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Mechanical equipment is a key component of mechanical equipment, and its working condition is directly related to the overall
performance of mechanical equipment. Accurate evaluation and prediction of the performance degradation trend of mechanical
equipment is of great significance to ensure the reliability and safety of the mechanical equipment system. Based on the data of
typical faulty equipment, this paper analyzes the energy characteristic parameters of mechanical equipment under different
types and degrees of failure in the time domain. Using amplitude spectrum analysis, Hilbert envelope demodulation and
wavelet packet decomposition method, and other vibration signal processing methods, preliminary extraction of multiple
statistical feature parameters are given. Secondly, in view of the irrelevant and redundant components of multiple statistical
parameters, a new method for extracting fault features of mechanical equipment based on variance value and principal
component analysis is proposed. This method can effectively classify the fault status of mechanical equipment. The
effectiveness of the method is verified by actual equipment signals. After that, the value extracted from the vibration signal of
the double-row roller equipment is used as the degradation feature. In order to reduce the influence of irregular characteristics
in the vibration signal and simplify the complexity of the vibration signal, the wavelet transform and the support vector
machine model are combined, according to the degradation after decomposition. The 95% confidence interval of the predicted
value is also given. The SVM model is established based on data characteristics, and single-step and multistep prediction of
equipment degradation trends are carried out. The prediction result shows that, according to the mapping position formula,
the distribution of equipment degradation prediction points is obtained, and a 95% confidence interval based on the
distribution of the prediction points is given. Finally, on the basis of completing feature extraction, this paper applies an
unsupervised feature selection method. The sensitive characteristics of life prediction and the prediction results of a single
SVM model and a neural network model are compared and analyzed at the same time.

improved after the optimization of the design and
manufacturing process, but it is still difficult to guarantee that

Equipment in the national economic industries such as
machinery, transportation, energy, and metallurgy (especially
high-end, large, key electromechanical equipment) are often
under high load, variable working conditions, and continuous
operation. The structure inevitably has different degrees of
failure, which often causes economic losses, waste of resources,
environmental pollution, and casualties [1]. The safety and
reliability of equipment has an important impact on the
national economy and people’s livelihood, social stability,
and national resources and environment. For these major
mechanical equipment, the quality of the equipment can be

there will be no failure during the service process [2]. Due to
the high cost and actual installation restrictions, this type of
equipment is often operated by a single unit, which is a small
sample case, and it also lacks an overall operation and degra-
dation curve, in addition, equipment of the same type and
model even under the same working conditions. Due to the
different operating environments and complex load effects,
the life data has a large discreteness, which brings difficulties
to accurately predict the remaining life [3].

With the severe problems of energy shortage and envi-
ronmental degradation, the machinery manufacturing
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process has been developed to higher parameters and larger
device scales. The trend of large-scale production, automa-
tion, high-parameter operation, and high-energy storage
has caused safety problems for mechanical products [4].
The increase in complexity and uncertainty of mechanical
products makes it difficult to determine the physical model.
Due to its high cost and small batch size, traditional statistical
methods based on large samples are not suitable for the scar-
city of such mechanical equipment test samples. How to per-
form state assessment and life prediction based on the
characteristic data under a small sample is a very challenging
subject, and related theories and methods are in urgent need
of improvement [5]. Mechanical equipment is one of the most
basic and fault-prone parts in rotating machinery, and its
operating status is of great significance for ensuring the safe
and reliable operation of key equipment. Condition monitor-
ing of mechanical equipment, when the equipment has
degraded characteristics, accurately judging its failure and pre-
dicting its remaining life is very important for the reasonable
arrangement of equipment maintenance decisions [6-8].

This article focuses on the important scientific issues in the
operation and maintenance of machinery and equipment at
this stage, combined with the development plan of the
national machinery and manufacturing science, researches
the support vector machine model and state space model in
the data-driven life prediction method, and uses system sci-
ence to discover and understand the general law of life predic-
tion of complex equipment based on theories and methods.
Based on the vibration signal of mechanical equipment, three
aspects are studied: the purpose is to analyze the failure mech-
anism of mechanical equipment and various statistical charac-
teristics, on this basis, improve the reliability of fault diagnosis,
and propose a method for extracting fault characteristics of
typical operating components. The predicted value of the
remaining life is very close to the true value, which proves
the validity of the model. Effectively we identify the failure
state of key equipment and mechanical equipment, improve
the effectiveness of forecasting, construct relevant data-
driven forecasting models, and discuss their effectiveness. This
paper takes the vibration signal of mechanical equipment as
the research object and studies the two key issues of vibration
fault feature extraction and remaining life prediction.

