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This paper takes the advantageous ability of Kalman filter equation as a means to jointly realize the accurate and reliable extraction
of 3D spatial information and carries out the research work from the extraction of 3D spatial position information from
multisource remote sensing optical stereo image pairs, recovery of 3D spatial structure information, and joint extraction of 3D
spatial information with optimal topological structure constraints, respectively. Taking advantage of the stronger effect
capability of Wiener recovery and shorter computation time of Kalman filter recovery, Wiener recovery is combined with
Kalman filter recovery (referred to as Wiener-Kalman filter recovery method), and the mean square error and peak signal-to-
noise ratio of the recovered image of this method are comparable to those of Wiener recovery, but the subjective evaluation
concludes that the recovered image obtained by the Wiener-Kalman filter recovery method is clearer. To address the problem
that the Kalman filter recovery method has the advantage of short computation time but the recovery effect is not as good as
the Wiener recovery method, an improved Kalman filter recovery algorithm is proposed, which overcomes the fact that the
Kalman filter recovery only targets the rows and columns of the image matrix for noise reduction and cannot utilize the pixel
point information among the neighboring rows and columns. The algorithm takes the first row of the matrix image as the
initial parameter of the Kalman filter prediction equation and then takes the first row of the recovered image as the initial
parameter of the second Kalman filter prediction equation. The algorithm does not need to estimate the degradation function
of the degradation system based on the degraded image, and the recovered image presents the image edge detail information
more clearly, while the recovery effect is comparable to that of the Wiener recovery and Wiener-Kalman filter recovery
method, and the improved Kalman filter recovery method has stronger noise reduction ability compared with the Kalman filter
recovery method. The problem that the remote sensing optical images are seriously affected by shadows and complex
environment detail information when 3D spatial structure information is extracted and the data extraction feature edge is not
precise enough and the structure information extraction is not stable enough is addressed. A global optimal planar
segmentation method with graded energy minimization is proposed, which can realize the accurate and stable extraction of the
topological structure of the top surface by combining the edge information of remote sensing optical images and ensure the
accuracy and stability of the final extracted 3D spatial information.

of object surface points and other information and belongs
to a kind of stereo measurement technology [1]. Compared

Due to the limitations of scientific and technological develop-
ment, most of the data that people can obtain and process are
two-dimensional data. However, with the rapid development
of modern information technology and the expansion of com-
puter graphics applications, how to accurately and quickly
convert the real-world three-dimensional information into
computer-processable data has become the goal of human
efforts. 3D scanning technology can obtain 3D coordinates

with traditional measurement technology, this technology
can complete the measurement of complex objects with high
accuracy, high speed, and significant time and cost savings
and thus has important applications in the fields of 3D city
modeling, reverse engineering, cultural relic’s protection,
and reconstruction, large building construction, and building
deformation monitoring. However, because the surface of
complex ground objects can easily obscure the scanning lines,
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it is often impossible to obtain the point cloud data that
completely covers the surface of the scanned object by one-
stop scanning, and it is necessary to set up stations at different
locations and multiview scanning to obtain the local point
cloud data of each part of the target object and then obtain
the complete point cloud data of the scanned object through
the point cloud data stitching process [2, 3]. The stitching
error exists in the process of point cloud stitching, and the
error will gradually accumulate with the increase of the
number of stitching stations, plus the measurement error
of the station data, resulting in the stitching error getting
larger and larger. Therefore, the overall stitching of multista-
tion data can be based on the classical algorithm in dynamic
positioning [4].

The 3D reconstruction is one of the most popular direc-
tions in the field of computer vision, which is the application
of transforming the acquired 2D image information of an
object into 3D stereo information of the object in space.
Therefore, the study of 3D reconstruction has academic
significance and practical value. It is a multidisciplinary
intersection research field and has great importance in com-
puter image processing. Kalman filtering is used to seek a
recursive estimation algorithm with the minimum mean
square error as the best estimation criterion, and its basic
idea is as follows: through the state-space model of signal
and noise, the estimated value of the state variable is updated
according to the estimated value of the previous moment
and the observed value of the current moment, and the esti-
mated value of this moment is found, which is suitable for
real-time data processing. The essence of Kalman filtering
is to reconstruct the state vector of the system from the mea-
sured values [5]. This article attempts to focus on the inter-
action between viewers based on the Kalman filter equation
and three-dimensional space. This research can also enable
image art works to better interact with viewers and artists,
so that viewers can have a better and deeper experience of
three-dimensional images and can also better participate in
three-dimensional images, optimizing design [6, 7].

