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In this paper, we consider the problem of the rotational motion of a rigid body with an irrational value of the frequency ω. The
equations of motion are derived and reduced to a quasilinear autonomous system. Such system is reduced to a generating one.
We assume a large parameter μ proportional inversely with a sufficiently small component ro of the angular velocity which is
assumed around the major or the minor axis of the ellipsoid of inertia. Then, the large parameter technique is used to construct
the periodic solutions for such cases. The geometric interpretation of the motion is obtained to describe the orientation of the
body in terms of Euler’s angles. Using the digital fourth-order Runge-Kutta method, we determine the digital solutions of the
obtained system. The phase diagram procedure is applied to study the stability of the attained solutions. A comparison between
the considered numerical and analytical solutions is introduced to show the validity of the presented techniques and solutions.

1. Introduction

The rigid body problem of mass M that rotates about a fixed
point O is classified according to the natural frequency value
in either the uniform gravity field of g acceleration or a
Newtonian force one. The case of the rational value of the
natural frequency is studied in [1] for a rotating heavy solid
about a fixed point with a small velocity about one of the axes
of the ellipsoid of inertia. The solutions obtained contain sin-
gular cases of the natural frequencies named when ω = 1, 2,
3, 1/2, 1/3,⋯. The singular cases that appeared for the natu-
ral frequency values like ω = 1 (the disk case) and ω = 0:5 are
considered in [2, 3], respectively. It remains for us to study
four other cases until the solution of the problem is com-
pleted up to the third approximation for any natural
frequency of movement. Such cases are classified according
to the natural frequency values named; the state of irrational
values of the natural frequencies which is the subject of this
article besides three singular cases will be studied in the
future in shaa Allah classified when ω = 2, 3, 1/3.

Let the frameOxyzbe fixed in the body and the
frameOXYZbe fixed in space. Assume that A, B, and C repre-
sent the moments of inertia of the body in the moving coor-

dinate system. Suppose (xo, yo, zo) is the mass center of the
body. In the case when ω is irrational, the equations of
motion are obtained and reduced to the following system:

€x1 + ω2x1 = μ−2 F x1, x2, _x1, _x2, μ−1
� �

,

€x2 + x2 = μ−2 Φ x1, x2, _x1, _x2, μ−1
� �

,
ð1Þ

where

F = 〠
∞

k=2
μ2−kFk, FΦð Þ,

_xi =
dxi
dτ

, τ = t
ro
,

ð2Þ

x1 = x1 p, γð Þ, x1x2ð Þ,

μ = c
ffiffiffiffiffiffiffiffi
γo ′′

q
/r0, 0 ≺ γo ′′ ≺ 1,

ð3Þ

where symbols like (ab) mean cyclic permutations and
indicate equations which are omitted; p and γ are the x
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-components of the angular velocity vector and the fixed unit
vector in space, respectively; and c is a constant that depends
on the rigid body parameters. The system (1) has the follow-
ing first integral:

x22 + _x22 + 2μ−1 νx1x2 + ν1 _x1 _x2 + s21ð Þ + μ−2 ⋯ð Þ = L, ð4Þ

where ν, ν1, and L are constants that depend on the rigid
body parameters, and the function s21 = s21ðτ, μ−1Þ satisfies
the condition s21ð0, μ−1Þ = 0 when μ→∞.

2. The Periodic Solutions

In this section, we obtain the generating system of (1), and
then, we will solve it under a new condition of motion. We
adapt a large parameter method [1] to solve the system (1)
in the presence of the first integral (4). By putting μ→∞
into the system (1), we get the generating system as in [4]
which has generating periodic solutions of a period T0 = 2π.