2. Related Work

In order to solve the problem of safe and reliable operation
of equipment, relevant research work at home and abroad
has roughly gone through three stages: the state monitoring
of the equipment, mainly to determine whether the equip-
ment is in normal service; and the fault diagnosis of the
equipment, mainly to analyze the failure when a fault occurs.
Early warning of equipment failure is mainly carried out
when there is no failure, and modern maintenance methods
such as predictive maintenance are developed on this basis.
This is generally aimed at predictable failures, such as
time-dependent failures and progressive failures [9-11].
The essence of condition monitoring is to collect infor-
mation that contains the characteristics of the current state
of the equipment and apply vibration signal processing tech-
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nology to effectively extract the characteristics of the col-
lected vibration signals, which can provide support for
equipment fault diagnosis and fault warning, so as to achieve
a more scientific equipment maintenance method. Based on
the essential attribute that mechanical failure is both a state
and a process, Wang et al. [12] use the state parameters
and failure signs monitored during equipment operation to
realize the dynamic identification of the failure state and
evolution process and condense the key sciences in the diag-
nosis and prediction of mechanical failures. The problems
include the theory and method of multifault feature extrac-
tion and recognition and the safety assurance technology
based on the reliability of state information. He et al. [13]
put forward the technical difficulties of equipment fault
diagnosis and prediction: the equipment is of multiple types:
with complex operating conditions (no-stationary, nonlin-
ear, variable conditions, and long history). Research shows
that the more complex the equipment and the state, the
lower the failure rate. Li et al. [14] proposed the concept of
wavelet packet energy flow based on vibration signals, using
the energy matrix of each node of the wavelet packet as fea-
ture information, reducing redundant time-frequency infor-
mation through popular learning, and fully extracting time-
frequency features and nonlinearity, which effectively real-
izes different types of equipment failures of different degrees.
The wavelet theory is still developing, and the research of
wavelet analysis in the feature extraction of mechanical
equipment will continue to deepen.

Wang et al. [15] established a framework for estimating
the remaining life of components based on particle filtering.
This method avoids the assumptions of linearity and Gauss-
ian noise and achieves good results in crack prediction. The
online monitoring data of the compressor is collected as his-
torical data and the state space. The model and particle filter
are used to predict the degradation trend. The prediction
results show the effectiveness of the method. The degrada-
tion model is established by making full use of historical
data, and the idea of joint estimation based on the state
and static parameters of the particle filter is adopted to
obtain the automatically updated results at the same time.
Ge et al. [16] proposed a vibration signal processing method
combining WPT and EMD to extract time and frequency-
domain features, applied them in the research of mechanical
fault diagnosis, and achieved better results. After the original
vibration signal is decomposed and demodulated by a cer-
tain vibration signal processing method, it becomes simple
and intuitive. From its corresponding frequency spectrum,
each frequency component can be clearly observed, so it is eas-
ier to extract useful state information from it. Some scholars
combine the two modern vibration signal methods of EMD
and wavelet packet decomposition. After denoising the origi-
nal vibration signal through wavelet packet decomposition,
the vibration signal is decomposed by EMD to extract high-
quality features [17-19]. Some scholars combined LMD and
discrete wavelet transform (DWT) to modern vibration signal
processing tools, proposed a new vibration signal decomposi-
tion method, and applied it to the fault diagnosis of rolling
equipment; the vibration signal processing method not only
inherits the adaptive characteristics of LMD but also uses
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FIGURE 1: Vibration signal parameter analysis process.

discrete wavelet transform to minimize the modal aliasing
problem of the LMD method [20, 21].

3. Construction of Life Prediction Model for
Remanufactured Machinery and Equipment
Based on Vibration Signal Feature Extraction

3.1. Analysis of Vibration Signal Parameters. Vibration anal-
ysis method is currently one of the most effective methods
used in equipment monitoring [22-25]. Sensors are installed
at appropriate positions inside the equipment base or cabi-
net, and portable data collectors or boards are used to collect
equipment vibration signals. The regularly collected data is
transmitted to the computer for analysis and processing
using relevant software to judge the bearing status and faults.
Figure 1 shows the vibration signal parameter analysis
process.

