ûbϕ , Û =
α1λ

2 λp1 λp2

λq1 α2λ
2 0

λq2 0 α2λ
2

0BB@
1CCA = λ2 bΛ + λP̂,

ð5Þ

where

bΛ =
α1 0 0
0 α2 0
0 0 α2

0BB@
1CCA, P̂ =

0 p1 p2

q1 0 0
q2 0 0

0BB@
1CCA: ð6Þ

Its time evolution is

−ibϕ t = V̂bϕ , V̂ =

V11 V12 V13

V21 α2λ
4 + 1

α
q1p1λ

2 1
α
q1p2λ
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V31
1
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q2p1λ
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q2p2λ

2
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ð7Þ

with

V11 = α1λ
4 −

1
α
< p̂, q̂ > λ2, V12 = p1λ

3 −
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� �
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ð8Þ

The 4-component KN equation is

p1t = −
i
α
p1xx −

2
α2

p1q1 + p2q2ð Þp1½ �x,

p2t = −
i
α
p2xx −

2
α2
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q1t =
i
α
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2
α2
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q2t =
i
α
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2
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p1q1 + p2q2ð Þq2½ �x:

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

3. The RH Problem to the Multicomponent
KN Equation

In this section, we will build the RH problem to the multi-
component KN equation (5). Here, we only focus on the pos-
itive flows. Constructing the RH problem from negative
symmetry flows have already appeared in [36] for the homo-
geneous Am-hierarchy and its ĝlðm + 1,ℂÞ.

Setting

V = λ4Λ +Q, ð10Þ

it is obvious that the trace of Q is zero, where
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−
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ð11Þ
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Thus, the equation (5) has the following Lax pairs

−iϕx = λ2Λϕ + λPϕ,
−iϕt = λ4Λϕ +Qϕ:

(
ð12Þ

Next, we will present the scattering and inverse scattering
methods for the multicomponent KN equation (5) by the RH
approach. The resulting results will lay the groundwork for
N-soliton solutions in the next section. Suppose that all the
potentials rapidly vanish when x⟶ ±∞ or t⟶ ±∞
and satisfy

ð∞
−∞

ð∞
−∞

xj jm tj jn〠
n

j=1
∣pj∣+∣qj ∣
� �

dxdt <∞,m, n ≥ 0: ð13Þ

In the RH approach, we treat ϕ in the spectral problem
(1a) as a fundament matrix. From (12), we note, under (13),
one has the asymptotic behavior: ϕ ~ Eg = eiλ

2Λx+iλ4Λt . This
motivate us to introduce the variable transformation

ψ = ϕe−iλ
2Λx−iλ4Λt , ð14Þ

to have the canonical normalization for the associated RH
problem:

ψ⟶ In+1, when x, t⟶ ±∞, ð15Þ

where In+1 is the ðn + 1Þ × ðn + 1Þ identity matrix. This
way, the spectral problems in (12) equivalently lead to

ψx = iλ2 Λ, ψ½ � + λPψ, ð16aÞ

ψt = iλ4 Λ, ψ½ � +Qψ, ð16bÞ

where P = iP and Q = iQ. Noticing trðPÞ = trðQÞ = 0,
we have

det ψ = 1, ð17Þ

by the Abel’s formula.
Let us now consider the formulation of an associated RH

problem with the variable x. In the scattering problem, we
first introduce the matrix solutions ψ±ðx, λÞ of (16a) with
the asymptotics conditions

ψ± ⟶ In+1, when x⟶ ±∞, ð18Þ

respectively. The subscripts above refer to which end of
the x-axis the boundary conditions are required. Then, by
(17), we have the determinant det ψ± = 1 for all x ∈ℝ. Since
ϕ± = ψ±E are both solutions of (12), they must be linearly
related, and so, we have

ψ−E = ψ+ES λð Þ, λ2 ∈ℝ, ð19Þ

where

E = eiλ
2Λx, S λð Þ =

s1,1 s1,2 ⋯ s1,n+1

s2,1 s2,2 ⋯ s2,n+1

⋮ ⋮ ⋱ ⋮

sn+1,1 sn+1,2 ⋯ sn+1,n+1

0BBBBB@

1CCCCCA, λ2 ∈ℝ,

ð20Þ

is the scattering matrix. Note that det ðSðλÞÞ = 1 since
det ðψ±Þ = 1. Using the method of variation in parameters
as well as the boundary condition (19), we can turn the
x-part of (12) into the following Volterra integral equation
for ψ±:

ψ− λ, xð Þ = In+1+
ðx
−∞

eiλ
2Λ x−yð ÞP yð Þψ− λ, yð Þeiλ2Λ y−xð Þdy,

ð21aÞ

ψ+ λ, xð Þ = In+1 −
ð∞
x
eiλ

2Λ x−yð ÞP yð Þψ+ λ, yð Þeiλ2Λ y−xð Þdy:

ð21bÞ
Thus, ψ± allows analytical continuations off the real axis

λ2 ∈ℝ as long as the integrals on their right hand sides con-
verge. Taking α = α1 − α2, it is direct to see that the integral
equation for the first column ofψ− contains only the exponen-
tial factor e−iαλ

2ðx−yÞ. When λ is in the first or third quadrant,
i.e., Im ðλ2Þ > 0, let λ2 = r + is, s > 0. Then, e−iαλ

2ðx−yÞ =
e−iαrðx−yÞ+αsðx−yÞ due to y < x in the integral decays as α < 0,
and the integral equation for the last n columns ofψ+ contains
only the exponential factor eiαλ

2ðx−yÞ, which due to y > x in the
integral, also decays when λ2 is in the upper half-plane ℂ+.
Thus, these n + 1 columns can be analytically continued to
the first or third quadrants. Similarly, we find that the last n
columns of ψ− and the first column of ψ+ can be analytically
continued to the second and fourth quadrants. Let us express

ψ± = ψ±
1 , ψ±

2 ,⋯,ψ±
n+1

� �
, ð22Þ

where ψ±
k stands for the kth column of ψ±ð1 ≤ k ≤ n + 1Þ.

Then, the matrix solution

P+ = P+ x, λð Þ = ψ−
1 , ψ+

2 ,⋯,ψ+
n+1ð Þ = ψ−H1 + ψ+H2, ð23Þ

is analytic in the first and third quadrants of λ, and the
matrix solution

ψ+
1 , ψ−

2 ,⋯,ψ−
n+1ð Þ = ψ+H1 + ψ−H2, ð24Þ

is analytic in the second and fourth quadrants of λ, where
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H1 = diag ð1, 0,⋯,0Þ and H2 = diag ð0, 1,⋯,1Þ. In addition,
from the Volterra integral equation (21), we know that

P+ x, λð Þ⟶ In+1, whenλ2 ∈ℂ+ ⟶∞,
ψ+
1 , ψ−

2 ,⋯,ψ−
n+1ð Þ⟶ In+1, when λ2 ∈ℂ− ⟶∞:

ð25Þ

Next, we construct the analytic counterpart of P+ in the
second and fourth quadrants of λ. Note that the adjoint
equation of the x-part of (12) and the adjoint equation of
(16) read as

ieϕx = eϕ λ2Λ + λP
� �

,

i~ψx = λ2 ~ψ,Λ½ � − iλ~ψP:
ð26Þ

It is easy to see that the inverse matrices eϕ± = ðϕ±Þ−1 and
~ψ± = ðψ±Þ−1 solve these adjoint equations, respectively. If we
express ~ψ± as follows:

~ψ± = ψ~±,1ψ~±,2⋮ψ~±,n+1Þ,
�

ð27Þ

where ψ~±,k is the kth row of ~ψ±ð1 ≤ k ≤ n + 1Þ. Then, by
similar arguments, we can show that the adjoint matrix
solution

P− = ψ~−,1ψ~+,2⋮ψ~+,n+1Þ =H1~ψ
− +H2~ψ

+ =H1 ψ−ð Þ−1 +H2 ψ+ð Þ−1,
�

ð28Þ

is analytic when λ is in the second or fourth quadrants,
and the other matrix solution

ψ~+,1ψ~−,2⋮ψ~−,n+1Þ =H1~ψ
+ +H2~ψ

− =H1 ψ+ð Þ−1 +H2 ψ−ð Þ−1,
�

ð29Þ

is analytic for λ in first and third quadrants. In the same
way, we see that

P− x, λð Þ⟶ In+1, whenλ2 ∈ℂ− ⟶∞,

ψ~+,1ψ~−,2⋮ψ~−,n+1Þ⟶ In+1, whenλ2 ∈ℂ+ ⟶∞:
�

ð30Þ

Now, we have constructed twomatrix functions P+ and P−

, which are analytic in the first or third quadrants and second
or fourth quadrants, respectively. Defining

