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In this paper, we obtain the existence of pullback attractors for nonautonomous Kirchhoff equations with strong damping,
which covers the case of possible generation of the stiffness coefficient. For this purpose, a necessary method via “the
measure of noncompactness” is established.

1. Introduction

Let Ω ⊂ℝn be a bounded domain with smooth boundary ∂Ω.
We consider the following Kirchhoff wave model with strong
damping:

utt − Δut − ϕ ∇uk k2� �
Δu + f uð Þ = h x, tð Þ, inΩ × τ,∞ð Þ,

uj∂Ω = 0, u x, τð Þ = u0τ xð Þ, ut x, τð Þ = u1τ xð Þ, x ∈Ω, τ ∈ℝ,

 
ð1Þ

where hðx, tÞ is a time-dependent external force term, u0τ
and u1τ are initial data, and ϕ and f are nonlinear functions
specified later.

To describe small vibrations of an elastic stretched
string, Kirchhoff [1] introduced the equation

ρh
∂2u
∂t2

= p0 +
Eh
2L

ðL
0

∂u
∂x

� �2
dx

( )
∂2u
∂x2

+ g, ð2Þ

where u = uðx, tÞ is the lateral deflection, 0 < x < L the
space coordinate, t ≥ 0 the time, E the Young’s modulus, ρ
the mass density, h the cross-section area, L the length, p0
the initial axial tension, and g the external force. It has been
called the Kirchhoff equation since then. In general, we call
the Kirchhoff equation nondegenerate if the stiffness ϕ sat-

isfies the strict hyperbolicity condition ϕðsÞ ≥ c > 0 and
degenerate if ϕðsÞ ≥ 0 on ℝ+. Obviously, the degenerate stiff-
ness coefficient ϕðsÞ in (1) corresponds to the case that the
initial axial tension equals zero.

From the mathematical point of view, global existence of
the model like (2) has been proven in a multitude of special
situations in Ω ⊂ℝn. We refer to [2–5] for the analytic data,
[6–9] for the dispersive equations and small data, and
[10–15] for the weak damped equations.

Introducing the strong damping term −Δut provides an
additional a priori estimate. Certainly, from the physical
point of view, the dissipative plays an important spreading
role for the energy gathered arising from the nonlinearity
in a real process. Concerning Kirchhoff equations with
strong dissipation, the first result on the well-posedness we
are aware of was obtained by Nishihara [16]. He proved
the global existence of the solution for the model utt − Δut
−mðk∇ukÞΔu = 0. In recent years, many mathematicians
and physicists paid their attentions to this type of problem
and obtained the well-posedness under different types of
hypotheses, such as the absent source term [17] and the sub-
critical source term [18–23]. In general, the exponent p∗ =
n + 2/ðn − 2Þ+ is called to be critical when someone studies
the problem in H1

0ðΩÞÞ × L2ðΩÞ. Assuming the stiffness fac-
tor is nondegenerate (ϕðsÞ ≥ ϕ0 > 0), References [18–24] also
proved the existence of the attractor. In the case of possible
degeneration of the stiffness coefficient and the case of
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supercritical source term (p∗ < p < ðn + 4Þ/ðn − 4Þ+), the first
result on the well-posedness we are aware of is given by
Chueshov [25]. However, when he proved the existence of
a global attractor for problem (1) in the natural energy space
ðH1

0ðΩÞ ∩ Lp+1ðΩÞÞ × L2ðΩÞ endowed with a partially strong
topology (in the sense, if ðun0 , un1Þ⟶ ðu0, u1Þ with a par-
tially strong topology, then ðun0 , un1Þ⟶ ðu0, u1Þ strongly in
H1

0 × L2 and un0 ⇀ u0 weakly in Lp+1), he assumed that

ϕ sð Þ > 0, ∀s ≥ 0, ϕ ∈ C1 ℝ+ð Þ: ð3Þ

Under this condition, one can conclude that ϕð
k∇uðtÞk2Þ ≥ c0 > 0 if ∥∇uðtÞ∥ is bounded for t ∈ℝ+. Recently,
Ma et al. [26] proved the existence of the global attractor in
the case of degeneration for the autonomous Kirchhoff
system.

The pullback attractor is a basic concept to study the
longtime dynamics of nonautonomous evolution equations
(see [27–32] and references therein). It is worth mentioning
that there are only a few recent results devoted to the pull-
back attractor for nonautonomous systems like (1). In
2013, Wang and Zhong [33] investigated the upper semicon-
tinuity of pullback attractors for problem (1) with ϕðsÞ = 1
+ εs (ε > 0) and ∣f ′ðuÞ ∣ ≤Cðjuj2/ðn−4Þ+ + 1Þðn ≥ 3Þ. Recently,
Li and Yang [34] studied the robustness of pullback attrac-
tors with ϕ′ðsÞ ≥ 0, ϕð0Þ = ϕ0 > 0. We notice that all these
publications assume that the stiffness factor is nondegener-
ate, or more precisely, ϕð0Þ > 0 and ϕ is nondecreasing.

In this paper, we consider the problem (1) under the
degenerate hyperbolicity condition ϕðsÞ ≥ 0. We do not
assume that ϕ is monotone and allow ϕð0Þ = 0, such as ϕðs
Þ = bsγ (degenerate and monotone) or ϕðsÞ = ð1 + sin2sÞsγ
(degenerate and nonmonotone) with γ ≥ 1. Based on the
result in [25, 26], we prove the existence of pullback attrac-
tors in H1

0ðΩÞÞ × L2ðΩÞ if ϕ is really degenerate. To over-
come the difficulties caused by the degeneration, we first
established a method (condition (D-PC)) via “the measure
of noncompactness” (some ideas come from [35, 36]) to
prove that the process is pullback D-asymptotically
compact.

The paper is organized as follows. In Section 2, we intro-
duce some preliminaries and establish a necessary abstract
result (see Theorem 5). In Section 3, we discuss the existence
of pullback attractors for the equation (1) (see Theorem 12).

2. Preliminaries

In this section, we will give some notations and results. As
usual, we denote by ∥·∥ and ð·, · Þ the norm and the inner
product in L2ðΩÞ, respectively. Let H =H1

0ðΩÞ × L2ðΩÞ.
We define the norms in H by ku0, u1k2H = k∇u0k2 + ku1k2:

Let X be a Banach space and Uðt, τÞ be a process acting
on X. In the following, we recall some definitions and results
related to the pullback attractors; more details can be found
in [27, 29, 33].