Because vibration monitoring has many advantages, such
as being suitable for equipment of various types, various vari-
able working conditions, and in continuous operation, it can
realize online monitoring and offline measurement; it can
diagnose early weak faults and the cause, type, and location
of the fault.

X(t) = {t <R| x(1),x(2), - (1)

(2)

The characteristic parameters of the vibration signal have
clear physical meanings and correspond to different types of
faults. The vibration signal processing methods are diverse,

Sx (1),

y(n)=AxX(n)-txx(n-1).

and the diagnosis results are intuitive, effective, and reliable;
therefore, the application is extremely wide.

(3)
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At present, equipment monitoring and diagnosis analysis
instruments and systems are mostly made based on the prin-
ciple of vibration, and more than 90% of the literature on
equipment condition monitoring, fault diagnosis, reliability
analysis, and remaining life analysis uses vibration signals.
All digital signals obtained through the data acquisition sys-
tem are a series of discrete values.
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When the equipment fails, the statistical characteristic
parameters of the amplitude of the vibration signal will also
change with its location and the size of the fault. Therefore,
the analysis of the amplitude-domain statistics can be used
to diagnose the fault. Next, we will study several commonly



used statistics describing the characteristics of vibration sig-
nals in the time domain.
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After the mechanical equipment is subjected to various
external loads during the working process, the parts will be
damaged, and the appearance of the damage will cause the
change of the output parameters of the equipment.

P(n, t) represents the value within the time interval (n,
n+1). Suppose that z(f) represents the influence of external
load, u(f) represents the relationship of damage degree with
time, and x(t) represents the relationship of equipment out-
put parameters with time. Damage is the characterization of
the microscopic physical process in the equipment material,
and the output parameter is the macroscopic reflection of
the change process of the equipment health status. If the
quantitative functional relationship between x(f) and U(f)
can be determined, a model can be established based on
the failure mechanism to perform quantitative research on
the health of machinery and equipment.
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The one-step prediction is based on X as the input, that
is, the prediction of the data at the next moment, using the
actual observations of the previous m consecutive moments.
If in this process, the obtained predicted value is used
instead of the true value, that is, no new information is
added, the predicted value of the first data in the test set is
obtained as the last component of the input vector for the
next prediction to predict. At the next moment, this cycle
will get a multistep forecast. In order to freely change the fre-
quency and time-domain interval, the wavelet basis function
needs to be scaled. The scale transformation includes the
expansion coeflicient and the translation coefficient.

— 1 k1 k2 o
SRRy ¢ L et ()
cov (X) = E[xx” - (EQOE(X)") . 12)

When the basis function is narrowed, the high-frequency
vibration signal can be extracted, and when the basis func-
tion is extended to a wider range, the low-frequency vibration
signal can be extracted. Under certain scales, it has a coinci-
dence relationship with the vibration signal and multiplies it
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to get a larger value. Through this result, you can get how
much frequency components the original vibration signal con-
tains. The frequency components contained in the original
vibration signal and their corresponding time windows can
be clearly identified. The time-frequency power diagram effec-
tively contains the relevant characteristics of the original
vibration signal.

3.2. Data Feature Extraction Algorithm. Traditional time-
domain and frequency-domain analyses methods are both
based on the stationary theory and cannot effectively analyze
nonlinear nonstationary vibration signals. However, the
dynamic response of mechanical equipment due to failures
is a nonstationary process, and its vibration signals are also
nonstationary. For vibration signals, time-frequency analysis
came into being, and the two-dimensional joint analysis of
time and frequency was used to describe the change of the
statistical characteristics of nonstationary vibration signals
over time.

SLw(t) * f(x(t))

ST () (13)

E(f(x)) =

| rerpte1opd=n [ reop(ei oz, (19

P(x) = JP(B | A(x))P(A(x))dA (x). (15)

In the low-frequency part of the vibration signal, the
vibration signal is relatively smooth and has obvious time-
domain characteristics. There are many frequency compo-
nents in this part. The frequency resolution can be improved
by reducing the time resolution. In the high-frequency part
of the vibration signal, it contains many characteristics of
transient changes, and the relative frequency change has lit-
tle effect on the vibration signal.