G+ x, λð Þ = P+ x, λð Þ, λ ∈ first or third quadrant,
G−ð Þ−1 x, λð Þ = P− x, λð Þ, λ ∈ second or fourth quadrant,

ð31Þ

we can easily find that if λ on the real axis or imaginary
axis, the two matrix functions P+ and P− are related by

P− x, λð ÞP+ x, λð Þ =G x, λð Þ, λ2 ∈ℝ, ð32Þ

where

G x, λð Þ = G−ð Þ−1 x, λð ÞG+ x, λð Þ
= E H1 +H2S λð Þð Þ H1 + S−1 λð ÞH2

� �
E−1

= E

1 ŝ1,2 ŝ1,3 ⋯ ŝ1,n+1

s2,1 1 0 ⋯ 0

s3,1 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

sn+1,1 0 0 ⋯ 1

0BBBBBBBBBB@

1CCCCCCCCCCA
E−1,

ð33Þ

S−1 λð Þ = S λð Þð Þ−1 = ŝj,l
� �

n+1,n+1, j, l = 1, 2,⋯, n + 1: ð34Þ

Eq. (32) and Eq.(33) are exactly the associated matrix RH
problem we wanted to present. The asymptotic conditions

P+ x, λð Þ⟶ In+1, whenλ in the first or third quadrant,
ð35aÞ

P− x, λð Þ⟶ In+1, when λ in the second or fouth quadrant,
ð35bÞ

provide the canonical normalization condition for the estab-
lished RH problem.

To finish the direct scattering transform, we take the
derivative of (19) with time t and use the vanishing condi-
tions of the potentials; we can show that S satisfies

St = iλ4 Λ, S½ �, ð36Þ

which gives the time evolution of the scattering coefficients:

s1,j = s1,j 0, λð Þeiαλ4t , sj,1 = sj,1 0, λð Þe−iαλ4t , 0 ≤ j ≤ n + 1, ð37Þ

and the other scattering data do not depend on time t.

4. N-Soliton Solutions

The RH problems with zeros can generate soliton solutions.
The uniqueness of the associated RH problem (32) does not
hold unless the zeros of det P+ in the first or third quadrants
and detP− in the second or fourth quadrants are specified and
kernel structures of P± at these zeros are determined. Follow-
ing the definitions of P± as well as the scattering relation
between ψ+ and ψ−, we find that

det P+ x, λð Þ = det ψ−H1 + ψ+H2ð Þ,
= s1,1 λð Þ, ð38Þ
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where we have used the fact detψ+ = 1. Similarly, we have
det P−ðx, λÞ = ŝ1,1ðλÞ and

ŝ1,1 λð Þ = S−1
� �

11 =

s2,2 s2,3 ⋯ s2,n+1

s3,2 s3,3 ⋯ s3,n+1

⋮ ⋮ ⋱ ⋮

sn+1,2 sn+1,3 ⋯ sn+1,n+1

�����������

�����������
: ð39Þ

Suppose that s1,1ðλÞ has zeros fλk, λ2k ∈ℂ+, 1 ≤ k ≤ 2Ng,
and ŝ1,1 has zeros fbλk, bλ2

k ∈ℂ
−, 1 ≤ k ≤ 2Ng. For simplicity,

we assume that all these zeros, λk and bλk, 1 ≤ k ≤ 2N , are sim-
ple. Then, each of kerP+ðλkÞ contains only a single column

vector, denoted by vk, and each of kerP+ðbλkÞ contains a
row vector, denoted by v̂k:

P+ λkð Þvk = 0, v̂kP− bλk

� �
= 0, 1 ≤ k ≤ 2N: ð40Þ

The RH problem (32) with the canonical normalization
condition (35) and the zero structure (40) can be solved
explicitly, and thus, one can readily reconstruct the potential
P as follows. Note that P+ is a solution to the spectral problem
(16). Therefore, as long as we expand P+ at large λ as

P+ x, λð Þ = In+1 +
1
λ
P+
1 xð Þ +O

1
λ2

	 

