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In survival analysis, the two-parameter inverse Lomax distribution is an important lifetime distribution. In this study, the
estimation of R=P[Y < X] is investigated when the stress and strength random variables are independent inverse Lomax
distribution. Using the maximum likelihood approach, we obtain the R estimator via simple random sample (SRS), ranked set
sampling (RSS), and extreme ranked set sampling (ERSS) methods. Four different estimators are developed under the ERSS
framework. Two estimators are obtained when both strength and stress populations have the same set size. The two other
estimators are obtained when both strength and stress distributions have dissimilar set sizes. Through a simulation experiment,
the suggested estimates are compared to the corresponding under SRS. Also, the reliability estimates via ERSS method are
compared to those under RSS scheme. It is found that the reliability estimate based on RSS and ERSS schemes is more efficient
than the equivalent using SRS based on the same number of measured units. The reliability estimates based on RSS scheme are
more appropriate than the others in most situations. For small even set size, the reliability estimate via ERSS scheme is more
efficient than those under RSS and SRS. However, in a few cases, reliability estimates via ERSS method are more accurate than
using RSS and SRS schemes.

1. Introduction

The inverse Lomax (ILo) distribution is considered as the
reciprocal of the Lomax distribution. In some situations, it
is a good alternative to the famous distributions like gamma,
inverse Weibull, and Weibull. It has varied applications in
modelling several types of data, including economics and
actuarial sciences (see [1]). It has an application in geophys-
ical databases [2]. The ILo distribution has an important
application in reliability analysis [3]. Statistical inference
for this distribution has been discussed by several researchers
(see, for example, [4, 5]). In the present work, the ILo distribu-
tion is taken under the stress strength (S-S) model associated

with any system that depends on different sampling schemes.
The cumulative distribution function (cdf) of the ILo distribu-
tion with shape parameter w and scale parameter p is specified
by the following:

H(x;p,w)=<1+§)_w,x,p,a)>0. (1)

The probability density function (pdf) of the ILo distribu-
tion is as follows:

1)) —w-1
h(x;p,w):%(1+§) , %, P w > 0. (2)


https://orcid.org/0000-0002-6901-8263
https://orcid.org/0000-0002-6789-3363
https://orcid.org/0000-0003-3456-8393
https://orcid.org/0000-0003-0262-205X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4599872

The RSS was first introduced in [6] as a sampling
scheme. The RSS scheme is used in situations when it
is difficult and expensive to measure a large number of
elements, but visually (without inspection) ranking some
of them is easier and cheaper. This sampling design is
both a cost-effective and powerful alternative to the com-
monly used SRS. This scheme involves randomly selecting
m, sets (each of size m; elements) from the study popu-
lation. The elements of each set are ordered with respect
to the variable of the study by any negligible cost method
or visually without measurements. Finally, the a™ mini-
mum from the a™ set, a=1,2---,m,, is specified for
measurement. The obtained sample is called a RSS of
set size m,. The whole procedure can be repeated g times
to yield a RSS of size m® = gm,. The mathematical theory
of the RSS method has been provided in [7]. Studies on
RSS scheme have been proposed by several authors (see,
for example, [8-15]).

Several modifications of the RSS have been pro-
posed to improve the efficiency of the estimators.
Herein, we are interested in the RSS and ERSS, pre-
sented in [16]. The ERSS procedure involves randomly
selecting m, sets (each of size m, elements). The ele-
ments of each set are ordered with respect to variable
of the study by visual inspection or any other cost free
method. For an odd set size (OSZ), we select from the
first ((m; —1)/2) samples the smallest ranked unit, from
the other ((m, —1)/2) the largest ranked unit, and for
the last sample select the median of the sample for actual
measurement. For even set size (ESZ), we chose from
(m,/2) samples the smallest ranked unit and from the
other (m,/2) samples the largest ranked unit for actual
measurement. This procedure can be repeated g times
to obtain m,;q units from ERSS data.