The wavelet transform decomposes the vibration signal
into different scales (frequency domain) for description
through operations such as expansion and translation and
realizes the multiscale analysis of the vibration signal. Feature
selection and feature transformation are a very important part
of data-driven methods. After the feature extraction is com-
pleted, the performance of the degraded features is evaluated,
and the best features are selected as the training input samples
for the degradation state evaluation and remaining life predic-
tion model. Through feature transformation, the core feature
can be transformed to a few main variables to achieve the pur-
pose of dimensionality reduction, thereby reducing the calcu-
lation amount of the model and improving the calculation
efficiency of the model. Figure 2 shows the calculated effi-
ciency histogram of the vibration signal model.

The various direct or indirect vibration signals moni-
tored during the operation of mechanical equipment can
be used to determine the working conditions of the mechan-
ical equipment, and then, the future development trend of
the mechanical equipment or its remaining life can be pre-
dicted. However, these vibration signals are the result of
the nonlinear interaction of multiple factors, with nonlinear
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FiGUre 2: The calculation efficiency histogram of the vibration
signal model.

characteristics such as chaos, classification, and irregularity,
so the data has multiscale characteristics. The use of sensors
can collect equipment status data in real time, which con-
tains a variety of indications of the current status of the
equipment. This information is contained in multiple feature
spaces, while the vibration signal is only one-dimensional
time-domain information, and only one-dimensional vibra-
tion is used.

First, after simple processing of the original data, contin-
uous wavelet transformation is performed on the original
vibration signals in the two directions, and the original
time-domain information is extracted as time-frequency-
domain two-dimensional image information. The image is
fused and fused into six-channel feature data. ResNet is used
to extract the degradation information contained in the
image, and the time series features in the data are extracted
through TCN, and the high-dimensional data is converted
into a one-dimensional feature vector. Finally, the degrada-
tion process is linearly regressed. When a single fault occurs
in the equipment, the time-domain characteristics can effec-
tively describe its status information, but the evaluation
effect for compound faults is not very good. Therefore, it is
necessary to take the frequency-domain statistical character-
istics into consideration. When the equipment fails, the
energy of a specific frequency component on the spectrum
will increase, and the entire spectrum distribution will be
very different from before the failure. The frequency-
domain characteristics can well show the information of
the equipment’s operating status.

3.3. Estimation of Mechanical Equipment Performance. The
requirement of mechanical equipment failure prediction
technology is to use all kinds of information generated dur-
ing the working process of the equipment to comprehen-
sively, accurately, and automatically determine whether the
equipment is operating normally at any time, or the
mechanical equipment has an abnormal sign, and accurately
determine the cause and reason of the possible failure. When
the equipment has a fault condition such as increased wear,

lack of lubrication, burnout, or excessive load, it will cause
the temperature at the equipment seat (or box) to change,
and abnormalities can be found through temperature moni-
toring. However, when the equipment has relatively minor
faults such as pitting, spalling, and slight wear, the tempera-
ture rise is not obvious, and only when the severity reaches a
serious level, will there be a significant temperature rise.

In order to obtain the prior distribution of model param-
eters, it is necessary to solve the hyperparameters in the
prior distribution, which can be obtained by distribution fit-
ting. For the equipment to be tested, the measurement
method can be selected according to the actual working
environment. On the one hand, temperature sensors such
as thermocouples and thermal resistances can be used for
measurement. On the other hand, a noncontact infrared
measuring instrument can be used for infrared imaging.
Equipment needs to develop an independent monitoring
system and alarm system. During analysis, the location of
the hot spot can be found by comparing and analyzing with
the normal temperature, so as to find the location with seri-
ous fault.

Figure 3 shows the design of the mechanical equipment
performance monitoring system. Fault diagnosis refers to
the process of analyzing and researching a situation, state,
or problem of the equipment, detecting and identifying the
failure mode in the system or subsystem. The fault predic-
tion requires that the future state of the equipment can be
carried out based on reasonable methods and relevant data
obtained. Equipment wear is a gradual process, the peak
value and RMS value of the vibration signal will gradually
rise, and the waveform of the vibration signal is irregular,
showing strong randomness.

It can be diagnosed whether there is a fault based on the
change of the peak value and the RMS value, and the change
of its value can also be predicted as a basis for life prediction.
On the one hand, due to repeated impacts of rolling ele-
ments and defective working surfaces, it will cause periodic
low-frequency vibrations. The frequency can be calculated
according to the shaft speed and the geometric dimensions
of the equipment, and it is the characteristic frequency of
the fault to judge the type and extent of the fault by looking
at the corresponding characteristic frequency and amplitude
of the fault in the frequency spectrum of the vibration signal.
On the other hand, the high-frequency natural vibration of
the equipment system was caused by the impact, such as
the radial bending natural vibration of the inner and outer
rings of the equipment and the inherent vibration of the roll-
ing elements.