The traditional image restoration methods need to esti-
mate the degradation function of the degradation system,
poor noise reduction ability, and long running time of the
algorithm. In order to achieve the purpose of reducing the
noise in the image, keeping the edge detail information of
the image, and shortening the running time of the algorithm,
this paper proposes an alternating Kalman filter image resto-
ration algorithm, which is better than other methods
through several experimental simulations. In the first chap-
ter, this paper introduces the present and significance of
the study of 3D spatial images based on Kalman filter equa-
tions and also explains the research framework of this paper.
In Section 2, the current status of image restoration at home
and abroad is analyzed in detail, and problems such as the
need to estimate the degradation function of the degradation
system, the poor noise reduction capability, and the long-
running time of the algorithm are addressed. In Section 3,
an alternating Kalman filter image restoration algorithm is
proposed. The mathematical model of multisource remote
sensing optical stereo image for 3D spatial position informa-
tion extraction is also analyzed in detail based on the
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Kalman filter equation model. The problem that the mathe-
matical model of 3D spatial location information extraction
is a hierarchical linear model rather than a standard linear
model is addressed by the imbalance of the observations of
multisource data. Section 4 shows that the method can effec-
tively achieve the task of 3D spatial structure information
recovery of image data through simulation and experimental
results on real data. Under the guidance of key structure
points, the accurate and reliable 3D spatial information
extraction of buildings is achieved by combining multi-
source optical stereo image pairs and image data. Section 5
summarizes the research work done in this paper, points
out the innovation points and shortcomings in the research,
and looks forward to the next research content and the
expected results to be achieved.

2. Related Work

The overall scanning of an object usually requires several
stations, but the scanning of large scenes often requires
dozens or even hundreds of stations, which makes the stitch-
ing of 3D point cloud data very complicated. Heo et al.
proposed a dynamic stitching algorithm similar to the
Kalman filter algorithm, which is based on the theory of
instantaneous dynamics and its construction of a geometric
distance function to a surface [8]. Nguyen et al. successively
proposed a stitching algorithm based on the continuous
Kalman filter equation to evaluate the alignment parameters
of two rigid object point clouds, which is suitable for the
alignment of large data volumes because it has less opera-
tions and higher operational efficiency [9]. The Kalman filter
algorithm has the accuracy of at least second-order Taylor
series expansion, its computational accuracy is higher than
that of the extended Kalman filter algorithm; another advan-
tage of this algorithm is that the computation of the trans-
formation parameters changes as they change [10]. If these
parameters are very different for the real scheme, this algo-
rithm may not get better alignment results, and this draw-
back limits its application in large-scale transform. Bae
et al. proposed the use of Kalman filter in multivariate
remote sensing image union, alignment and fusion for the
localization, and alignment errors of remote sensing images
and their propagation errors, giving the computed union.
The simulation experiments show that the algorithm is faster
in convergence and higher in accuracy than other methods
of joint data alignment executed separately [11].

The search for image restoration methods that effectively
reduce noise, retain clear edge detail information, and are
computationally small has focused on Kalman filtering
[12]. The shortcomings of the Wiener filter prompted the
search for new methods that could directly design optimal
filters in the time domain [13]. Huang and Sun proposed a
dual implementation of the Kalman filter that uses sparse
noisy acceleration measurements to estimate the unknown
inputs and states of a linear state-space model [14]. Deng
et al. proposed a Kalman filter-based principle for calculat-
ing distorted image sequence for calculating the initial guess
of a deformed image sequence, which determines the initial
guess for each image pixel and calculates the predicted value
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from the observed values [15]. Patra proposed a Kalman
filter-based approach for neural network classification per-
formance; a Kalman filter-based linear model is established
as a postprocessing, which uses the target features; and the
predicted linear combination of the output transforms the
predicted output of the neural network into a value close to
the desired output, and the validation results show that the
Kalman filter-based linear model can improve the perfor-
mance of the original neural network [16]. The distance
between points in image data is often much larger than the
plane fitting error, which means that the two are not on the
same scale; then, the data cost, spatial smoothing cost, and
labeling cost are put together to form a single-scale energy
function like image segmentation, and it is difficult to make
the three balanced by setting different weights [17, 18].