Definition 1. A family of compact sets A = fAðtÞgt∈ℝ is said
to be a pullback attractor for process Uð·, · Þ if

(i) A is invariant, that is, Uðt, τÞAðτÞ = AðtÞ, for all t ≥ τ
(ii) A is pullback attracting, i.e., dðUðt, t − τÞB, AðtÞÞ

⟶ 0, as τ⟶ +∞, for all bounded subset B of X, where
dðB, AÞ is the Hausdorff semidistance

Definition 2. A family of sets D = fDðtÞgt∈ℝ is said to be a
pullback absorbing family for process Uð·, · Þ, if for all t ∈
ℝ and all bounded B ⊂ X, there exists T = Tðt, BÞ > 0, such
that Uðt, t − τÞB ⊂DðtÞ, for all τ ≥ T . In addition, the family
D is said to be pullback D-absorbing, if for any t ∈ℝ, there
exists Tt > 0 such that Uðt, t − τÞDðt − τÞ ⊂DðtÞ for τ ≥ Tt .

Definition 3. A process Uð·, · Þ is said to be pullback D

-asymptotically compact in X, if for any t ∈ℝ, any sequences
τn ⟶∞ and xn ∈Dðt − τnÞ; the sequence
fUðt, t − τnÞxngn∈ℕ is relatively compact in X.

Lemma 4 (see [29]). Let the family D = fDðtÞgt∈ℝ be
pullback absorbing and Uð·, · Þ be continuous and pullback
D-asymptotically compact in X. Then, the family A =
fAðtÞgt∈ℝ defined by

A tð Þ =
\
s≥0

�[
τ≥s

U t, tτð ÞD tτð Þ, ð4Þ

is a pullback attractor for Uð·, · Þ.

To verify the pullback D-asymptotically compact prop-
erty in X, it suffices to check the following condition.

2.1. D-Pullback Condition (D-PC). For any δ > 0 and t ∈ℝ,
there exist τ0 = τ0ðt,D, δÞ > 0 and a finite dimensional space
X1 of X such that

P U t, t − τ0ð ÞD t − τ0ð Þð Þf g is bounded,
I − Pð Þ U t, t − τ0ð Þxð Þk kX < δ, ∀x ∈D t − τ0ð Þ, ð5Þ

where P : X ⟶ X1 is a bounded projector.

Theorem 5. Let the family D = fDðtÞgt∈ℝ be a pullback D

-absorbing family of the process Uðt, τÞ. If the D-pullback
condition (D -PC) holds, then Uð·, · Þ is pullback D-asymp-
totically compact in X.

Proof. By Definition 3, the result will be proven if we can
show that for any t ∈ℝ, any sequences τn ⟶∞ and xn ∈
Dðt − τnÞ, fUðt, t − τnÞxngn∈ℕ is relatively compact in X.

For every δ > 0, condition (D-PC) implies that there
exist τ0 = τ0ðt,D, δÞ > 0 and the finite dimensional space
X1, such that (5) holds. Then, we have

γ U t, t − τ0ð ÞD t − τ0ð Þð Þ ≤ γ P U t, t − τ0ð ÞD t − τ0ð Þð Þ½ �
+ γ I − Pð Þ U t, t − τ0ð ÞD t − τ0ð Þð Þð Þ½ � ≤ γ N 0, δð Þð Þ ≤ 2δ,

ð6Þ
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where γ is the measure of noncompactness defined as

γ Bð Þ = inf δ > 0 ∣ B admits a finite cover by sets whose diameter ≤ δf g:
ð7Þ

On the other hand, the properties of D give that there
exists Tt−τ0 > 0, such that for τ ≥ Tt−τ0 , Uðt − τ0, t − τ0 − τÞ
Dðt − τ0 − τÞ ⊂Dðt − τ0Þ and

U t, t − τ0 − τð ÞD t − τ0 − τð Þ
=U t, t − τ0ð ÞU t − τ0, t − τ0 − τð ÞD t − τ0 − τð Þ
� ⊂U t, t − τ0ð ÞD t − τ0ð Þ:

ð8Þ

Then, we can find N0, such that γðSn>N0
Uðt, t − τnÞxnÞÞ

≤ 2δ, which means that fUðt, t − τnÞxngn∈ℕ has a finite 4δ
-net for any δ > 0. The proof is complete.

3. Existence of Pullback Attractors

In this section, we will prove the existence of the pullback
attractor when ϕðsÞ is really degenerate and f ðuÞ is subcriti-
cal. We assume that f , ϕ, and h satisfy the following
conditions.

Assumption 6. The function ϕ ∈ C1ðℝ+Þ, ϕðsÞ ≥min fL1sα,
L2g for s ∈ℝ+, and some constants α ≥ 0, L1, L2 > 0. More-
over, there exists δ0 > 0 such that

liminf
s⟶+∞

sϕ sð Þ − δ0Φ sð Þð Þ > −∞, ð9Þ

where ΦðsÞ = Ð s0ϕðtÞdt.
Assumption 7. f ðuÞ is a C1 function, f ð0Þ = 0, f ′ðsÞ ≥ −c1,
and s ∈ℝ,

μf = lim inf
∣s∣⟶+∞

f sð Þ
s

> −λ1ϕ∞ with ϕ∞ = lim inf
s⟶+∞

ϕ sð Þ, ð10Þ

and the following properties hold:
(i) if n = 1, then f is arbitrary
(ii) if n = 2, then

∣f ′ uð Þ∣ ≤ C 1+∣ujp−1� �
with 1 ≤ p <∞, ð11Þ

(iii) if n ≥ 3, then

f ′ uð Þ�� �� ≤ C 1+∣ujp−1� �
with 1 ≤ p < p∗ =

n + 2
n − 2 , ð12Þ

where c1 and C are positive constants and λ1 is the first
eigenvalue of −Δ.

Assumption 8. h, ∂th ∈ L2locðℝ, L2ðΩÞÞ andðt
−∞

h ·, sð Þk k2ds < +∞, ∀t ∈ℝ: ð13Þ

Remark 9. (1) ϕðsÞ = L1s
α or eϕðsÞ = ð1 + sin2sÞsαðα ≥ 1Þ

satisfies Assumption 6. It indicates that we include into
the consideration the case of possibly degenerate ϕ since
ϕð0Þ = 0. Moreover, because ϕ∞ = +∞ in this case, μf > −
λ1ϕ∞ becomes μf > −∞. If α = 0, then ϕðsÞ is a constant,
and equation (1) is the nonlinear wave equation with
strong damping.