3.4. Weight Analysis of Life Prediction. By setting the charac-
teristic parameter monitoring threshold, it is assumed that
this kind of early fault can be detected at a certain time after
the “potential failure point of the component (fault detection
point).” The purpose of fault prediction is to extract the basis
of early fault detection and prediction feature information.
On the above, according to the current component degrada-
tion state, we predict the time of failure, that is, the remain-
ing life of the component. In a general sense, the period from
“the current state point of the component” to the “function
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failure point of the component” is the remaining life of the
component.

We test the probability that the normalized energy value
exceeds the set threshold. Due to the influence of various
factors, the remaining life of the mechanical equipment is
not a fixed value, and we usually want to obtain the probabil-
ity density function of the remaining life and then analyze
the characteristics of equipment failure time. Time-domain
analysis is to directly perform various calculations on vibra-
tion signals, and the calculation results still belong to the
time-domain category. The time-domain statistical charac-
teristic parameters are the low-order or high-order statistics
of the time series, which are simple to calculate and have
clear physical meanings. The statistical characteristic param-
eters of changes caused by vibration signals of different fault
types and different fault levels are also different. For exam-
ple, kurtosis and impulse indicators are more sensitive to
shock faults, and the root mean square value is more effec-
tive for wear faults. Figure 4 shows the time-domain charac-
teristic curve of the vibration signal.

Generally speaking, the time-domain statistical feature
quantity provides a global feature of the equipment health
status, but the root cause analysis of the failure is limited.
Frequency-domain characteristic analysis firstly transforms
the time-domain vibration signal into frequency-domain
vibration signal through Fourier transform or Hilbert trans-
form and then performs various calculation analysis methods
on it, such as amplitude spectrum analysis, power spectrum
analysis, and cross spectrum analysis and refined spectrum
analysis, etc. By analyzing the frequency components in the
frequency domain and corresponding to the characteristic
fault frequencies of equipment and other parts during opera-
tion, the fundamental fault source can be found.

In order to effectively extract the feature quantity, it can
usually be divided into two steps: first, we select the relatively

sensitive and reliable feature quantity including the time
domain and the frequency domain and start from the origi-
nal data space; then, the space matrix containing all the fea-
tures is reduced by linear or nonlinear methods. This paper
connects to use the variance value, the simplest unsupervised
feature selection algorithm to select the initial feature
parameter vector, and preferentially select the feature with
larger variance as the candidate feature to form the fault fea-
ture vector; then, perform PCA on the fault feature vector
reduction processing. The PCA method can extract the main
elements of the fault feature vector, reduce the dimensional-
ity of the feature vector, and use a few irrelevant principal
components to characterize the fault feature, which not only
extracts effective information but also simplifies the data,
making the equipment diagnosis work greatly simplify.

4. Application and Analysis of
Remanufacturing Machinery Equipment Life
Prediction Model Based on Vibration Signal
Feature Extraction

4.1. Vibration Signal Feature Extraction. In the experiment,
two high-frequency acceleration sensors (DYTRN 30358)
were installed on the outer surface of the equipment, respec-
tively, to measure the acceleration of the equipment in the
horizontal and vertical directions. When the acceleration
sensor is in use, its sampling frequency is set to 25.6 kHz,
the sampling interval is 10s, and the duration of each sam-
pling is 0.1s, that is, 2560 acceleration data points can be
obtained for each sampling. The temperature sensor
(PT100) is installed near the acceleration sensor and also
close to the outer surface of the equipment. Its sampling fre-
quency is fixed at 10 Hz, and the sampling type is continuous
sampling. The data acquisition card (NI DAQCard-9174)
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mainly includes three modules, which are used for two accel-
eration sensors, temperature probes, and torque sensors.
When the acceleration amplitude exceeds 20 g continuously,
the test is immediately terminated, and it is artificially con-
cluded that the equipment has been significantly damaged
at this time.