Due to the limitations of the computer itself, the biolog-
ical vision simulated by the computer has great limitations
in the edge detection, target tracking, information process-
ing effect, and feature extraction and real-time performance
of the target [19]. At present, there are a large number of
image processing algorithms; almost every algorithm has
its own flaws. The technology of automatic key point match-
ing, surface triangulation, binocular reconstruction, and
three-dimensional point stitching is adopted. The complete
three-dimensional structure of the object is generated
through image point extraction, key point matching and
reconstruction, triangulation, and data fusion [20]. For opti-
cal images, in order to give full play to their horizontal
spatial position information extraction accuracy, rich
semantic information, step structure feature positioning accu-
racy, and other advantageous capabilities of the prerequisite
are the support of stable and reliable three-dimensional
spatial structure a priori information. For airborne image
data, after realizing the effective recovery of its carrying 3D
spatial structure information, a stable and reliable optimal
segmentation method of building top surface is needed to
realize the effective extraction of 3D spatial structure informa-
tion. Most of the existing image data segmentation
methods need to carry out local feature analysis point by
point in a passive way and then passively carry out region
growing and clustering operations according to the local
feature similarity of the data to achieve and are vulnerable
to noise and wild value point images. For this reason, a
global optimal segmentation method for image data needs
to be implemented in a more proactive way with the aim
of stable and reliable segmentation.

3. 3D Spatial Image Optimization Research
Based on Kalman Filter Equation

3.1. Kalman Filter Equation Optimization Algorithm. Due to
the large volume of the actual collected 3D laser point cloud
data, it will be difficult to guarantee the fitting accuracy if the
whole measurement data is fitted at one time. For this rea-
son, this paper adopts segmented fitting of the central axis
first and then uses the weighted overall least-squares method
to fit the central axis of the station as the final stitching con-
trol condition. Introduce the concepts of probability theory
and mathematical statistics. According to the prerequisite

of Kalman filtering, the system noise is Gaussian white noise;
that is, the presence of external interference and other fac-
tors makes the position and velocity in the dimensional
space image conform to the Gaussian distribution; that is,
they have their own expectation and variance and because
position and velocity are both related.

Fitting a discrete point cloud with a quadratic parametric
surface presupposes parameterizing the point cloud data.
First, the local tangent plane of the point cloud is deter-
mined. In this paper, a constrained least-squares plane is
used, i.e., the center point of the tangent plane is directly
taken as the point cloud shape center x. Only the unit
normal vector n of the tangent plane needs to be calculated
so that the sum of squared distances from the adjacent
points to the tangent plane is minimized. Each point P,
(i=1,2,---,N,N >10) in the PD is connected to x; to obtain
N directed line segments, and then, the dot product with the
x vector, respectively, which is denoted as f(x),, and the
obtained du values are sorted, and the maximum value is
denoted as f(max), and the minimum value is denoted as
f(min), as in the following equation:

x)dx = f(x)max_f(‘x)i
L @

Similarly, the y parameter value of each point in PD can
be obtained. The parameterization of the local discrete point
cloud is realized by applying the obtained PD parameter
values to the corresponding D. The equation of the quadratic
parametric surface is expressed in the form of equation (2),
where A is a 3 X 3 matrix consisting of vector elements A;;.
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The component form of equation (2) can be expressed as
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The other two-component elements b and ¢ of A are
defined similarly to a. The values of x and y in F have been
derived by the above point cloud parameterization method,
and A consists of three vector elements a, b, and c. Now,
assume that there are N + 1 measurement points F; (x;, ,,
z;), and these points correspond to parameter values (x;, y,),
i=0,1,2, -+ ,N. A is expressed by equation (4), which
minimizes the sum of the squared Euclidean distances from
each point being fitted to the quadratic parametric surface.