(2) Assumptions 6 and 7 imply that there exist constants
c0 > 0, θ1 > 0 with 0 < ϕ1 < ϕ∞, 0 < ϕ1λ1 − θ1 < <1 such that

Φ sð Þ ≥ ϕ1 · s − c0ϕ1 ∀s ∈ℝ+, ð14Þ

F sð Þ ≥ −
θ1
2 s2 − c2, f sð Þs ≥ −θ1s

2 − c2, f sð Þs − F sð Þ

≥ −
c1
2 s2, ∀s ∈ℝ,

ð15Þ

where FðsÞ = Ð s0 f ðtÞdt.
The well-posedness of the problem

∂ttu − σ ∇uk k2� �
Δ∂tu−ϕ ∥∇u∥2

� �
Δu + f uð Þ = h xð Þ, inΩ × 0,∞ð Þ,

uj∂Ω = 0, u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω,

 
ð16Þ

has been established by Chueshov [25] in the autono-
mous case. Noticing that the conditions of ϕ, f are more
general than the above Assumptions 6–8, we can obtain
the following Proposition 10 by a similar argument as in
[25], except for the treatment of hðx, tÞ. The reader is
referred to the Appendix for a detailed proof of these facts.

Proposition 10. Let Assumptions 6–8 be in force. Then, for
τ, T ∈ℝðτ < TÞ and ðu0τ, u1τÞ ∈H , problem (1) has a unique
weak solution u with ðu, utÞ ∈ Cð½τ, T� ;HÞ and

(1) for every t ∈ ½τ, T�, there exists C = CR,τ,T > 0 such that

ut tð Þk k2 + ∇u tð Þk k2 +
ðt
τ

∇ut sð Þk k2ds ≤ C, ð17Þ

E u tð Þ, ut tð Þð Þ + 2
ðt
s

∇ut rð Þk k2 − h, utð Þ� �
dr

= E u sð Þ, ut sð Þð Þ, τ ≤ s < t,
ð18Þ

where Eðu0, u1Þ = ku1k2 +Φðk∇u0k2Þ + 2
Ð
Ω
Fðu0Þdx,

kðu0τ, u1τÞkH ≤ R
(2) for every t ∈ ðτ, T�, there exists K = KR,τ,T > 0 such

that

utt tð Þk k2H−1 + ∇ut tð Þk k2

≤ K 1 + 1

t − τð Þ2
 !

1 +
ðT
τ

∥h ·, sð Þ∥2+∥ht ·, sð Þ∥2� �
ds

� �
:

ð19Þ
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(3) the Lipschitz stability

z tð Þð , zt tð Þk k2H ≤ K z τð Þð , zt τð Þk k2H , ð20Þ

holds for zðtÞ = u1ðtÞ − u2ðtÞ, where u1, u2 are two weak
solutions of problem (1) with initial data ðu0i,τ, u1i,τÞ,
kðu0i,τ, u1i,τÞkH ≤ R, i = 1, 2:

We define the solution operator Uðt, τÞ: H ⟶H asso-
ciated to problem (1) as

U t, τð Þ u0τ, u1τ
� �

= u tð Þ, ut tð Þð Þ, ∀t ≥ τ, τ ∈ℝ, ð21Þ

where u is the weak solution of problem (1) correspond-
ing to initial data ðu0τ, u1τÞ ∈H . Then, we know from Propo-
sition 10 that Uðt, τÞ: H ⟶H is a continuous evolution
process. For convenience, we denote by ξuðtÞ = ðuðtÞ, utðtÞÞ
for any function uðtÞ. As ðuðτÞ, utðτÞÞ = ðu0τ, u1τÞ, we also
denote ðu0τ, u1τÞ by ξuðτÞ.

Lemma 11. Let Assumptions 6–8 be valid. Then, the process
Uð·, · Þ defined in (21) has a pullback D-absorbing family
D = fDðtÞgt∈ℝ. Moreover, DðtÞ is bounded in H 1 =H1

0ðΩÞ
×H1

0ðΩÞ for every t ∈ℝ.

Proof. As usual, the argument below can be justified by con-
sidering Galerkin approximations. Using the multiplier ut
+ ηu in Equation (1), we have that

d
dt W

η ξu tð Þð Þ + K ξu tð Þð Þ = 0, t ≥ τ, ð22Þ

where

Wη ξu tð Þð Þ = utk k2 +Φ ∇uk k2� �
+ 2 F uð Þ, 1ð Þ

+ η ∇uk k2 + 2 ut , uð Þ� �
≥ 1 − ηð Þ utk k2

+ ϕ1 · ∇uk k2 − c0ϕ1 − θ1 uk k2 − 2c2 ·mesΩ

+ η ∇uk k2 − η uk k2 ≥ κ ξu tð Þk k2H − C3,
ð23Þ

K ξu tð Þð Þ = 2 ∇utk k2 − 2η utk k2 + 2η ϕ ∇uk k2� �
∇uk k2�

+ f uð Þ, uð Þ� − 2 h, ut + ηuð Þ,
ð24Þ

for η > 0 which is small enough, κ > 0 is a positive con-
stant, and κ, C3 are independent of ξuðtÞ.

Since Assumption 6 implies that there exists L3 > 0 such
that

δ0Φ ∇uk k2� �
≤ ϕ ∇uk k2� �

∇uk k2 + L3, ð25Þ

combining with (15), we have that

Wη ξu tð Þð Þ ≤ 1 + ηð Þ utk k2 +Φ ∇uk k2� �
+ 2 f uð Þ, uð Þ

+ c1 uk k2 + η ∇uk k2�
+ uk k2 ≤ κ1 ξu tð Þk k2H +Φ ∇uk k2� �

+ 2 f uð Þ, uð Þ ≤ κ1 ξu tð Þk k2H +Φ ∇uk k2� �
+ C3 uk kp+1Lp+1 + C4,

ð26Þ

K ξu tð Þð Þ ≥ ∇utk k2 + λ1 − 2ηð Þ utk k2 + 2η − εð Þϕ ∇uk k2� �
∇uk k2

+ ε δ0Φ ∇uk k2� �
− L3

� �
+ 2η f uð Þ, uð Þ − δ utk k2 − δη2 uk k2

−
2
δ

h ·, tð Þk k2:
ð27Þ

Then, we can find η > 0, ε > 0, δ > 0 small enough such that

K ξu tð Þð Þ − δWη ξu tð Þð Þ ≥ ∇utk k2 + λ1 − 2η − δ 1 + ηð Þ − δð Þ utk k2
+ 2η − εð Þϕ ∇uk k2� �

∇uk k2 + εδ0Φ ∇uk k2� �
− εL3 + 2 η − δð Þ f uð Þ, uð Þ − c1δ uk k2 − δΦ ∇uk k2� �
− δη ∇uk k2 − δ η2 + η

� �
uk k2 − 2

δ
h ·, tð Þk k2 ≥ ∇utk k2

+ 2η − εð Þ ϕ1 · ∇uk k2 − c0ϕ1
� �

+ εδ0 − δð ÞΦ ∇uk k2� �
− 2η θ1

λ1
∇uk k2 − δη ∇uk k2 − δ c1 + η2 + η

� �
uk k2 − 2

δ
h ·, tð Þk k2

− C4 ≥ ∇utk k2 − C 1 + h ·, tð Þk k2� �
:

ð28Þ

By (22) and (28), we get that

d
dt W

η ξu tð Þð Þ + δWη ξu tð Þð Þ + ∇utk k2 ≤ C 1 + h ·, tð Þk k2� �
:

ð29Þ

According to the Gronwall inequality, we have

Wη ξu tð Þð Þ ≤Wη ξu τð Þð Þe−δ t−τð Þ + C 1 +
ðt
τ

h ·, sð Þk k2ds
� �

:

ð30Þ

Then, (23), (26), and H1
0ðΩÞ°Lp+1ðΩÞ yield that

ξu tð Þk k2H ≤
1
κ

Wη ξu τð Þð Þe−δ t−τð Þ + C 1 +
ðt
τ

h ·, sð Þk k2ds
� �� �

≤
κ1
κ

ξu τð Þk k2H + 1
κ
Φ ∇uk k2� �

+ C3
κ

uk kp+1Lp+1 +
C4
κ

� �
e−δ t−τð Þ

+ C 1 +
ðt
τ

h ·, sð Þk k2ds
� �

≤ C ξu τð Þk k2H +Φ ∇uk k2� �	
+ ∇uk kp+1

�
e−δ t−τð Þ + C 1 +

ðt
τ

h ·, sð Þk k2ds
� �

≤ C ξu τð Þ2H +Φ ξu τð Þk k2H
	 


+ ξu τð Þk k2H
	 
 p+1ð Þ/2� �

e−δ t−τð Þ

+ C 1 +
ðt
τ

h ·, sð Þk k2ds
� �

≜Q ξu τð Þk k2H
	 


e−δ t−τð Þ

+ C 1 +
ðt
τ

h ·, sð Þk k2ds
� �

,

ð31Þ
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where QðxÞ = Cðx +ΦðxÞ + xðp+1Þ/2Þ > 0 is a monotone
positive function on ℝ+. Let

D0 tð Þ = ξ ∈H ∣ ξk kH ≤ R tð Þ� �
, withR2 tð Þ

= 2C 1+ hk k2L2 −∞,t;L2ð Þ
	 


, t ∈ℝ:
ð32Þ

Obviously,D0 = fD0ðtÞgt∈ℝ is a pullback absorbing family
of the process Uðt, τÞ in H . Moreover, for every t ∈ℝ, there
exists a Tt > 0 such that

U t, t − τð ÞD0 t − τð Þ ⊂D0 tð Þ,
U t − 1, t − τð ÞD0 t − τð Þ ⊂D0 t − 1ð Þ, for τ ≥ Tt:

ð33Þ

Let DðtÞ = �[
τ≥Tt

Uðt, tτÞD0ðtτÞ
H
. By a standard proce-

dure (see, e.g., Theorem 3.1 of [34]), we know that D =
fDðtÞgt∈ℝ is a pullback absorbing family. Moreover, DðtÞ is
bounded in H 1 for every t ∈ℝ, and there exists a Tt > 0 such
that Uðt, t − τÞDðt − τÞ ⊂DðtÞ for τ ≥ Tt.

For simplicity, we assume that α > 0 and L1 = L2 = 1 in
the following.

Theorem 12. Let Assumptions 6–8 be in force. Then, the pro-
cess Uð·, · Þ possesses a pullback attractor A = fAðtÞgt∈ℝ as
shown in (4). Moreover, AðtÞ is bounded in H 1 for every t
∈ℝ.

Proof. According to Lemma 4, Theorem 5, Lemma 11, and
the continuity of Uðt, τÞ: H ⟶H , it suffices to show that
Uðt, τÞ satisfies the condition (D-PC). Let fejg∞j=1 be an

orthonormal basis and fλjg∞j=1 be the corresponding eigen-

values of L2ðΩÞ which consists of eigenvectors of −Δ, i.e., −
Δej = λ jej, j ∈ℕ. Let Vm ×Wm = spanfe1,⋯,emg × spanfe1,
⋯,emg in H and Pm = ðP1

m, P2
mÞ: H ⟶Vm ×Wm be an

orthogonal projector. Denote Qm = I − Pm, u = P1
mu +Q1

mu =
u1 + u2, and ξτuðtÞ = ðuðtÞ, utðtÞÞ =Uðt, τÞðu0τ, u1τÞ with ðu0τ,
u1τÞ ∈DðτÞ, t ≥ τ.

Let ε > 0 and t0 ∈ℝ be given. Without loss of generality,
we assume ε < 1/4.