Figure 5 shows the interpolation line graph of vibration
signal feature extraction. Starting from 1, every 15 samples
belong to a state, and the sequence is as described above;
the ordinate is the amplitude of the characteristic parameter.
Since the physical meaning of each feature parameter is dif-
ferent, the scale of the parameter and the evaluation stan-
dard are also different. In order to evaluate each parameter
and strengthen the classification performance of the classi-
fier, each parameter is normalized. For different equipment
failure states, the distinguishing ability of characteristic
parameters is not the same and the rules are different. Some
of the parameters are sensitive and reliable to the response law
of the equipment state, such as the root mean square value;
some parameters are not sensitive to the response of the equip-
ment to different fault states, such as the mean value. It can be
observed that after the Fast Fourier Transform (FFT) of the
original vibration signal, there are many high-frequency inter-
ference components in the obtained spectrum. The original
vibration signal undergoes wavelet threshold denoising, and
most of the high frequency noise vibration signal in the fre-
quency spectrum is successfully removed, leaving only a small
amount of harmonic components.

Therefore, using the wavelet threshold denoising method
to reduce the noise of the original vibration signal has
achieved satisfactory results, which not only effectively
removes the high-frequency interference information but
also retains the useful information in the original vibration
signal to a large extent. The vibration signal after noise
reduction maintains a high signal-to-noise ratio, which is
more conducive to further signal processing and analysis of
the vibration signal.

4.2. Life Prediction Simulation of Mechanical Equipment.
The rotating shaft is driven by the coupling of an AC motor
and a friction belt, and a force of 32 is applied radially to the
rotating shaft through a spring mechanism, and the equip-

ment speed is constant at 2000 rpm. The equipment has 16
rolling elements in each row, the pitch circle diameter is
71.5, the roller diameter is 8.4 mm, and the contact angle is
15.17.

The whole network contains 6 denoising automatic
encoders, and the number of features extracted is 100. In
order to visualize the inherent change trend of the 100-
dimensional feature, considering the large difference in the
range of each feature value, the principal component analy-
sis of the 100-dimensional feature is carried out. From the
process of the maximum principal component value chang-
ing with the sampling point, it can be seen that the noise is
large. At the same time, the data acquisition software devel-
oped by PCB 353833 acceleration sensor and LabVIEW was
used to collect the vibration signal at the equipment base.
We calculate the root mean square (RMS) of the data every
10 minutes, and it can be seen that the equipment was in a
normal state before the first 700 points. Therefore, the
780.930th point is used to train the support vector machine
model, and the remaining 50 points are used to verify the
model. Figure 6 shows the statistical distribution of the time
sequence information of the vibration signal.

In the RUL prediction (remaining life prediction) stage,
it is necessary to comprehensively consider the measure-
ment data and historical data of the key equipment at the
current moment and fully mine the time series information
of the equipment operating data, so it is necessary to use a
time series network to model the life prediction problem.
Usually based on experience or using different wavelet bases
to analyze the preprocessed data, we select the wave function
that meets the requirements by comparing the analysis
results. In digital vibration signal processing, Haar and Dau-
bechies wavelet functions are usually selected. The compact
support of the wavelet function means that the scale func-
tion and the wavelet function are only nonzero in a finite
interval. The reliability distribution describes the probability
that the RMS predicted value exceeds a set value, and 0.18 A/
g is taken as the critical threshold of the RMS value.

In this paper, the bootstrap method is used to obtain the
hyperparameters in the prior distribution of parameters.
When the predicted value exceeds this threshold, we con-
sider the equipment to fail. At the prediction point N = 40,
the RMS prediction value exceeds 0. The probability of
18 A/g is 2.41%, but at the prediction point N = 45, the prob-
ability of RMS exceeding the threshold is close to 100%.
According to calculations, at each prediction point N =
40.45, the probability that the RMS value exceeds the critical
threshold is 2.41%, 8.62%, 29.31%, 66.55%, 94.13%, and
99.5%. According to the calculation results, it can be seen
that as the number of predicted steps increases, the reliability
gradually decreases. The first 150 data points are decom-
posed in three layers using db3, db5, and db7 wavelets and
reconstructed by a single branch. It can be seen that as the
length of the support increases, the reconstructed data curve
of each layer is “cusp” reduce. The increase in the length of
the wavelet function support makes the decomposed and
reconstructed data curve become more “smooth,” but this
is also accompanied by an increase in the amount of
calculation.
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FIGURE 5: Interpolated line graph of vibration signal feature extraction.
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FIGURE 6: Statistical distribution of time sequence information of vibration signal operation.