FT'+F
A:
FTF

+ FT(x;,7,)- (4)

The upper limit of model parameter concentration is set as
the end condition of the cycle, and the model parameters are
solved by randomly selected sample sets, and the mean value
m of the model parameters is used to represent the location



distribution of the model parameters, where the concentra-
tion of the model parameters is expressed as the frequency
of different parameter intervals. If the difference between the
newly solved model parameters and the calculated model
parameters is within the given threshold A, the two sets of
parameters are considered to be consistent and the concentra-
tion of the consistent model parameters is increased; other-
wise, the mean value of the new model parameters is
recorded as the interval dispersion value to update the model
parameter interval distribution. The above process of random
extraction, calculation of model parameters, and comparison
is cycled, and iterative statistics of model parameters are per-
formed until the end-of-cycle condition is satisfied. The basic
flow of the Kalman filtering method for 3D laser point clouds
incorporating reflection-valued images and Kalman filtering
is shown in Figure 1.

Because each estimate builds on the previous one, the
refinement of the estimates gradually increases with the
input of low-resolution images. This process is not incon-
sistent with the state estimation of the Kalman filter,
where the state of the Kalman filter is a discrete-time
controlled process which governed by a linear stochastic
difference equation.

M, ,=4A,+*M,+B, «X,+C, Y, +w,. (5)

Since low-resolution image sequences are null-question
discontinuous, thus, regularization needs to be introduced
to solve null-question continuous domain problems to
avoid being trapped in local extrema. Therefore, a form of
regularization is included into the cost function to constrain
the solution space or stabilize the problem space. By impos-
ing this constraint on the pathological problem, the problem
is subsequently transformed into a fitness problem. Our pro-
posed fast feedback model is also an improved example of a
regularized constrained cost function as shown in equation
(6). The A is a weighting factor which is used to balance the
two constraint terms to prevent disjoint minimization.

M
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In the image restoration process, different initializations
can affect the recovery of Kalman filter. The Kalman filter ini-
tialization parameters often need to be determined based on a
priori knowledge and multiple experiments. In this paper, the
values of the observed noise matrix and the system noise
matrix parameters that can achieve the desired results are
finally determined after several simulations based on the a
priori knowledge. Although the Kalman filter recovery
method can retain the edge detail information of the recov-
ered image better while reducing the noise, the former is
not as good as the latter compared with the Wiener recovery
method. In order to effectively reduce the noise in the image
and also shorten the running time of the algorithm, an alter-
nating Kalman filter image recovery algorithm is proposed
in this paper. The filtering gain equation is shown in the
following equation:
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K(x)=A(x,x=1) % B(x) +A(x,x=2) * B(x—=1). (7)

The estimated error variance array equation is shown in
the following equation:

1-A(k+1,k)B(k—1)

Z(k) = Ak k—1)

(8)

The image points to the object, the essential characteris-
tics of an existing or fictitious object. For the observation of
an object, it has been selected, in the classical period selected
for beauty. By selecting scenes and unique individuals, the
modern rather expresses a scene and important events.
The essential intuition or essential extraction of the object
has actually extracted the object reproduction. The so-
called intrinsic intuition is that even if it is realistic and
figurative, it is essentially intuitive and the form presented
by the work already has an imagination of the subject.

3.2. 3D Spatial Image Structure Information Extraction. The
image pixel-based alignment does not need to extract the
features of the image, it mainly uses the pixel grayscale of
the image to make comparison, and the research on the
alignment algorithm based on the grayscale distribution of
the image is relatively in progress, so it is more mature in
development. Usually, the grayscale matrix of a window of
a certain size is extracted as a template in one image, and
the matching block is searched in another image based on
some or several similarity measures, and the relative dis-
placement between the matched blocks is the displacement
of these two images. When the template M is searched in
another image, the common similarity measure is normal-
ized intercorrelation. Suppose the search map under the
template cover is labeled as submap CY; then, the normal-
ized intercorrelation is shown in the following equation:

Mz
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In the transform domain-based alignment method,
because the technique of frequency domain alignment has
a relatively high tolerance to noise and has a certain resis-
tance to light changes, the common method to deal with
the alignment problem down in the frequency domain is
the phase correlation technique; to calculate the magnitude
of the translation between the two images, let g(m, n),,, be
the image of g(m, n); after translation x, and #; in the m
and n directions, as in equation (10). Under some metric,
the same physical feature will show similar or similar prop-
erties on both images, so given a point in one image, match-
ing will always search for a point with similar properties on
the other image to be used as the matching point. Compared
with the observation point distance, the change of depth
caused by the four convexities of the object surface is very
slow, so the inspection number will also be slow, in other
words, the parallax has continuity. The order between the
matching points corresponding to the same polar line on
the image is consistent, and there is no phenomenon that
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FiGure 1: Point cloud flow chart based on Kalman filter.