For every τ ≥ 1 and every ðu0t0−τ, u1t0−τÞ ∈Dðt0 − τÞ, let

u, utð Þ tð Þ = ξt0−τu tð Þ =U t, t0 − τð Þ u0t0−τ, u
1
t0−τ

	 

∈U t, t0 − τð Þ

� D t0 − τð Þ ⊂U t, t0 − τð ÞD0 t0 − τð Þ:
ð34Þ

Denote ZðtÞ = ð1/2Þðkutk2 + kuk2 + k∇uk2Þ. It is easy to
see that

Z t0 − τ + 1ð Þ ≤ 1
2 1 + 1

λ1

� �
ξt0−τu t0 − τ + 1ð Þ 2

H

≤
1
2 1 + 1

λ1

� �
Q ξt0−τu t0 − τð Þ 2

H
· e−δ

	
+ C 1+

ðt0−τ+1
−∞

h ·, sð Þk k2ds
� ��

:

ð35Þ

Since ξt0−τu ðt0 − τÞ = ðu0t0−τ, u1t0−τÞ ∈Dðt0 − τÞ ⊂D0ðt0 − τÞ,
we find

ξt0−τu t0 − τð Þ 
H
≤ R t0 − τð Þ ≤ R t0ð Þ, ∀τ ≥ 0: ð36Þ

Thus,

Z t0 − τ + 1ð Þ ≤ 1
2 1 + 1

λ1

� �
Q R2 t0ð Þ� �

e−δ + C 1+
ðt0
−∞

h ·, sð Þk k2ds
� �� �

≜ C5 t0ð Þ, ∀τ ≥ 1,
ð37Þ

where C5ðt0Þ is independent of τ. Then, there exists τ0 > 1
such that

Z t0 − τ0 − 1ð Þð Þe−2ε2α τ0−1ð Þ < ε2

2 : ð38Þ

On the other hand, for every ðu0t0−τ0 , u1t0−τ0Þ ∈Dðt0 − τ0Þ,
using (16) and (18), we get that

∇u tð Þk k2 + ∇ut tð Þk k2 + utt tð Þk k2H−1 ≤ K0, for t ∈ t0 − τ0 + 1, t0½ �,
ð39Þ

where ðuðtÞ, utðtÞÞ =Uðt, t0 − τ0Þðu0t0−τ0 , u1t0−τ0Þ. Using

H1
0ðΩÞ°LqðΩÞ (2 ≤ q ≤ p∗ = 2n/ðn − 2Þ), one can find M ≥ 1,

L0 < t0 (without loss of generality, we assume L0 < 0), such that
for every t ∈ ½t0 − τ0 + 1, t0�,

f u tð Þð Þk kL p+1ð Þ/p +
ðt+1
t

utt sð Þk k2H−1ds
� �1/2

+
ðt0
−∞

h ·, sð Þk k2ds
� �1/2

<M,
ðL0
−∞

h ·, sð Þk k2ds < ε2

4 :

ð40Þ

By the Sobolev embedding theorem, we know that the
embedding H1

0ðΩÞ°L2ðΩÞ is compact. Then, the boundedness
of fuðtÞ, utðtÞgt∈½t0−τ0+1,t0� in H1

0ðΩÞ ×H1
0ðΩÞ implies that

fuðtÞ, utðtÞgt∈½t0−τ0+1,t0� is compact in L2ðΩÞ × L2ðΩÞ. There-
fore, for ε1 = ε2+2α/4Mð1 + ffiffiffiffiffiffiffiffiffiffiffiffiffi

t0 − L0
p Þ, there exists m0 ∈ℤ+,

such that for every t ∈ ½t0 − τ0 + 1, t0�,

u2 tð Þ, u2t tð Þ� � 
L2×L2 < ε1, ð41Þ

u2
 

Lp+1
≤ u2
 θ · u2

 1−θ
Lp

∗ ≤ C u2
 θ · ∇u2

 1−θ ≤ C6 u2
 θ < ε21

M
,

ð42Þ
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where u = P1
m0
u + ðI − P1

m0
Þu ≜ u1 + u2, ut = P2

m0
ut + ðI −

P2
m0
Þut ≜ u1t + u2t , and 1/ðp + 1Þ = θ/2 + ð1 − θÞ/p∗.

Now, we will consider two situations. Without loss of
generality, we assume 0 < ε < 1/3.

Case 1. For every ðu0t0−τ0 , u1t0−τ0Þ ∈Dðt0 − τ0Þ, the inequality

∇u tð Þk k > ε, ð43Þ

holds for any t ∈ ½t0 − τ0 + 1, t0�, where ðu, utÞðtÞ = ξt0−τ0u ðtÞ.

Multiplying (1) by u2, we have that

d
dt

u2t , u2
� �

+ 1
2 ∇u2
 2� �

+ ϕ ∇u tð Þk k2� �
∇u2
 2

≤ u2t
 2 + f uð Þ, u2� �

+ h ·, tð Þ, u2� �
:

ð44Þ

Let YðtÞ = ðu2t , u2Þ + ð1/2Þk∇u2k2. Since ϕðk∇uk2Þ ≥
min fk∇uk2α, 1g ≥min fε2α, 1g = ε2α in this case, the above
inequality implies that

d
dt

Y tð Þ + 2ε2αY tð Þ ≤ 2ε2α u2t , u2
� �

+ u2t
 2 + f uð Þ, u2� �

+ h ·, tð Þ, u2� �
≤ 2ε2α · u2t

  · u2
  + u2t

 2
+ f uð Þk kL p+1ð Þ/p · u2

 
Lp+1

+ h ·, tð Þk k · u2
  ≜Wε tð Þ:

ð45Þ

By Gronwall’s inequality, we obtain that

Y tð Þ ≤ Y t − τ − 1ð Þð Þe−2ε2α τ−1ð Þ + e−2ε2αt
ðt
t− τ−1ð Þ

e2ε2αsWε sð Þds:

ð46Þ

Since

Y t0 − τ + 1ð Þ ≤ Z t0 − τ + 1ð Þ ≤ C5 t0ð Þ, ð47Þ

(37) yields that

Y t0 − τ0 − 1ð Þð Þe−2ε2α τ0−1ð Þ < ε2

2 : ð48Þ

Combining (45), we have

Y t0ð Þ ≤ Y t0 − τ0 + 1ð Þe−2ε2α τ0−1ð Þ + e−2ε2αt0
ðt0
t0−τ0+1

e2ε2αsWε sð Þds

≤
ε2

2 + e−2ε2αt0
ðt0
t0−τ0+1

e2ε2αs2ε21 ε2α + 1
� �

ds

+ e−2ε2αt0
ðt0
t0−τ0+1

e2ε2αs · h ·, sð Þk k · u2 sð Þ ds
≤
ε2

2 + 1 + 1
ε2α

� �
ε21 + e−2ε2αt0

ðt0
t0−τ0+1

e2ε2αs · h ·, sð Þk k · u2 sð Þ ds:
ð49Þ

If L0 ≤ t0 − τ0 + 1, by the Hölder inequality, we have that

I1 = e−2ε2αt0
ðt0
t0−τ0+1

e2ε2αs · h ·, sð Þk k · u2 sð Þ ds
≤ e−2ε2αt0 · e2ε2αt0ε1 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − L0

p
·M < ε2

4 :