4.3. Example Application and Analysis. In the modeling
process of each decomposition sequence, the RBF kernel
function is used, and the insensitive function is set to
0.01. In order to estimate the model parameters, including
the penalty factor C and the kernel function parameters,
the grid method and the cross-validation method are com-
bined. In the grid search, the search range is set to 1-100,
and the search compensation is 1.0. The test set is divided
into three parts for cross-validation, and the minimum
mean square error value of each part is calculated sepa-
rately, and then, the average value is calculated. Because
there will be different parameters corresponding to the
minimum mean square error, the minimum penalty factor
C is regarded as the best combination of parameters. In the
single support vector machine model, the penalty factor,
the kernel function parameter, and the insensitive function
value are 160, 0.125, and 0.01. In the neural network model,
the number of hidden layers is 10, the number of output
layers is 1, the input layer function takes the “tansig” func-
tion, and the “purelin” function is taken as the output layer
function. The number of training times is 1000, and the
training target error is 0.001. Figure 7 shows the step diagram

of the parameter accuracy deviation of the vibration signal
model.

Under the same condition of model parameters, the
predicted value of the first verification data obtained is
used as the last component of the input vector of the next
prediction to predict the next value. In this way, multistep
prediction results can be obtained. Prediction error refers
to the deviation between the predicted value of the model
and the true value.

In order to analyze the prediction results of the above
three models, this paper selects relative error (RE), mean
absolute percentage error (MAE), and root mean square
error (RMSE) as the judgment criteria. In the field of degra-
dation state assessment and remaining life prediction, we are
more concerned about the overall change trend of character-
istics in the entire life cycle of the equipment. Since the input
of the time series network training should be as consistent as
possible with the test set, when the training data is specifi-
cally read, the data is not taken from the start running time
of the training set equipment data, but 10,000 running
moments are randomly selected from the training set. 100
continuous time-frequency power spectrograms before this
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moment (including this moment) are sent to the pretrained
ResNet network to generate training data. The last dimen-
sion is used as the output result, and the last real value of
the health factor in each time window is selected as the label
for training.

Figure 8 shows the histogram of the vibration signal per-
formance evaluation weights. In this data set, each equip-
ment has two sets of original vibration signals in the
horizontal and vertical directions, the sampling frequency
is 2 5.6 kHz, and 2560 sampling points (1/10s) are recorded
every 10s. The time-domain vibration data in both direc-
tions are shown in the text. Therefore, the monotonicity
evaluation index of the degradation feature should get a rel-
atively high importance weight. Here, we set the importance
weights of the three evaluation indicators of relevance,
monotonicity, and robustness to 0.2, 0.55, and 0.25. Using
the above feature selection method and analyzing the vibra-
tion data of the equipment, we can obtain the comprehen-
sive index corresponding to the 96 features and the values
of the three performance evaluation indexes. Their three
characteristic evaluation indicators are all maintained at an
upper-middle value, and then, the final comprehensive index
J value is maintained at a relatively high position. Based on

the construction of the degradation curve, the prediction
model directly maps the equipment health value to the
RUL value.

5. Conclusion

In the application example of the life prediction model, this
paper measures the wear data during the equipment pro-
cessing, uses the linear process with random drift effect to
describe the change process of the equipment wear, and
establishes the state space model. Combining the filtering
algorithm, based on the vibration signal resampling, the
unknown parameters of the model are obtained, and then,
the degradation and remaining life of the equipment are pre-
dicted, and the optimal time is analyzed according to the
corresponding decision-making model. Bootstrap method
is an important estimation method in nonparametric statis-
tics to estimate statistical variance and then carry out inter-
val estimation. Aiming at predictable time-dependent
failures of mechanical equipment, this paper studies a pro-
portional failure model based on multiple decay characteris-
tics, selects the characteristic quantities that reflect the
equipment degradation trend as the input of the model,
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and finally determines the root mean square value and the
wavelet packet sensitive energy value as the input covariate.
The model is established based on the historical life and con-
dition monitoring data of similar components, and then, the
characteristic quantity predicted according to the own mon-
itoring data is input into the model for real-time remaining
life assessment, which realizes the real-time prediction of
the remaining life of a single mechanical equipment, which
is compared with the Logistic regression model. The
research results show that, compared with the traditional
mechanical equipment degradation state modeling method,
the deep learning-based degradation state modeling method
proposed in this paper can construct a smoother and less
noisy performance degradation curve under both one-
dimensional and multidimensional monitoring data. And
this method relies less on manual participation, the whole
process is carried out in an unsupervised manner, and it
has good versatility.
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