The S-S reliability R= P (Y < X) is the probability of the
system working when a strength X is greater than a stress Y.
So, the system will stop working when the applied stress is
greater than its strength. Thus, the parameter R is a measure
of a system’s reliability, which has many applications in
physics, engineering, genetics, psychology, and economics.
There is an extensive literature on estimating R based on
SRS (see, for instance, [17-24]). However, in recent years,
statistical inferences about the S-S model based on the RSS
method have been considered by several researchers. Refer-
ence [25] discussed estimation of S-S reliability for exponen-
tial populations. Reference [26] proposed three estimators of
R when X and Y are independent exponential populations.
References [11, 27] discussed the estimation of the S-S
model when Y and X are two independent Burr type XII
distribution under several modifications of the RSS
method. Estimation of the S-S model for Weibull and
Lindley distributions has been discussed, respectively, in
[28, 29]. Reference [30] obtained a reliability estimator of
R for the exponentiated Pareto distribution under the
RSS scheme.

The S-S model is one of the important approaches in
reliability analysis. The S-S model can be used to solve a
variety of engineering problems, such as determining
whether a building’s strength should be subjected to the
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design earthquake, whether a rocket motor’s strength
should be greater than the operating pressure, and com-
paring the strength of different materials. The ILo is
one of the distributions which is used quite effectively
for modelling the strength of data used in economics,
geography, actuarial, and medical fields. It has been dis-
covered to be very flexible in analyzing situations with a
realized nonmonotonic failure rate, which has wide appli-
cations in modelling life components. The RSS method
and its modifications are frequently employed to gather
samples that are more representative of the underlying
population, when sampling units are expensive and diffi-
cult to measure but easy and inexpensive to arrange
according to the variable of interest. In this method,
ranking can be done using expert opinions, auxiliary var-
iables, or any other low-cost approach. Statistical infer-
ence on the S-S model, based on the RSS scheme and
its variations, has recently gotten a lot of attention. Due
to the importance of the ILo distribution in reliability
research, we propose to evaluate the reliability estimator
of the S-S model where the strength X ~ILo(p,w) and
stress Y ~ILo(p,p) are both independent. Under SRS,
RSS, and ERSS methods, the maximum likelihood (ML)
estimators of R are derived. Based on the ERSS scheme,
we get the ML estimator of R when both X and Y pop-
ulations have similar or dissimilar set sizes. We evaluate
the accuracy of estimators using absolute biases (ABs),
mean squared errors (MSEs), and relative efficiencies
(REs) in a simulated exercise. The remainder of this essay
is structured in the following manner. In Section 2, we
extract R’s expression and use SRS to calculate R’s ML
estimator. In Section 3, the RSS is used to obtain an esti-
mator for the S-S model. Section 4 presents reliability
estimators of the S-S model using ERSS methodology. A
numerical analysis is included in Section 5. Finally, in
Section 6, we bring the paper to a close.

2. Estimator of R Using SRS

In this section, we derive the expression of R as well as
obtain its ML estimator. Assuming that the strength X and
stress Y are independently distributed random variables
with the same scale parameter, where X ~ILo(p,w) and
Y ~ILo(p, ¢), the system’s reliability with stress variable
Y and strength variable X is given by the following:

R= Jooh(x)H (x)dx

y
0
“orf (D) e o
- wfgo'

The strength-stress parameter R given in (3) depends
on the shape parameters w and ¢. Let X;,X,,---,X,. be
a SRS of size n* from the ILo(p,w), and Y,,Y,,---, Y.
of size m* be SRS from the ILo(p, ) being independent
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with a common scale parameter. The log-likelihood of the
observed sample is given by

€zn'lnw+(n'+m')lnp+m’lngo

—ZZln.x (w+1) Lzlln<1+ﬁu>] @
—2glnyb-(¢+1)mzln<1+yﬁ).

b=1 b

The partial derivatives of € with respect to p, ¢, and w
are, respectively, given by

aah;e:%'_[iln(uxﬁ) , (5)

olne m'_ §In<l+£)
do 9 |5 Vb
Jlne

Setting Equations (5)-(7) with zero and solving numeri-
cally, we get the ML estimators of p, ¢, and w, say p, @,
and @. After that, the ML estimator of R, say R, is obtained
as follows:

S @
R=

(®)

<)

w +
3. Estimator of R Using RSS

We derive the reliability estimator when the random sam-
ples of strength X ~ILo(p, w) and stress Y ~ILo(p, ) are
observed from the RSS design. Let {X,(,),a=1,2,--,my,

e=1,2,- -,q} be a RSS of size n* —mlq for X where
Xa(a)e is the a'™ order statistics of size m, of the e™ cycle.