ð50Þ

On the other hand, if L0 > t0 − τ0 + 1, we get that

I1 ≤ e−2ε2αt0
ðt0
L0

e2ε2αt0 · h ·, sð Þk k · ε1ds +
1
2

ðL0
t0−τ0+1

"
� e2ε2αs u2 sð Þ 2 + h ·, sð Þk k2

	 

ds
i

< ε1 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − L0

p
·M + ε21

4ε2α + ε2

8 < ε2

2 :

ð51Þ

The above inequalities guarantee that Yðt0Þ < 9ε2/8: And
because

Y t0ð Þ = u2t t0ð Þ, u2 t0ð Þ� �
+ 1
2 ∇u2 t0ð Þ 2 ≥ 1

2 ∇u2 t0ð Þ 2
− u2t t0ð Þ  · u2 t0ð Þ  ≥ 1

2 ∇u2 t0ð Þ 2 − ε21,

ð52Þ

we get that

∇u2 t0ð Þ 2 ≤ 2 Y t0ð Þ + ε21
� �

< 2 9ε2
8 + ε2

8

� �
< 4ε2, ð53Þ

i.e., k∇u2ðt0Þk < 2ε.

Case 2. There exist ðu0t0−τ0 , u1t0−τ0Þ ∈Dðt0 − τ0Þ and t1 ∈ ½t0 −
τ0 + 1, t0� such that

∇u t1ð Þk k ≤ εwith u, utð Þ tð Þ = ξt0−τu tð Þ: ð54Þ

In this case, we claim that the following inequality is
true, i.e., for every t1 ≤ t ≤ t0,

∇u2 tð Þ  < 2ε, for u2 =Q1
m0
u: ð55Þ

In fact, if this claim is not true, the continuity of k∇
u2ðtÞk gives that

E = t ∣ t ∈ t1, t0½ �, ∇u2 tð Þ  = 2ε
� �

, ð56Þ

is not an empty set. Let t3 = inf E. It is easy to prove that
k∇u2ðt3Þk = 2ε. Moreover, by the definition of t3, we have
that

∇u2 tð Þ  < 2ε, ∀t ∈ t1, t3½ Þ: ð57Þ

According to the intermediate value theorem, we know
that the set
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E1 = t ∣ t ∈ t1, t3ð Þ, ∇u2 tð Þ  = 3
2 ε

� �
, ð58Þ

is not empty. Denoting t2 = sup E1, we can conclude from
the definition of supremum that

∇u2 t2ð Þ  = 3
2 ε: ð59Þ

Thus,

3
2 ε < ∇u2 tð Þ  < 3ε,∀t ∈ t2, t3ð �, ∇u2 t2ð Þ 

= 3
2 ε, ∇u2 t3ð Þ  = 2ε:

ð60Þ

Notice that k∇uk ≥ k∇u2k and k∇u2k ≤ 1 for t ∈ ½t2, t3�;
we have that ϕðk∇uk2Þ ≥ k∇u2k2α. Then, integrating (43)
on ðt2, t3Þ, we have that

u2t t3ð Þ, u2 t3ð Þ� �
+ 1
2 ∇u2 t3ð Þ 2� �

− u2t t2ð Þ, u2 t2ð Þ� �
+ 1
2 ∇u2 t2ð Þ 2� �

+
ðt3
t2

ϕ ∇u sð Þk k2� �
∇u2 sð Þ 2ds

≤
ðt3
t2

ut sð Þ2
 2 + f u sð Þð Þ, u2 sð Þ� �

+ h ·, sð Þ, u2 sð Þ� �	 

ds:

ð61Þ

It implies that

∇u2 t3ð Þ 2 + 2
ðt3
t2

∇u2 sð Þ 2+2αds ≤ ∇u2 t2ð Þ 2
− 2 u2t t3ð Þ, u2 t3ð Þ� �

+ 2 u2t t2ð Þ, u2 t2ð Þ� �
+ 2
ðt3
t2

ut sð Þ2
 2 + f u sð Þð Þ, u2 sð Þ� �

+ h ·, sð Þ, u2 sð Þ� �	 

ds:

ð62Þ

Combing (40), (41), and (59),we get

∇u2 t3ð Þ 2 + 2 3
2 ε
� �2α+2

t3 − t2ð Þ ≤ ∇u2 t3ð Þ 2
+ 2
ðt3
t2

∇u2 sð Þ 2α+2ds ≤ ∇u2 t2ð Þ 2 + 2 u2t t2ð Þ 
· u2 t2ð Þ  + 2 u2t t3ð Þ  · u2 t3ð Þ 
+ 2
ðt3
t2

u2t sð Þ 2 + f uð Þ, u2� �
+ h ·, sð Þ, u2� �	 


ds

≤
3
2 ε
� �2

+ 4ε21 + 2ε21 t3 − t2ð Þ + 2
ðt3
t2

f uð Þk kL p+1ð Þ/p∥ u2
 

Lp+1
ds

+ 2ε1
ðt3
t2

h ·, sð Þk k2ds
 !1/2 ffiffiffiffiffiffiffiffiffiffiffiffi

t3 − t2
p

≤
3
2 ε
� �2

+ 4ε21

+ 2ε21 t3 − t2ð Þ + 2
ðt3
t2

M · ε
2
1
M

ds + 2ε1M
ffiffiffiffiffiffiffiffiffiffiffiffi
t3 − t2

p
≤

3
2 ε
� �2

+ 4ε21 + 4ε21 t3 − t2ð Þ + ε1M t3 − t2ð Þ + ε1M ≤
9
4 ε

2 + ε4+4α

4

+ ε4+4α

4 t3 − t2ð Þ + ε2+2α

4 t3 − t2ð Þ + ε2+2α

4 < 11
4 ε2 + 1

2 ε
2+2α t3 − t2ð Þ:

ð63Þ

Thus, k∇u2ðt3Þk2 < ð11/4Þε2, which is in contradiction
with (59), and condition (D-PC) holds. This completes
the proof.

Appendix

A. Proof of Proposition 10

We prove the well-posedness of Problem (1) using the same
method as in [25].