the feature sequence of the image crosses with the spatial
coordinate sequence. These matching constraints not only
improve the matching accuracy but also reduce the match-
ing workload and thus improve the matching speed.
glmm),y = g(m-mun-n), iC[LN.  (10)

The selection objective is to randomly select n points
from the candidate reference point set 2 composed of N
discrete points that are distributed as uniformly as possible
in the test space where Q is located. To achieve this purpose,
the target image is first dissected into M = w x w (as shown
in Figure 2(a)), and then, the [0,1] interval is divided into
M subintervals, and the interval length of each interval is
defined as N;/YN, i< [l,M], where N; is the number of
the ith candidate point, as shown in Figure 2(b). When
selecting control points, pay attention to the sequence of
points and points. When selecting control points locally,
do not follow blindly. Just place the points when you see
corners, intersections, and other terrain. The result can only
be that the local correction is better, but the overall view is
not ideal. Spot density and unevenness, large amount, and
disorder will not produce good results.

The purpose of the uniform control point selection
method is to select the control points that can fully reflect
the target scene information to improve the accuracy and
effectiveness of the related processing. However, the classical
control point selection method mainly realizes the selection
of uniformly distributed control points in a horizontal two-
dimensional space. Obviously, for those control points used
for 3D spatial information extraction, the uniform distribu-
tion of the entire 3D space should be considered in order

to better reflect the uniform distribution of the point set.
In addition, whether manually selected or automatically
selected, ground control points or reference points are often
corner points, intersection points, special shape center points,
and other points with obvious geometric features in the scene.
In order to better extract the correlation between point
sets, it is necessary to obtain the information related to their
image neighborhoods. Considering that reference points are
mostly edge points, intersection points, corner points, etc.,
the neighborhood need not be taken as large. Here, we take
the4 * 4neighborhoods of the reference points and then
classify the reference point set by the correlation between
the neighborhoods. The correlation coefficient between
neighbors is calculated as in the following equation:

N~
I
T
88
™z
Mz

Il
—
-

Il
—

(X(i’j)_mi)(y(i’j)_mj)’ (11)

where X (i, j) and Y(i, j) are the grayscale values of the pixels
at positions (i, ) in the neighboring image blocks I and |
corresponding to any two control points to be selected; m;
and m; are the grayscale mean values of the corresponding

image blocks, respectively. The image data contains only
3D spatial coordinates without any topological structure
information. For this reason, establishing a local neighbor-
hood system is an important prerequisite for realizing local
structure feature analysis of image data. In addition to the
computed features (such as slope, flatness, roughness, and
other features obtained by using local plane fitting), local
shape analysis using eigenvalue features that can describe
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local structure shape information obtained by analyzing the
covariance matrix of the local neighborhood point set using
PCA technique is the most important method to perform
local structure feature analysis of image point clouds. For a
local neighborhood point set, the covariance matrix is shown
in equation (12), where b is the number of points in the local
neighborhood point set and A is taken as the mean point of
the local neighborhood point set. The eigenvalues of the
covariance matrix N are obtained by performing singular
value decomposition.

M(i, b) = (M),
b (12)
N= lim Y [(A;-avg(A))(B, -avg(B))|".

—

i=1

In order to successfully implement the above algorithm,
an effective estimation of the initial weight matrix is required.
Obviously, the weight matrix is designed to balance the prob-
lem of unbalanced multisource image resolution due to
differences in multisource imaging systems. For this case, in
the case of two multisource optical images forming a stereo
image pair, for example, most of the existing methods use
empirical initial matrix assignment methods. Especially for
large scene images and large inclination images, the resolu-
tion of each pixel in the image is not exactly the same, and
this difference is not negligible when performing accurate
3D spatial position information extraction.

4. Analysis of Results

4.1. Optimization Algorithm Analysis. Figure 3 shows the
data comparison of several image restoration methods.
Observing Figure 3, it can be seen that in the same image,

the Wiener-alternating Kalman filter recovery image has the
smallest mean square error and the largest peak signal-to-
noise ratio, and the Kalman filter recovery image has the larg-
est mean square error and the smallest peak signal-to-noise
ratio, and the other images are Wiener-Kalman filter recovery
image, alternating Kalman filter recovery image in order.
Therefore, the noise reduction ability in order of strength is
Wiener-alternating Kalman filter recovery method, Wiener-
Kalman filter recovery method, alternating Kalman filter
recovery method, and Kalman filter recovery method.