Similarly, let {Y}, ), b=1,2,+-,my, g=1,2,--,q,} be
a RSS method of size m‘ =myq,, where m, is the set size
and g, is the number of cycles. For simplified forms, we

use the notations X,, and Ybg instead of the notations
Xa(a)e and Yb(b)g, respectively, for easy understanding
and the simplicity. The pdf of Xae and Ybg are given,
respectively, by

m,!

@=1)(m, —a)! (H (%))

: [1 - H( ue)]Ml ah(xae)’xae >0,

b (1) = %( ()

[r-H(,)] ' (72> 72> 0.

th (xae) =

The likelihood function, say £,, based on RSS is given by
9 1my —(aw+1) —wm—a
¢ = cl°"2”<1+p> {1—<1+P) }
e=1 a=1 xae Xae Xae

9, m, ~(bp+1) - mb
g-1b=1  bg Vg Vg
(10)
C,=m!(a—1)(m, —a)!,C,=m,l/(b-1)!(m, - b)!.

The ML estimators of w, ¢, and p are the solutions of the
following equations:

alnE nt &G p)
- 1 £
2§ S (10 .
(my—a)In (1+(p/x,,))
+;; (1+ (plx,))° -1 =0
olne¢, m' &
=—-b In(1+ —
oy ()
b my (m, —b) ln< (p/ybg)) (12)
+ZZ 9 =0,
g=1b=1 (1+ (p/ybg>)
aln‘Zl:m'+n'_ q*%‘:(aw+1)
op P S (etp)
9 M

(ml B a)w(l + (P/xae))iwil
z xae[l - (1 + (p/xcw))iw]

ZZ (bp+1) (13)

As can be seen, we use iterative approaches to solve
Equations (11)-(13) because there are no explicit solutions.
As a result, the ML estimator of S-S reliability is obtained
based on the invariance property of ML estimators.

4. Estimator of R Using ERSS

In this section, we obtain the ML estimator of R when
strength X and stress Y have an ILo distribution under
the ERSS design. In these respects, the reliability estimator
is considered in two cases when both X and Y distribu-
tions have similar or dissimilar set sizes. We derive the
reliability estimator when the random samples of strength
X ~ILo(p, w) and stress Y ~ ILo(p, @) are observed from ERSS.

4.1. Estimator of R=P[Y o5, < X o5,]. Herein, we derive the
reliability estimator when the observed data of strength X



and stress Y populations are drawn from the ERSS scheme
with OSZ. Suppose that {X,;).;a=1,2,v-1}U
Ko, (v)e Y Xagm)er@=v, -+ (my — 1)} where e=1,2,---,q,
and v=[(m; +1)/2] are the ERSS scheme drawn from
X ~ ILo(p, w) with sample size m, q,, where m1 is the set size
and q, is the number of cycles. Let X, 1), Xy, ()e> and X,

are the smallest, median, and largest order statlstlcs from the
" set of size m, of the e™ cycle, respectively. The observed
ERSS with OSZ (for one cycle) is presented in Table 1.
The pdfs of the smallest, median, and largest order statis-
tics from the a™ set of size m, of the ™ cycle are defined,
respectively, as follows.

th (xa(l) e) =my |:1 - H(xa(l)e>:| ml_lh(xa(l) e)
—wq m;—1
- mee [1 ; <1 .2 )e> ] ”
—w-1
. <1 + xai)g) s Xg (1)e > 0,

e ()= 20 )]
[ swi] o)

) ml!pw . p —wv-1
[(V - 1)!]296%11(1/)6 xml (v)e

—w v-1
(o) T oo
x”’l(")e

(15)
b () = [ (tam )] )

—wm;—1
", pw p
= 1+ X >0.
2 >Ta(my ) e
xa(ml)e < xa(m])e>

(16)
Similarly, assume that {Y),;b=12,u-1}U
Yo g YL Yogm)g 0=+, my =1}, where g=1,2,--, ¢,

and u = [(m, + 1)/2] are the ERSS drawn from Y ~ILo(p, ¢)
with a sample size m,q,, where m, is the set size and q,, is the

number of cycles. Let Yy 1), Yoy, (45> and Yy, ), are the smal-

lest, median, and largest order statistics from the b'™ set of
size m, of the g™ cycle, respectively. The pdfs of the smallest,
median, and largest order statistics from the b™ set of size m,
of the g™ cycle are defined, respectively, as follows:

- my—1
m
Vb(1)g Vb(1)g (17)
—p-1
p
|1+ ¥ >0,
( (ybmg)) e
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TaBLE 1: The observed ERSS with OSZ.