Step 1.We start with the case when u0τ ∈H
2ðΩÞ ∩H1

0ðΩÞ and
assume that kðu0τ, u1τÞkH ≤ R with some R > 0. We seek for
the approximate solutions of the form

uN tð Þ = 〠
N

k=1
gk tð Þek, N = 1, 2,⋯, ðA1Þ

satisfying the finite-dimensional projections of (1). More-
over, we have that

uN τð Þ, uNt τð Þ� � 
H
≤ CR,

uN τð Þ − u0τ, uNt τð Þ − u1τ
� � 

H
⟶ 0, asN ⟶∞:

ðA2Þ

We omit the superscript N in the sequel. Now, we use
the multiplier utðtÞ and get that

d
dt

1
2 utk k2 +Φ ∇uk k2� �� �

+ F u tð Þð Þ
� �

+ ∇utk k2 − h, ut tð Þð Þ = 0:

ðA3Þ

Similarly, multiplying (1) by u, we have that

d
dt

u, utð Þ + 1
2 ∇uk k2

� �
= utk k2 − ϕ ∇uk k2� �

∇uk k2

− f uð Þ, uð Þ + h, uð Þ:
ðA4Þ

Let

E u0, u1ð Þ = 1
2 u1k k2 +Φ ∇u0k k2� �� �

+ F u0ð Þ,

Wη u0, u1ð Þ = E u0, u1ð Þ + η u0, u1ð Þ + 1
2 ∇u0k k2

� �
:

ðA5Þ

From (A3) and (A4),

d
dt

Wη u tð Þ, ut tð Þð Þ + ∇utk k2 − h, ut tð Þð Þ
= η utk k2 − ϕ ∇uk k2� �

∇uk k2 − f uð Þ, uð Þ + h, uð Þ� �
:

ðA6Þ

Using (14), (24), and ∣ðh, utðtÞÞ ∣ ≤λ1/2kutk2 + 1/2λ1
khð·, tÞk2, we find that
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d
dt

Wη u tð Þ, ut tð Þð Þ + 1
2 ∇utk k2 ≤ η utk k2 − ηδ0Φ ∇uk k2� �

+ ηθ1 uk k2 + c1 h ·, tð Þk k2 + c2:

ðA7Þ

where c1, c2 is independent of t. Obviously,

Wη u0, u1ð Þ ≤ u1k k2 + 1
2Φ ∇u0k k2� �

+~c0 ∇u0k k2: ðA8Þ

By (13) and (14), there exists η0 > , δ1 > 0, for any η
∈ ð0, η0Þ,

Wη u0, u1ð Þ ≥ 1
2 − η

� �
u1k k2 + 1

2 ϕ1 · ∇u0k k2 − θ1
2 u0k k2

− η u0k k2 − η

2 ∇u0k k2 −~c1 ≥
1
4 u1k k2

+ δ1 ∇u0k k2 −~c2:
ðA9Þ

Combing (A8) and the above inequalities, we have that

d
dt

Wη u tð Þ, ut tð Þð Þ + 1
2 ∇utk k2 ≤ C1W

η u tð Þ, ut tð Þð Þ
+ C2 h ·, tð Þk k2 + C3:

ðA10Þ

Therefore, using Gronwall’s inequality, we obtain

Wη u tð Þ, ut tð Þð Þ ≤ ~CR,T+C2e
C1T
ðT
−∞

h ·, sð Þk k2ds ≜ C1
R,T , ∀t ∈ τ, T½ �,

ðA11Þ

which means that

u tð Þ, ut tð Þð Þk kH ≤ CR,T , ∀t ∈ τ, T½ �,ðT
τ

∇ut tð Þk k2dt ≤ CR,T :
ðA12Þ

Now, multiplying (1) by −Δu, we have

d
dt

− ut , Δuð Þ + 1
2 Δuk k2

� �
+ ϕ ∇u tð Þk k2� �

Δuk k2

+ f ′ uð Þ, ∇uj j2
	 


≤ ∇ut tð Þk k2 + 1
2 h ·, tð Þk k2 + 1

2 Δuk k2:
ðA13Þ

Since H1
0ðΩÞ°Lp+1ðΩÞ when n ≥ 3 and H1

0ðΩÞ°LqðΩÞ for
any q ≥ 1 when n = 2, H1

0ðΩÞ°L∞ðΩÞ when n = 1, we easily
obtain that

∣ f ′ uð Þ, ∇uj j2
	 


∣ ≤ C
ð
Ω

1 + uj jp−1� �
∇uj j2dx ≤ C ∇uk k2

+ C uk kp−1p+1 · ∇uk k2p+1 ≤ C ∇uk k2

+ ∇uk kp−1 · Δuk k2 ≤ C 1 + Δuk k2� �
:

ðA14Þ

It follows that

d
dt

− ut , Δuð Þ + 1
2 Δuk k2

� �
≤ ∇ut tð Þk k2 + 1

2 h ·, tð Þk k2 + C1 Δuk k2 + C2,

ðA15Þ

for every t ∈ ½τ, T�. Let

Ψ tð Þ = E u tð Þ, ut tð Þð Þ + ε − ut , Δuð Þ + 1
2 Δuk k2

� �
,  ε > 0:

ðA16Þ

We can choose ε0 > 0, such that

Ψ tð Þ ≥ CR,T ,ε utk k2 + Δuk k2� �
− C, ∀0 < ε < ε0: ðA17Þ

Thus, combing (A3), (A12), and (A15), we have that

d
dt

Ψ tð Þ ≤ C1 Δuk k2 + C2 h ·, tð Þk k2 + C3 ≤ C4Ψ tð Þ + C2 h ·, tð Þk k2 + C5:

ðA18Þ

This implies that

Δu tð Þk k2 ≤ CR,T 1 + Δu τð Þk k2� �
, t ∈ τ, T½ �: ðA19Þ

The above a priori estimates show that ðuN , uNt Þ is
bounded in

L∞ τ, T ;H2 Ωð Þ ∩H1
0 Ωð Þ� �

× L∞ 0, T ; L2 Ωð Þ� �
∩ L2 τ, T ;H1

0 Ωð Þ� �� �
,

ðA20Þ

for every T > τ. Moreover, using the equation for uNðtÞ,
we can show

Ð T
τ
kuNttk2−mdt ≤ CR,T for some m ≥max f1, n/

2g. Thus, there exists a subsequence, stilled denoted uN ,
and u, such that

uN ⟶ u, inC τ, T ;H1
0 Ωð Þ� �

,

uN ⟶ u, in L∞ τ, T ;H2 Ωð Þ� �
weak‐star,

uNt ⟶ ut , in L2 τ, T ; L2 Ωð Þ� �
∩ C τ, T ;H−1 Ωð Þ� �

,

uNt ⟶ ut , in L2 τ, T ;H1
0 Ωð Þ� �

weak,
ðA21Þ

as N ⟶∞. Moreover, by the Lions lemma (see
Lemma 1.3 in [37]) we have that
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f uN x, tð Þ� �
⟶ f u x, tð Þð Þ, in L2 τ, T½ � ×Ωð Þweak,

ðA22Þ

as N ⟶∞. Then, making a limit transition in the non-
linear term, we prove the existence of a weak solution
under the additional condition u0τ ∈H

2ðΩÞ ∩H1
0ðΩÞ. One

can see that this solution u satisfies (14) and (15).