, λ⟶∞, ð41Þ

inserting this expansion into (16) and comparing Oð1Þ
terms lead to

P = −i Λ, P+
1½ �, ð42Þ

which implies that

P = − Λ, P+
1½ � =

0 −α P+
1ð Þ12 −α P+

1ð Þ13 ⋯ −α P+
1ð Þ1,n+1

α P+
1ð Þ21 0 0 ⋯ 0

α P+
1ð Þ31 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

α P+
1ð Þn+1,1 0 0 ⋯ 0

0BBBBBBBB@

1CCCCCCCCA
,

ð43Þ

where P+
1 = ððP+

1 ÞklÞ1≤k,l≤n+1. Further, the potentials pk and qk,
k = 1, 2,⋯, n can be computed as

pj = −α P+
1ð Þ1,j+1, qj = α P+

1ð Þj+1,1 j = 1, 2,⋯n: ð44Þ

To obtain soliton solutions, we set G = In+1 in the RH
problem (32). This can be achieved if we assume s1,j = sj,1 =
0, 2 ≤ j ≤ n + 1, which means that there is no reflection in

the scattering problem. The solutions to this specific RH
problem can be given as follows [24, 25]

P+ λð Þ = In+1 − 〠
N

k,l=1

vk M−1� �
kl
v̂l

λ − bλ l

, P− λð Þ

= In+1 + 〠
N

k,l=1

vk M−1� �
kl
v̂l

λ − λl
,

ð45Þ

where M = ðMklÞN×N is a square matrix whose entries read

Mkl =
v̂kvl

λl − bλk

, 1 ≤ k, l ≤ 2N: ð46Þ

Noting that the zeros λk and bλk are constants, i.e., space
and time independent, we can easily find the spatial and
temporal evolutions for the vectors, vkðx, tÞ and v̂kðx, tÞ,
1 ≤ k ≤N . For example, let us take the x-derivative of
both sides of the equation P+ðλkÞvk = 0. By using (16)
and P+ðλkÞvk = 0, we get

P+ λk, xð Þ dvk
dx

− iλ2kΛvk

	 

= 0, 1 ≤ k ≤ 2N , ð47Þ

which implies

dvk
dx

= iλ2kΛvk, 1 ≤ k ≤ 2N: ð48Þ

The time dependence of vk:

dvk
dt

= iλ4kΛvk, 1 ≤ k ≤ 2N , ð49Þ

can be determined similarly through an associated RH
problem with the variable t. Summing up, we obtain

vk x, tð Þ = eiλ
2
kΛx+iλ4kΛtvk,0, 1 ≤ k ≤ 2N , ð50aÞ

v̂k x, tð Þ = v̂k,0e
−iλ∧2

kΛx−iλ∧
4
kΛt , 1 ≤ k ≤ 2N , ð50bÞ

where vk,0 and v̂k,0, 1 ≤ k ≤ 2N , are arbitrary constant vec-
tors. Finally, from (45), we get

P+
1 = − 〠

N

k,l=1
vk M−1� �

kl
v̂l, ð51Þ

and thus by (44), the N-soliton solution to the system
of multicomponent KN equations (4):

pj = α 〠
N

k,l=1
vk,1 M−1� �

kl
v̂l,j+1,

qj = −α 〠
N

k,l=1
vk,j+1 M−1� �

kl
v̂l,1,

8>>>>><>>>>>:
ð52Þ
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where vk = ðvk,1, vk,2,⋯,vk,n+1ÞT and v̂k = ðv̂k,1, v̂k,2,⋯,v̂k,n+1Þ,
1 ≤ k ≤ 2N, are arbitrary.

5. Conclusions

In general, we construct the RH problem for the multicom-
ponent KN equation in this paper. To build the special RH
problem with the identity jump matrix, we introduced a var-
iable transformation to canonical normalization spectral
problem. By recombining the solutions of the canonical spec-
tral problem and its adjoint spectral problem, a general jump
matrix to the special RH problem was constructed. Letting
the general jump matrix to be identity jump matrix, the RH
problem was solved. Finally, we obtained the expression of
the N-soliton solutions through power series expansion of
the spectral parameter in the canonical normalization spec-
tral problem.

In this method, the jump matrix is corresponding to the
scattering matrix, and the identity jump matrix is equivalent
to reflectionless coefficient of the IST. It is well known that
there are not only soliton solutions to soliton equations but
also rational solutions, Matveev solutions, complexiton solu-
tions, and so on. Recently, there have been active studies on
lumps and their interaction solutions with solitons [37, 38].
It would be very interesting to generalize this method to
(2 + 1)-dimensional equations and consider their lumps
and interaction solutions. These will be our future projects.

Data Availability

The data that supports the findings of this study are available
within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The work was supported in part by NSFC under the grants
11101350, 11671177, and 11771186; the Jiangsu Qing Lan
Project (2014); and the Six Talent Peaks Project of Jiangsu
Province (2016-JY-08).