In this case, from the system (1), the required periodic
solutions with a period ðT0 + αÞ are assumed in the following

forms [5]:

x1 τ, μ−1
� �

= η1 β3, μ−1
� �

cos ωτ + η2 β3, μ−1
� �

sin ωτ + 〠
∞

k=2
μ−kGk τð Þ,

x2 τ, μ−1
� �

= M3 + β3ð Þ cos τ + 〠
∞

k=2
μ−kHk τð Þ,

ð5Þ

where M3 is an arbitrary constant and β3 = β3ðμ−1Þ and
ηiðβ3, μ−1Þði = 1, 2Þ are analytic functions of μ−1which vanish
when μ→∞. The function α is an analytic function of μ−1

which vanishes when μ→∞. The functions GkðτÞ and Hkð
τÞ are obtained by substituting (5) into (1) and equating coef-
ficients of like powers of μ−1:

The functions ηiðβ3, μ−1Þ can be written in an expansion
series as follows [6]:

ηi β3, μ−1
� �

= 〠
∞

k=1
Q ið Þ

k + ∂Q ið Þ
k

∂M3
β3 +

1
2
∂2Q ið Þ

k

∂M2
3
β2
3+⋯

 !
μ−k:

ð6Þ

0 100 200 300
t

1

0.5

0

–0.5

–1

x1

Figure 1: The analytical solution x1 against the time t.
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Figure 2: The analytical solution J = x2 against the time t.
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Using Equation (3), the periodicity conditions are
obtained as follows [7]:

x1 T0, μ−1
� �

− η1 β3, μ−1
� �

+ αωη2 β3, μ−1
� �

= 0,

_x1 T0, μ−1
� �

− ωη2 β3, μ−1
� �

− αω2η1 β3, μ−1
� �

= 0,

_x2 T0, μ−1
� �

− α M3 + β3ð Þ = 0:

ð7Þ

Under condition (7) and series (6), it produces an endless

system of equations that designates the coefficients QðiÞ
k . The

functions GkðτÞ and HkðτÞ are expressed as in [8].
Now, we aim to find the periodic solutions of the gener-

alized system. According to [9], series (6) begins from a term
of order not lower than μ−2. It follows that the expansion of
x1ðτ, μ−1Þ represents a power series that begins from a term
of order not lower than μ−2. In this case, the quantities H2ð
T0Þand _H2ðT0Þ are obtained.

Introduce the following variables [10]:

x1 = pc−1
ffiffiffiffiffi
γ0″

q
− μ−1 e + e1x2ð Þ, x2 = γ γ0″

� �−1
− μ−1νx1,

qc−1
ffiffiffiffiffi
γ0″

q
= −A−1

1 _x1 + μ−1 A−1
1 y0′ a−1 − e2 _x2
� �

+⋯,

r r0
−1 = 1 + 0:5μ−2s11+⋯,γ′ γ0″

� �−1
= _x2 + μ−1ν1 _x1+⋯,

γ″ γ0″
� �−1

= 1 + μ−1s21 + μ−2 s22 − 0:5s11ð Þ+⋯,

ð8Þ

where e1 = ðz0′/ð1 − ω2ÞÞðA1 b
−1 − a−1 Þ, e2 − e1 = z0′ a−1, and

yo ′, zo ′, a, b, A1 are constants that depend on the rigid body
parameters. The vectors ½p, q, r� and ½γ, γ′, γ″� represent the
components of the angular velocity and the unit vector of
the downward fixed axis in space, respectively, and sii =
siiðτ, μ−1Þ,i = 1, 2, satisfies the condition siið0, μ−1Þ = 0
whenμ→∞.

Let r0 be sufficiently small; we define a large parameterμ
and apply the large parameter method [3] to obtain the ana-
lytical solutions in the form of power series expansions in

terms of μ−1 as follows:

pc−1
ffiffiffiffiffi
γ0″

q
= μ−1

x0′
1 − a

γ0″ + e1 M3 + β3ð Þ cos τ
" #

+⋯,

qc−1
ffiffiffiffiffi
γ0″

q
= μ−1 μ−1

y0′
1 − b

γ0″ + e2A
−1
1 M3 + β3ð Þ sin τ

" #
+⋯,

r r0
−1 = 1 − μ−2 M3 + β3ð Þ x0′ 1 − cos τð Þ + y0′ sin τ

h i
+⋯,

γ = M3 + β3ð Þ cos τ − 0:5μ−2Γ2 cos τ+⋯,

γ′ = − M3 + β3ð Þ sin τ + 0:5μ−2Γ2 sin τ+⋯,

γ″ = γ0″ + μ−2 M3 + β3ð Þ x0′
1 − a

γ0″ 1 − cos τð Þ + y0′
1 − b

γ0″ sin τ

"