Observed
X1y Xiw) Xim,) X1
Xv—l(l) Xv—l(v) Xv—l( ) Xv—l(l)
Xy) Xy Xy(m,) Xyim,)
Xom-1(1) Xom-1(v) Xom-1im)  Xm-1(m))
KXoy (1) Koy (v) Ko (m) KXoy (v)

m,'pep

—pu—1
! P
h — 1+
Y (y my (u) g) [(u~- 1)!]2y3n2(u)g ( (szw)g) >

—pqu-1
p
1-(1+ T 9> O
l ( (ymm)g))} e

(18)

—pm,—1
mypQ P
hy (ybm2 )=2—<1+< )) »Yo(my)g > 0-
my \7 b(my) g yi(mz)g Yi(ms)g (my) g

(19)

The likelihood function, say £,, based on ERSS method
with OSZ is given by the following.

The ML estimators of the parameters w, ¢, and p are the
solutions of the following equations:

o, n & |G| (m-1)InZ, a(l)e
<=+ —w -1 Za(
w w e; ; (Za(l)e) . N La(1)e

my—1
-m, Z InZ, . —vIn <1+ (x P()))
a=v my(v)e

(v=1)In (1 + (p/xml(v)e»
(1 + (p/xml(v>e>)w -1

+
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aez o N 4 |u-1 (m2 - 1) In Db(l)g “In Db(l)
Z Z ¢ g9

my—1
P
—m, Z InDy,, 15— uln (1+ <y ))
b=u my(u)g

(u—1)In (1 + (p/ym2<u>g))
(1 (ptrmann) -1 |

+

% _ n+m ZX: i wza(‘i)j (w+1)
ap e=1 | a=1 (1)e|: Z;E‘i) :| a(l)e+P
9y m,-1 ((sz + 1)

Z (wm1 +1

+P g=1 b=u yb(’”z)g+p

qz Z J9Dlg (1)
g=1 | b=1 b<1>g[ ~Diiyg ] Yog TP
(v— l)w(l + (p/xmlm )

)
xml(v)e[l - (1+ (p/xml )) w]l

where Za(‘r)e = (1 + p/xa(‘r)e)’ Db(‘rl)g = (]' + P/yb(‘rl)g)’ T=1
my, T, = 1, m,. We obtain the parameter’s estimator by solv-
ing numerically Equations (21)-(23) using an iterative tech-
nique. As a result, the S-S reliability estimator is produced
from (3).

4.2. Estimator of R=P[Y, < Xpq,]. Herein, we derive the
reliability estimator when the observed data of strength X
and stress Y distributions are drawn from the ERSS method
with ESZ. Let {Xa(l)‘Z ;a=1,2,-,c}U {Xa(ml)e =c+1,-,
m, } where e=1,2,---,q, and c¢=[m,/2] are the ERSS with
ESZ drawn from X ~ILo(p, w) with sample size m,q,. Let
Xa1)e and X,  are the smallest and largest order statistics
from the a o’ set of size m, of the e™ cycle, respectively. The
observed ERSS with ESZ (for one cycle) is represented in
Table 2.

The pdfs of X, 1), and X, ), from the a™ set of size m,
of the €' cycle are deﬁned in (14) and (16). Similarly, let
{Yya)g30=12,,dt U{Yy, , b=d+1,--,m,}, where
g=12,-q, and d= [m2/2] are the ERSS with ESZ
drawn from Y ~ILo(p,p) with sample size m, qy- The
pdfs of Yy1)g and Yy, ), from the b™ set of size m, of
the g cycle are deﬁned 1n (17) and (19). The likelihood

5
TaBLE 2: The observed ERSS with ESZ.
Observed
Xy X0 Xi(m) Xy
X Xeo Xem,) Xa)
Xc+1(1) Xc+1( ) Xc+1(ml) Xc+1(ml)
X"’l(l) Xml(f) X”‘l("’l) X””l(WH)

function, say ¢£;, based on ERSS with ESZ, is given by
the following:

eH[ i, (recn) T, (i e)]

e(lJy :; a=c+1 (24)
L) I e, )|
g=1 | b=1 b=d+1

The ML estimators of w, ¢, and p are the solutions of
the following likelihood equations:

0_m gy [z Ze
0 - ) [ a(l)e
e=1 [a=1 (Za(l)e) -1
- Z myInZ,, 0|
a=c+1
(25)
00, m (my—1)1In Dy,
o=t ) 72 ~In Dy,
o ¢ S5 (Db(l)g) 1
- 3 b,
b=d+1
(26)
0, n*+mt & ZC: w+1

_= 4

ap P e=1|a=1
Lowom; +1

a=c+1 ﬂ(ml) e TP

i)

g=1|b=1

o1
(my = 1)(PDbzpl)g e+l
Yoing (1 Difhyg) o *P

% om, +1
b=ar1 Vo(my)g t P




Setting Equations (25)-(27) with zero and solving
numerically, we obtain the ML estimators of w, ¢, and p.
Consequently, the S-S reliability estimator is provided
using (3).

4.3. Estimator of R=P[Y s, < X(gz]- Here, we obtain the
S-S reliability estimator when the observed samples of
strength X are drawn from ERSS with OSZ, while
observed samples of stress Y are drawn from ERSS with
ESZ. Let {X,1)e3a=12,,v=1}UX,, (), U{ X0 )er 0=
v,--,my — 1} where e=1,2,---,q, and v=[(m; +1)/2] are
the ERSS drawn from X ~ILo(p,w) with sample size
m,q,. The pdfs of X, X, ()e> and X, ). are provided
in Equations (14)-(16).

Suppose that {Yy(1),50=1,2,,d} U{Y, ,», b=d+
1,---,m,}, where g=1,2, -, qy and d = [m,/2] are the ERSS
with ESZ drawn from Y ~ILo(p, ¢) with sample size m,q,,

e

where the density function of Yy, and Yy, ), are obtained

in Equations (17) and (19). Hence, the likelihood function,
say ¢,, in this case, is given by the following:

' :Xl gl hX'”l (x” (ml)e) (28)
q m,

l_y[[ ﬁhn (ybu)g) II #., (waz)g)]'

g=1 [ b=1 b=d+1

The partial derivatives of w and ¢ are provided in (21)
and (26). The partial derivative of p is given by

x| v-1

oL, n*+m’ z
op P

(my = D)wZ,

Xa(1)e |:1 -

e=1|a=1

The parameter estimators of w, ¢, and p are the solutions
of the Equations (21), (26), and (29), and after setting them
to zero, the S-S reliability estimator is obtained consequen-
tially from (3).

4.4. Estimator of R = P[Y g, < Xpgy|- Here, we obtain the S-S
reliability estimator when the observed samples of strength
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X are drawn from ERSS with ESZ, while observed samples
of stress Y are drawn from ERSS with OSZ.

Suppose that {X,),5a=12, ¢} U{ X, pa=c+
1,---,m}, where e=1,2,---,q, and c=[m,/2] are the
ERSS with ESZ drawn from X ~ILo(p, w) with sample size
m,q,, with pdfs (14) and (16). Let {Y),3b=1,2, - u~
1JUY, g YL Yoon)gp b=t +1,---,my — 1}, where g =
1,2,-+-,q, and u={[(m, +1)/2] are the ERSS drawn from
Y ~ILo(p, ¢) with sample size m,q,, with pdfs (17)-(19).
Hence, the likelihood function, say £, in this case, is given
by the following:

e=1 | a=1 a=c+1
9 u-1 qy
TTTT v, (ve0y6) TTv. (Bsne) (30)
g=1 b=1 g=1
4y m,-1
hy,, (ybm ) g) :
g=1 b=u

The partial derivatives of ¢ and w are provided in (22)
and (25). The partial derivative of p is given by

The parameter estimators of ¢, w, and p are the solutions
of Equations (22), (25), and (31) after setting them to zero. As
a result, reliability estimator is obtained using (3).

5. Numerical Representation

This section introduces some simulations to assess how well
the ML estimation of the S-S reliability function worked
based on the proposed sampling scheme. A comparison is
made between different estimates based on SRS, RSS, and
ERSS methods. The following is a full description of the
simulated experiment.