References

[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering
Transform, SIAM, Philadelphia, 1981.

[2] R. Hirota, The Direct Method in Soliton Theory, Cambridge
University Press, Cambridge, 2009.

[3] D. Y. Chen, Soliton introduction, Science Press, Beijing, 2006.
[4] J. J. C. Nimmo and N. C. Freeman, “Amethod of obtaining the

N-soliton solution of the Boussinesq equation in terms of a
Wronskian,” Physics Letters A, vol. 95, no. 1, pp. 4–6, 1983.

[5] W. X. Ma, “Wronskian solutions to integrable equations, Dis-
crete continous dynamics systems, dynamical systems, differ-
ential equations and applications,” in 7th AIMS Conference,
pp. 506–515, 2009.

[6] W. X. Ma, “The Casoratian technique for integrable lattice
equations,” Dynamics of Continuous, Discrete and Impulsive
Systems Series A: Mathematical Analysis, vol. 16, pp. 201–207,
2009.

[7] J. B. Zhang, S. T. Chen, and Q. Li, “Bilinear approaches for a
finite-dimensional Hamiltonian system,” Physica Scripta,
vol. 88, no. 6, article 065006, 2013.

[8] J. B. Zhang, D. J. Zhang, and Q. Shen, “Bilinear approach for a
symmetry constraint of the modified KdV equation,” Applied
Mathematics and Computation, vol. 218, pp. 4497–4500, 2011.

[9] J. B. Zhang, D. J. Zhang, and D. Y. Chen, “Solving the KdV
equation under Bargmann constraint via bilinear approach,”
Communications in Theoretical Physics, vol. 53, pp. 211–217,
2010.

[10] R. G. Zhou, “A Darboux transformation of the super KdV
hierarchy and a super lattice potential KdV equation,” Physics
Letters A, vol. 378, no. 26-27, pp. 1816–1819, 2014.

[11] C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transformation
in Integrable Systems, Springer, Dordrecht, 2005.

[12] R. L. Lin, Y. B. Zeng, and W. X. Ma, “Solving the KdV hierar-
chy with self-consistent sources by inverse scattering method,”
Physica A, vol. 291, no. 1-4, pp. 287–298, 2001.

[13] T. K. Ning, D. Y. Chen, and D. J. Zhang, “The exact solutions
for the non-isospectral AKNS hierarchy through the inverse
scattering transform,” Physica A, vol. 339, no. 3-4, pp. 248–
266, 2004.

[14] J. B. Zhang, D. J. Zhang, and D. Y. Chen, “Exact solutions to a
mixed Toda lattice hierarchy through the inverse scattering
transform,” Journal of Physics A: Mathematical and Theoreti-
cal, vol. 44, no. 11, p. 115201, 2011.

[15] M. J. Ablowitz, X. D. Luo, and Z. H. Musslimani, “Inverse
scattering transform for the nonlocal nonlinear Schrödinger
equation with nonzero boundary conditions,” Journal of
Mathematical Physics, vol. 59, no. 1, article 011501, 2018.

[16] J. B. Zhang, C. Y. Gu, and W. X. Ma, “Generalized matrix
exponential solutions to the AKNS hierarchy,” Advances in
Mathematical Physics, vol. 2018, Article ID 1375653, 9 pages,
2018.

[17] J. B. Zhang and W. X. Ma, “General matrix exponent solutions
to the coupled derivative nonlinear Schrödinger equation on
half-line1950055,” Modern Physics Letters B, vol. 33, no. 5,
2019.

[18] V. E. Zakharov and A. B. Shabat, “Integration of nonlinear
equations of mathematical physics by the method of inverse
scattering. II,” Functional Analysis and its Applications,
vol. 13, no. 3, pp. 166–174, 1979.

[19] E. V. Doktorov and S. B. Leble, A Dressing Method in Mathe-
matical Physics, in: Mathematical Physics Studies, vol. 28,
Springer, Dordrecht, 2007.

[20] V. S. Gerdjikov, G. Vilasi, and A. B. Yanovski, Integrable Ham-
iltonian Hierarchies: Spectral and Geometric Methods,
Springer-Verlag, Berlin, 2008.

[21] Y. Xiao and E. G. Fan, “A Riemann-Hilbert approach to the
Harry-Dym equation on the line,” Chinese Annals of Mathe-
matics, Series B, vol. 37, no. 3, pp. 373–384, 2016.