− 0:5 M3 + β3ð Þ C1 z0′
a + b − 1 1 − cos 2τð Þ

#
+⋯,

ð9Þ

where C1, x0 ′ are constants that depend on the rigid body
parameters, and

0 < Γ < 1: ð10Þ

The correction of the period α is obtained in the form

α = 2μ−2πn M3 + β3ð Þx0′ − z0′ γ0″
h i

+⋯: ð11Þ

3. The Geometric Interpretation of Motion

In this section, we discuss the problem geometrically to show
the orientation of the body at any instant in time. Substitut-
ing Equation (9) into Euler’s angles ψ, θ, and φ in which t
has been replaced by t + h, using M3 = tan θo, we obtain the
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Figure 3: The numerical solution x1 against the time t.
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Figure 4: The numerical solution J = x2 against the time t.
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Figure 5: The analytical and numerical solutions x1 against the time t.
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Figure 6: The analytical and numerical solutions J = x2 against the time t.
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following expressions for the angles [11]:

θ = θo − μ−2 θ 1ð Þ t + hð Þ − θ 1ð Þ hð Þ
h i

+⋯,

ψ = ψo −Mg Croð Þ−1zot + μ−1 cos ecθo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θo

p
� ψ 1ð Þ t + hð Þ − ψ 1ð Þ hð Þ
h i

+⋯,

φ = φo + ro +Mg Croð Þ−1 zo cos θo − xo sin θoð Þ� �
t+⋯, ð12Þ

where

θ 1ð Þ tð Þ = yo ′a−1A1
−1 sin ro

−1t + xo ′b−1B1
−1 cos ro−1t

− 0:5zo ′ tan θo A1 − 1ð Þ A1 + 1ð Þ−1 cos 2ro−1t,

ψ 1ð Þ tð Þ = yo ′a−1A1
−1 cos ro−1t − xo ′b−1B1

−1 sin ro
−1t

+ 0:25 tan θo e1 + e2/A1ð Þ sin 2ro−1t,
ð13Þ

where B1 is a constant depending on the moments of inertia.
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Figure 7: The stability of the analytical solution _x1 ≡ x1.
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Figure 8: The stability of the numerical solution _x1 ≡ x1.
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Figure 9: The stability of the analytical and numerical solutions _x1 ≡ x1.
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4. Numerical Considerations

In this section, we study the analytical and numerical solu-
tions for our problem as follows.

4.1. The Analytical Solutions. We rewrite the analytical solu-
tions x1, x2 in the following form:

x1 1 − μ−2e1ν
� �

= −μ−1 e + xo ′γo ′′
1 − a

+ e1 M3 + β3ð Þ cos ro
−1t

(

− e1 γo ′′
� �−1

M3 + β3ð Þ cos ro
−1t

�
− 0:5μ−2Γ2 cos ro

−1t
�)

+⋯,

_x1 1 − μ−2e1ν
� �

= −μ−1 −e1 M3 + β3ð Þ sin ro
−1t + e1 γo ′′

� �−1	
� M3 + β3ð Þ sin ro

−1t − 0:5μ−2Γ2 sin ro
−1t

� �

+⋯,

ð14Þ

x2 1 − μ−2e1ν
� �

= γo ′′
� �−1

M3 + β3ð Þ cos ro
−1t

�
− 0:5μ−2Γ2 cos ro−1t

�
+ μ−2eν − μ−2ν

� xo ′γo ′′
1 − a

+ e1 M3 + β3ð Þ cos ro
−1t

" #
+⋯,

_x2 1 − μ−2e1ν
� �

= γo ′′
� �−1

− M3 + β3ð Þ sin ro
−1t

�
+ 0:5μ−2Γ2 sin ro

−1t
�
+ μ−2νe1

� M3 + β3ð Þ sin ro
−1t+:⋯

ð15Þ

Let the step i = 0 : 300and t = iT/300, where T is the
maximum value of the variable t. Let us introduce the follow-
ing data:

A = 10,
B = 15,
C = 20,
x0 = 4,
y0 = 7,
z0 = 8,

M = 600,
γ0″ = 0:99,

r0 = 0:000001,
T = 21:76559:

ð16Þ

Let the body parameters be

A1 = 0:5,
B1 = ‐0:6666667,

C1 = 0:25,
ω =

ffiffiffi
3

p
/3,

ℓ = 11:357820,
x0′ = 0:3521804,
y0′ = 0:6163157,
z0′ = 0:7043607,

g = 1:020000E‐04,
c = 0:1864267395,
ε = 5:272944E05,

a = 0:5,
b = 0:75,
ν = 2,
ν1 = 6,
e = ‐4,

e1 = ‐6:4,
e2 = ‐2:4:

ð17Þ

Introduce the following computerized symbols:

dx2
dt

= y, x2 = J: ð18Þ

Using the above data and a computer program, we obtain
the analytical solutions in the graphs (see Figures 1 and 2).

4.2. The Numerical Solutions. Using (18), we rewrite the sys-
tem (1) in the form

€x1 = −ω2x1 + μ−2 F x1, J , _x1, y, μ−1
� �

,

_y = −J + μ−2 Φ x1, J , _x1, y, μ−1
� �

:
ð19Þ

Using the fourth-order Runge-Kutta method [12]
through a computer program and the data (16) and (17) with
the same initial values of the analytical solutions, we obtain
the numerical solutions in the graphs (see Figures 3 and 4).
For checking the accuracy of both solutions, we draw the
graphs (see Figures 5 and 6). We find agreement between
the analytical and numerical solutions which satisfied the
excellent results for the analytical and numerical techniques.
The smooth simple curves obtained (see Figures 7–12) show
that the obtained solutions are stable [13, 14].
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5. Conclusions

In this section, we conclude that the problem of the motion of
a rigid body in a uniform gravity field with an irrational value
of the natural frequency which is excluded from the previous
works [1–3] is considered. The equations of motion and their
first integrals in the presence of new conditions of motion are
obtained and reduced to a semilinear autonomous system of
two degrees of freedom and one first integral. We assumed a
large parameter μ that is achieved to be inversely propor-
tional to the angular velocity component ro which is sup-

posed to be sufficiently small. Under this assumption, the
well-known Poincare method [15] cannot solve this problem
because we cannot achieve the small parameter which must
be proportional to a sufficiently high angular velocity compo-
nent ro →∞. Therefore, we solve the problem with the large
parameter technique. The advantages of this method are as
follows: using small energy at the initial moment instead of
high energy, obtaining a slow gyroscopic motion instead of
fast gyroscopic motion, and giving analytical and numerical
solutions in a new domain of the motion f ðro → 0, μ→∞,tÞ.
Also, the correction of the period for these solutions is obtained
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Figure 10: The stability of the analytical solutions y = _x2 and J = x2.
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Figure 11: The stability of the numerical solutions y = _x2 and J = x2.
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Figure 12: The stability of the analytical and numerical solutions y = _x2 and J = x2.
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in the new domain. The geometric interpretation of motion is
attained.When μ→∞, we obtain from Equation (17) the cases
of regular permutation and pure rotation. Applying the numer-
ical fourth-order Runge-Kutta method [12] through a com-
puter program, we find the numerical solutions for this
problem. Another computer program is carried out on the ana-
lytical obtained solutions using the large parameter technique
and assuming the same initial values and data (16) and (17).
We get the numerical results for both solutions and their graph-
ical representations. The agreement of results through the
graphical representations shows the advantage of both tech-
niques for obtaining the high accuracy of the obtained solutions.
This problem has many applications in aerospace sciences and
technologies because of the wide use of gyros in these fields [16].
The procedures used here are useful for solving sophisticated
problems such as [17] in a new domain of the considered
parameters. This can be done by reflecting the problem param-
eters. In shaa Allah in next papers, we study the remaining sin-
gular cases of the natural frequency values to complete the
solutions for the problem up to the third approximation.
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