(i) Using inverse transformation, 1000 random sam-
ples are created from the strength X ~ILo(p, w)
and stress Y ~ ILo(p, @) distributions
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TaBLE 3: Measures of R for different sampling schemes at R = 0.909.
SRS RSS ERSS Efficiency

(my, 1m,) R AB MSE R AB MSE R AB MSE  RE, RE, RE,

(2,2) 0.9177 0.0086 0.0026 0.9132 0.0041 0.0020 0.9021 0.0069 0.0012 1.2683 2.1667 1.7083
(2,3) 0.9141 0.0049 0.0020 0.9156 0.0065 0.0014 0.9347 0.0256 0.0010 1.4610 1.9808 1.3558
(3,2) 0.9065 0.0025 0.0022 0.9069 0.0027 0.0013 0.8227 0.0863 0.0129 1.7068 0.1750 0.1025
(3,3) 0.9088 0.0002 0.0018 0.9142 0.0051 0.0011 0.9342 0.0251 0.0011 1.6121 1.6549 1.0265
(3,4) 0.9099  0.0008  0.0013 09102  0.0011 0.0007  0.8897  0.0193  0.0010 1.8630 1.2477  0.6697
(4,3) 0.9105 0.0014 0.0012 0.9150 0.0059 0.0011 0.9244 0.0150 0.0005 1.1053 2.3774 2.1509
(44) 0.9132 0.0040 0.0013 0.9086 0.0004 0.0005 0.9079 0.0011 0.0004 2.6346 3.1860 1.2093
(5,5) 0.9095 0.0004 0.0014 09111 0.0020 0.0003 0.9357 0.0266 0.0009 3.7838 1.5217 0.4022
(6,6) 0.9051 0.0039 0.0008 0.9095 0.0004 0.0003 0.9092 0.0001 0.0002 2.2162 3.0370 1.3704
(7,7) 0.9085 0.0006 0.0008 0.9125 0.0034 0.0002 0.9361 0.0270 0.0008 3.0741 0.9651 0.3140

(i) The parameter’s values are chosen as (w, ¢) = (5,
0.5),(5,1),(5,2),(5,3), p=2, and the true value
for the system reliability R is determined as 0.909,
0,833, 0.714, and 0.625, respectively

(iii) The sample sizes are selected as (n*,m") = (10,
10), (10,15), (15,10), (15,15), (15,20), (20, 15),
(20, 20), (25, 25), (30, 30), (30, 30) for SRS

(iv) The number of cycles is set to be g, =q,=q=5,
while the set sizes are selected as (m;, m,) = (2,2),
(2,3), (3,2), (3,3), (3,4), (43), (4.4), (55),
(6,6),and (7,7). As a result, the sample sizes for
RSS and ERSS sampling designs are determined as
n*=mq,=mqand m* =myq, =myq

(v) A numerical technique is utilized to obtain the ML
of parameters and consequently the reliability esti-
mate using the three sampling strategies

(vi) The performance of the S-S reliability estimates for
the three sampling strategies is evaluated using
ABs, MSEs, and REs measures

(vii) The AB is defined as: AB(R,) = |E(R,) — R|, where
a = (Yggss < Xgrss)> (Yrss < Xrss)> (Ysrs < Xsrs)-

(viii) Three REs of reliability estimates R are provided
and defined as follows:

RE = MSE [R(YSRS <XSRS)]
1 = — bl
MSE [R(Ypss < Xpss)|
RE, - MSELR Yrs < Xsgs)] (32)
MS [R( ERSS < XERSS)]
RE. - MSE[R(Y ggs < Xpss)
L= =
MSE [R(Y pgss < Xgss)]

(ix) Tables 3-6 describe the reliability estimates R, ABs,
and MSEs based on SRS, RSS, and ERSS schemes.
The REs of R based on ERSS and RSS with respect

to SRS and RSS for various
presented in Tables 3-6

sample sizes are

Tables 3-6 and Figures 1-6 show the following numeri-

cal results:

(i) The reliability estimates via RSS are more efficient
than the corresponding based on SRS based in the
same number of measured units

(i) With the exception of (m,, m,) = (3, 2), R obtained
by ERSS are more efficient than those obtained
through SRS

(ili) Except for (m;,m,)=1(2,2),(2,3),(3,3),(4,3),
the MSEs of R based on RSS technique are smaller
than the corresponding via ERSS scheme at
actual value = 0.909, as shown in Table 3

(iv) Except for (m;,m,)=1(2,3),(4,3),(7,7), the
MSEs of R based on RSS scheme are more efficient

than the corresponding via ERSS at true value
R=0.833 (Table 4)

(v) At true value R=0.714, the MSEs of R based on
RSS scheme are more efficient than the correspond-
ing via ERSS except for (m,m,) =(2,2),(5,5) as
seen in Table 5