The results of counting the feature points extracted from
the reflection value images corresponding to each neighbor-
ing point cloud and the retained pairs of the same name are
shown in Figure 4. From Figure 4, it can be seen that due to
the large geometric deformation of the global reflectance
images, especially for the reflectance images generated from
point clouds in narrow space, the Kalman filtering algorithm
still extracts many incorrect feature points, but the homony-
mous point recognition by Kalman filtering equation retains
enough feature point pairs for the subsequent stitching
process, and the correct homonymous points among the
neighboring stations are about 32.7%.

The deviation of the control points of the first station
relative to their initial coordinates before and after the splic-
ing was calculated according to the conversion parameters of
Kalman filter, and the calculation results are shown in
Figure 5. It can be seen that after the improvement of the
splicing scheme, the accuracy of double-war splicing has
been greatly improved, but with the increase of the number
of splicing stations, the accumulation of splicing errors is
serious, which leads to the unsatisfactory splicing effect of
the later stations. The maximum value of the point deviation
of the control point under the dual-station splicing is
0.29446719m, the minimum value is 0.29282320m, and
the average value is 0.29375842m. After its own closed
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Kalman filter, the maximum value of the point deviation of
the control point is 0.00465297 m, the minimum value is
0.00077715m, and the average value is 0.00209397 m. The
results in Figure 5 show that Kalman filtering solves the

problem of splicing error accumulation very well. Therefore,
the point cloud stitching accuracy is significantly improved
by adjusting the conversion parameters of each station by
its own closed Kalman filter. The Kalman filter proposed
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in this paper is a stitching method based on the self-closing
condition, which makes the data acquisition workload large
and the point cloud stitching workload also large, which will
be limited in practical applications; in addition, if the stitch-
ing of 3D image data of several kilometers or even tens of
kilometers in length is performed, the error accumulation
will be very serious and the stitching accuracy of this method
will be difficult to guarantee.

Based on the projection-based central axis extraction, the
global consistent central axis extraction and the normal
central axis dynamic extraction methods are proposed to
improve the accuracy of the central axis fitting of 3D images
and provide references for the control conditions of point
cloud stitching and the deformation monitoring of 3D
images. A simple algorithm and generalized prior probabil-
ity estimation method based on iterative statistics of model
parameters are proposed, and the BAYSAC algorithm is
improved to realize a high-precision discrete point cloud
local surface fitting method by combining quadratic para-
metric surfaces, which provides a reference for its applica-
tion in reverse engineering, deformation monitoring, 3D
modeling, etc. The stitching of 3D point cloud data is real-
ized by fusing reflection-valued images, introducing Kalman
filtering into the stitching process of a large amount of point
cloud data, and adding 3D image axis information as the
stitching control condition, which effectively improves the
problem of continuous accumulation of point cloud stitch-
ing errors and provides a guarantee for the subsequent
processing and application of 3D laser point cloud data.

4.2. Optimization Design Analysis. Since there are limitations
in machine wood, it is necessary to add bionics to computer
processing, and we analyze the addition of the Ehrman filter
mechanism to the 3D reconstruction next. Due to the selec-

tivity of the Ehrman filter, the efficiency of 3D reconstruc-
tion can be greatly improved, and the experimental results
are shown in Figure 6. We can see the time saving from
Figure 6. Due to the selectivity of the Ehrman filter, the total
significant map of the image is reconstructed in 3D, and the
time is shortened from 20212ms to 11212ms. Due to the
different features that the image itself has, here are two other
images with better results. Since this image is richer in
information, the reconstructed 3D effect is also better, as dis-
cussed earlier. We can see that the time is shortened from
24821 ms to 3613 ms, so it is said that adding the Ehrman fil-
ter feature to the computer processing will be a great
improvement. Some image reconstruction effects are good,
some image reconstruction effects are not good, and in the
3D reconstruction with the attention mechanism, the result
shows that the efficiency is improved.