[22] X. G. Geng and J. P. Wu, “Riemann-Hilbert approach and N-
soliton solutions for a generalized Sasa-Satsuma equation,”
Wave Motion, vol. 60, pp. 62–72, 2016.

[23] D. Shepelsky and L. Zielinski, “The inverse scattering trans-
form in the form of a Riemann-Hilbert problem for the

6 Advances in Mathematical Physics



Dullin-Gottwald-Holm equation,” Opuscula Mathematica,
vol. 37, no. 1, pp. 167–187, 2017.

[24] W. X. Ma, “Application of the Riemann-Hilbert approach to
the multicomponent AKNS integrable hierarchies,” Nonlinear
Analysis: Real World Applications, vol. 47, pp. 1–17, 2019.

[25] W. X. Ma, “The inverse scattering transform and soliton solu-
tions of a combined modified Korteweg-de Vries equation,”
Journal of Mathematical Analysis and Applications, vol. 471,
no. 1-2, pp. 796–811, 2019.

[26] W. X. Ma, “Riemann-Hilbert problems and N-soliton solu-
tions for a coupled mKdV system,” Journal of Geometry and
Physics, vol. 132, pp. 45–54, 2018.

[27] H. H. Chen, Y. C. Lee, and C. S. Liu, “Integrability of nonlinear
Hamiltonian system by inverse scattering method,” Physica
Scripta, vol. 20, no. 3-4, pp. 490–492, 1979.

[28] D. J. Kaup and A. C. Newell, “An exact solution for a derivative
nonlinear Schrödinger equation,” Journal of Mathematical
Physics, vol. 19, no. 4, pp. 798–801, 1978.

[29] V. S. Gerdjikov and M. I. Ivanov, “The quadratic bundle of
general form and the nonlinear evolution equations. II. Hierar-
chies of Hamiltonian structures,” Bulgarian Journal of Physics,
vol. 10, pp. 130–143, 1983.

[30] J. B. Zhang, Y. Y. Gongye, and S. T. Chen, “Soliton solutions to
the coupled Gerdjikov-Ivanov equation with rogue-wave-like
phenomena,” Chinese Physics Letters, vol. 34, no. 9, article
090201, 2017.

[31] E. G. Fan, “Integrable systems of derivative nonlinear
Schrödinger type and their multi-Hamiltonian structure,”
Journal of Physics A: Mathematical and General, vol. 34,
no. 3, pp. 513–519, 2001.

[32] J. B. Zhang, Y. Y. Gongye, and W. X. Ma, “A τ-symmetry alge-
bra of the generalized derivative nonlinear Schrödinger soliton
hierarchy with an arbitrary parameter,” Symmetry, vol. 10,
no. 11, p. 535, 2018.

[33] B. L. Guo and L. M. Ling, “Riemann-Hilbert approach and
N-soliton formula for coupled derivative Schrödinger equa-
tion,” Journal of Mathematical Physics, vol. 53, no. 7, article
073506, 2012.

[34] J. B. Zhang, Y. Y. Gongye, and W. X. Ma, “Conservation laws
and τ-symmetry algebra of the Gerdjikov-Ivanov soliton
hierarchy,” Bulletin of the Malaysian Mathematical Sciences
Society, vol. 43, no. 1, pp. 111–123, 2020.

[35] G. S. Franca, J. F. Gomes, and A. H. Zimerman, “The algebraic
structure behind the derivative nonlinear Schrödinger equa-
tion,” Journal of Physics A: Mathematical and Theoretical,
vol. 46, no. 30, p. 305201, 2013.

[36] H. Aratyn, J. F. Gomes, and A. H. Zimerman, “Integrable hier-
archy for multidimensional Toda equations and topological–
anti-topological fusion,” Journal of Geometry and Physics,
vol. 46, no. 1, pp. 21–47, 2003.

[37] W. X. Ma and Y. Zhou, “Lump solutions to nonlinear partial
differential equations via Hirota bilinear forms,” Journal of
Differential Equations, vol. 264, no. 4, pp. 2633–2659, 2018.

[38] J. B. Zhang and W. X. Ma, “Mixed lump-kink solutions to the
BKP equation,” Computers & Mathematcs with Applications,
vol. 74, no. 3, pp. 591–596, 2017.

7Advances in Mathematical Physics


	A Riemann-Hilbert Approach to the Multicomponent Kaup-Newell Equation
	1. Introduction
	2. The Multicomponent KN Equation
	3. The RH Problem to the Multicomponent KN Equation
	4. N-Soliton Solutions
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