(vi) At actual value R = 0.625, the MSEs of R based on
RSS scheme are more efficient than the correspond-
ing ERSS, except for (my, m,) =(2,2),(3,3),(4,3)
(see Table 6)

(vii) The AB of RSS is smaller than SRS and ERSS in
most of the cases

(viii) Expect at true value R = 0.909 for (m,, m,) = (2, 3),
the MSE of R gets the largest value via SRS design
and smallest values via RSS scheme (see Figure 1)

(ix) Expect at true value R = 0.833, the MSE of R based
on ERSS scheme is smaller than those under RSS
and SRS methods at (m,, m,) = (2,2) (Figure 2)
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TaBLE 4: Measures of R for different sampling schemes at R = 0.833.
SRS RSS ERSS Efficiency
(my, 1m,) R AB MSE R AB MSE R AB MSE  RE, RE, RE,
(2,2) 0.8467 0.0133 0.0056 0.8506 0.0172 0.0043 0.8106 0.0227 0.0053 1.2910 1.0607 0.8216
(2,3) 0.8356 0.0023 0.0048 0.8368 0.0035 0.0024 0.8243 0.0090 0.0024 1.9959 1.9876 0.9959
(3,2) 0.8415 0.0082 0.0043 0.8401 0.0067 0.0026 0.7375 0.0958 0.0131 1.6500 0.3277 0.1986
(3,3) 0.8316 0.0018 0.0036 0.8355 0.0022 0.0022 0.8609 0.0276 0.0026 1.6484 1.3992 0.8488
(3,4) 0.8281 0.0052  0.0044  0.8340  0.0006  0.0023 0.8058  0.0275  0.0028 1.9295 1.5755 0.8165
(4,3) 0.8436 0.0102 0.0032 0.8341 0.0007 0.0019 0.8527 0.0193 0.0017 1.6545 1.8810 1.1369
(4,4) 0.8335 0.0002 0.0028 0.8334 0.0001 0.0014 0.8652 0.0318 0.0018 2.0072 1.5475 0.7709
(5,5) 0.8345 0.0011 0.0023 0.8384 0.0051 0.0010 0.8471 0.0138 0.0018 2.4421 1.2747 0.5220
(6,6) 0.8380 0.0047 0.0014 0.8318 0.0015 0.0005 0.8332 0.0001 0.0007 2.8600 2.1343 0.7463
(7,7) 0.8374 0.0041 0.0014 0.8360 0.0026 0.0005 0.8311 0.0023 0.0005 2.5000 2.8723 1.1489
TABLE 5: Measures of R for different sampling schemes at R =0.714.
(my,my) ~ SRS ~ RSS ~ ERSS Efficiency
R AB MSE R AB MSE R AB MSE RE, RE, RE,
(2,2) 0.7105 0.0038  0.0094  0.7153  0.0010  0.0082  0.6921 0.0222  0.0067 1.1569 1.4006 1.2107
(2,3) 0.7215 0.0072  0.0088  0.7144  0.0001 0.0039  0.7419  0.0276 ~ 0.0043 22545  2.0301 0.9005
(3,2) 0.7189 0.0047 0.0089 0.7156 0.0013 0.0055 0.6229 0.0914 0.0144 1.6148 0.6223 0.3854
(3,3) 0.7063 0.0080 0.0082 0.7230 0.0087 0.0035 0.6596 0.0547 0.0064 2.3671 1.2777 0.5398
(3,4) 0.7167 0.0025 0.0052 0.7192 0.0050 0.0025 0.6785 0.0358 0.0045 2.1215 1.1542 0.5441
(4,3) 0.7137 0.0005 0.0068 0.7168 0.0025 0.0034 0.6526 0.0617 0.0059 2.0208 1.1601 0.5741
(4,4) 0.7186 0.0043 0.0044 0.7201 0.0058 0.0021 0.7044 0.0099 0.0031 2.0909 1.3917 0.6656
(5,5) 0.7259  0.0116  0.0044  0.7136  0.0007  0.0015 0.7122  0.0021 0.0014 29329  3.1898 1.0876
(6,6) 0.7175 0.0032 0.0033 0.7098 0.0045 0.0011 0.7071 0.0072 0.0016 3.0370 2.0000 0.6585
(7,7) 0.7014 0.0129 0.0029 0.7109 0.0034 0.0008 0.7115 0.0028 0.0011 3.5556 2.6667 0.7500
TaBLE 6: Measures of R for different sampling schemes at R = 0.625.
(my, m) ~ SRS ~ RSS ~ ERSS Efficiency
R AB MSE R AB MSE R AB MSE RE, RE, RE,
(2,2) 0.6310  0.0060  0.0106  0.6311 0.0061 0.0080  0.6041 0.0209  0.0071 1.3167 1.4915 1.1328
(2,3) 0.6222 0.0028 0.0083 0.6252 0.0002 0.0058 0.6810 0.0560 0.0076 1.4251 1.0895 0.7645
(3,2) 0.6095 0.0156 0.0112 0.6225 0.0025 0.0070 0.5280 0.0970 0.0146 1.5852 0.7623 0.4809
(3,3) 0.6419 0.0169 0.0093 0.6301 0.0051 0.0041 0.6029 0.0221 0.0039 2.2451 2.3657 1.0537
(3,4) 0.6371 0.0121 0.0065 0.6305 0.0055 0.0025 0.5825 0.0426 0.0061 2.5754 1.0587 0.4111
(4,3) 0.6283 0.0033 0.0076 0.6278 0.0028 0.0032 0.6093 0.0157 0.0021 2.3634 3.7122 1.5707
(4,4) 0.6117  0.0133 0.0057  0.6283  0.0033  0.0028  0.5638  0.0612  0.0051 2.0106 1.1135 0.5538
(5,5) 0.6290 0.0040 0.0055 0.6290 0.0040 0.0016 0.6429 0.0179 0.0026 3.4313 2.0954 0.6107
(6,6) 0.6214 0.0036 0.0050 0.6270 0.0020 0.0011 0.6354 0.0104 0.0017 4.5596 2.9064 0.6374
(7,7) 0.6297 0.0047 0.0028 0.6211 0.0039 0.0009 0.6422 0.0172 0.0020 3.0769 1.3861 0.4505