Success rate is another quantitative representation of the
accuracy performance of the optimal design algorithm,
representing the coverage of the target in each frame of the
image sequence by the optimal design algorithm. The center
position error is judged mainly based on the center position
of the target, ignoring the consideration of the target scale.
The success rate, on the other hand, takes more into account
the target frame covered by the rectangular frame of the
optimal design optimization. Compared with the center
position error, the success rate is judged on a more global
basis. Figure 7 gives the experimental results of the success
rate of the improved Kalman filter algorithm and the other
nine algorithms. From Figure 7, the success rate of KSTC
algorithm is the highest for the jumping sequence, which
indicates that the improved Kalman filter can successfully
cope with the fast motion of the optimized design target
and the blurred background. The improved Kalman filtering
algorithm can successfully cope with the scale
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FIGURE 7: Success rate of optimization results.

transformation of the target object in the FaceOcc2
sequence, and the improved Kalman filtering algorithm
can cope with the local occlusion of the target object more
effectively than the STC algorithm. In the jogging sequence,
the STC algorithm fails to optimize the design, but the
improved Kalman filter algorithm successfully optimizes
the design to the target location and achieves the highest
success rate.

In order to verify the information optimization design
effect of each method, the peak signal-to-noise ratio between
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Ficure 8: PSNR comparison of design optimization results by
various methods of information.

the rasterized reference image without distorted data and the
optimized design rasterized image is calculated. The specific
experimental results are shown in Figure 8.

Considering the noise reduction capability, the clarity of
the recovered image, and the time used by the algorithm, it is
concluded from the above analysis that the mean square
error of the Saturn and Peppers plots is 8.78% and 4.04%
higher for the alternating Kalman filter recovery than the
Wiener recovery, and the peak signal-to-noise ratio is
basically the same. The calculation time of the alternating
Kalman recovery is the percentage of the Wiener recovery
time: Saturn, 1.7%, and Peppers, 1.9%. Therefore, the alter-
nating Kalman filter recovery takes less than 1/50 of the
Wiener recovery with approximately the same recovery
effect. The alternating Kalman filter recovery has a signifi-
cant advantage over the Wiener-Kalman filter recovery and
Wiener-alternating Kalman filter recovery in terms of algo-
rithm running time. The alternating Kalman filter combines
the noise reduction ability, the clarity of the recovered
image, and the time used by the algorithm, which is better
than the other image recovery methods. However, as the
noise level increases, the recovery effect of the alternating
Kalman filter image recovery method becomes worse, but
the recovery time does not change significantly.

5. Conclusion

The content of this chapter is linked with the stable and
reliable extraction of topological structure information of
the top surface of 3D image data and realizes the accurate
and reliable extraction of 3D spatial information of images
by combining remote sensing optical stereo image pairs
and 3D image data. To reduce the noise in the degraded
image, present the edge details of the recovered image
clearly, and shorten the running time of the algorithm at
the same time, an alternating Kalman filter recovery method
is proposed in this paper. The alternating Kalman filter
recovery method is compared with the Wiener recovery
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method, Kalman filter recovery method, Wiener-Kalman
filter recovery method, and Wiener-alternating Kalman filter
recovery method, and through multiple simulations, the
images obtained by the alternating Kalman filter recovery
method can clearly present the image edge detail informa-
tion under the same noise, which is better than the joint
Wiener recovery method and Wiener-Kalman filter recovery
method for remote sensing. When optical images and 3D
spatial information are extracted, the details of building
structures in remote sensing optical images are disturbed
by shadows and details of the surrounding environment,
for which topological structure information needs to be pro-
vided by image data for constraint and compensation, while
the image data extracts step features/edges imprecisely and
the topological structure information extraction is unstable.
To address the above problems, a global optimal segmenta-
tion method based on graded energy minimization of image
data is proposed. By constructing a graded energy minimiza-
tion objective function adapted to the image data, the global
optimal extraction of topological structure information of
the top surface of the image is stably achieved, and the accu-
racy of the joint extraction performance of the final image
3D spatial information is ensured. Finally, the accurate and
reliable extraction of the top surface 3D spatial information
of the image is realized under the support of the above inno-
vative research results. Obviously, the research of the
content of this paper effectively improves the utilization effi-
ciency and performance of remote sensing multisource data
for image 3D spatial information extraction, which has
obvious economic and social value. The coefficients in the
observation and prediction equations of Kalman filter are
obtained through repeated experiments, so in future
research, accurate equation coefficients will be obtained to
improve the effect of alternate Kalman filter image recovery.
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