(x) The MSE of R based on ERSS obtains the fewest values
compared to the others under RSS and SRS at true
value R =0.714 and (m,, m,) = (5, 5) (see Figure 3)

(xi) Figure 4 indicates that, at real value =0.909, the
MSE of R based on the ERSS scheme is smaller
than the comparable via RSS and SRS

(xii) Figures 3 and 4 indicate that the MSE of R
decreases as the true value of R increases

(xiii) For (m,, m,)=(2,2) the RE, of R based on ERSS
scheme is more efficient than those under RSS
and SRS except at true value R =0.833, as shown
in Figure 5
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FIGURE 6: Relative efficiency of R for different sampling schemes at (m,, m,) = (4, 3).

(xiv) Figure 6 illustrates that at (m,,m,)=(4,3), the 6. Conclusions
RE, of the ERSS scheme is more efficient than
those via RSS and SRS schemes with the exception ~ This article tackles the estimation of the S-S reliability R =
of true value R =0.714 P[Y < X] when the strength X and stress Y are independent
inverse Lomax distributed random variables. Maximum
(xv) The MSEs of the S-S reliability estimate in all  likelihood estimators of R are computed using the SRS,
schemes decrease as the actual value of R increases  RSS, and ERSS schemes. The reliability estimator is com-
in most of the cases (see Figures 1-6). puted in four situations using ERSS design. Simulation
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research is conducted to evaluate the performance of the
proposed estimates. From the simulation outcomes, it is
observed that the MSEs of reliability estimates based on
SRS data are bigger than the comparable based on RSS and
ERSS data, respectively. In most cases, at R=0.909, the
MSEs of reliability estimates under ERSS are the shortest
when compared to similar estimators based on RSS and
SRS data. The efficiency of all estimates improves as the
actual value of reliability increases in almost all cases. This
study showed that the reliability estimates based on RSS
are more efficient than those based on ERSS and SRS. For
most actual values of R, the reliability estimate via the ERSS
technique is more efficient than those under RSS and SRS for
small even set sizes. In some cases, estimates of reliability
obtained by ERSS are more efficient than those obtained
through RSS and SRS designs. In a future work, one may
consider the problem of estimating R based on double
extreme ranked set sampling [31], modified robust extreme
ranked set sampling [32], stratified quartile ranked set sam-
pling [33], and multistage percentile and quartile ranked set
samples methods [34, 35].
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