Step 2. Now, let u1ðtÞ and u2ðtÞ be weak solutions to (1) with
different initial data ðui0, ui1Þ ∈H such that

ui tð Þ, uit tð Þ
� � 

H
+
ðT
τ

∇ut tð Þk k2dt ≤ CR, ∀t ∈ τ, T½ �,

ðA23Þ

for some R > 0. Notice that we do not assume ui0 ∈
H2ðΩÞ here. Since ϕ ∈ C1, we conclude from (60) that

ϕ ∇uk k2� ��� ��, ϕ′ ∇uk k2� ��� �� ≤M, t ∈ τ, T½ �: ðA24Þ

We can see that zðtÞ = u1ðtÞ − u2ðtÞ solves the equation

ztt − Δzt −
1
2 ϕ12 tð ÞΔz − 1

2 ϕ1 tð Þ − ϕ2 tð Þ½ � Δu1 + Δu2
� �

+ f u1
� �

− f u2
� �

= 0,
ðA25Þ

where ϕ12ðtÞ = ϕ1ðtÞ + ϕ2ðtÞ with ϕiðtÞ = ϕðk∇uiðtÞk2Þ.
By the definition of a weak solution, we can multiply
(A25) by z in L2ðΩÞ and reduce that

d
dt

z, ztð Þ + 1
2 ∇zk k2

� �
− ztk k2 + 1

2 ϕ12 tð Þ ∇zk k2

+ f u1
� �

− f u2
� �

, z
� �

+ 1
2 ϕ1 tð Þ − ϕ2 tð Þ½ � ∇u1+∇u2,∇z� �

= 0:

ðA26Þ

Using H1
0ðΩÞ↪LqðΩÞ for every 1 ≤ q < +∞ when n =

1, 2 and H1
0ðΩÞ↪L2n/ðn−2ÞðΩÞ when n ≥ 3, we have that

∣ f u1
� �

− f u2
� �

, z
� �

∣ ≤ C
ð
Ω

1 + u1
�� ��p−1 + u2

�� ��p−1	 

zj j2dx

≤ CR ∇zk k2:
ðA27Þ

Therefore, combining with

∣ϕ1 tð Þ − ϕ2 tð Þ∣ = ∣
ð1
0
ϕ′ λ ∇u1 tð Þ 2 + 1 − λð Þ ∇u2 tð Þ 2	 


dλ

· ∇ u1 + u2
� �

,∇z
� �

∣ ≤ C ∇zk k,
ðA28Þ

we can conclude that

d
dt

z, ztð Þ + 1
2 ∇zk k2

� �
≤ ztk k2 + CR ∇zk k2: ðA29Þ

Now consider the multiplier zt . Since z ∈ L∞ðτ, T ;H1
0

ðΩÞÞ, zt ∈ L2ðτ, T ;H1
0ðΩÞÞ, and ztt ∈ L2ðτ, T ;H−1ðΩÞÞ, we

can multiply (A26) by zt and obtain

1
2
d
dt

ztk k2 + ∇ztk k2 + 1
2 ϕ12 tð Þ ∇z,∇ztð Þ + f u1

� �
− f u2
� �

, zt
� �

−
1
2 ϕ1 tð Þ − ϕ2 tð Þ½ � Δ u1 + u2

� �
, zt

� �
= 0:

ðA30Þ

Similar to (A29), we can get

d
dt

ztk k2 + 2 ∇ztk k2 + 2 f u1
� �

− f u2
� �

, zt
� �

≤ C ∇zk k · ∇ztk k:
ðA31Þ

Similar to (A27), we have

∣ f u1
� �

− f u2
� �

, zt
� �

∣ ≤ CR ∇zk k · ∇ztk k: ðA32Þ

Therefore, we can conclude from Young’s inequality
that

d
dt

ztk k2 + ∇ztk k2 ≤ C ∇zk k2 + ∇ztk k2� �
: ðA33Þ

Let

Γ tð Þ = ztk k2 + ε z, ztð Þ + 1
2 ∇zk k2

� �
, ðA34Þ

for ε > 0 small enough. Then, there exists a positive
constants Ci such that

C1 ztk k2 + ∇zk k2� �
≤ Γ tð Þ ≤ C2 ztk k2 + ∇zk k2� �

: ðA35Þ

From (A29) and (A33), we have the estimation

d
dt

Γ tð Þ + ∇ztk k2 ≤ Cε,RΓ tð Þ: ðA36Þ

Using Gronwall’s inequality, we get that

zt tð Þk k2 + ∇z tð Þk k2 +
ðt
τ

∇zt sð Þk k2ds ≤ CR,T zt τð Þk k2 + ∇z τð Þk k2� �
,

ðA37Þ

for all t ∈ ½τ, T�, which implies the desired conclusion
in (20). By this inequality, we can prove the existence of
weak solutions for initial data ðu0τ, u1τÞ ∈H . Indeed, we
can choose a sequence fðu0,nτ , u1,nτ Þg ∈ ðH2ðΩÞ ∩H1

0ðΩÞÞ ×
L2ðΩÞ such that ðu0,nτ , u1,nτ Þ⟶ ðu0τ, u1τÞ in H . Owing to

9Advances in Mathematical Physics



(20), the corresponding solutions ðunðtÞ, unt ðtÞÞ converge
to functions ðu, utÞ in L∞ðτ, T ;HÞ. From the bounded-
ness for funt g in L2ðτ, T ;H1

0ðΩÞÞ we also have weak con-
vergence of funt g to ut in the space L2ðτ, T ;H1

0ðΩÞÞ. This
implies that uðtÞ is a weak solution of Problem (1). By
(19), this solution is unique.

Step 3. For the proof of smoothness properties stated in (18),
we use the same method as [18, 38]. As usual, the argument
below can be justified by considering Galerkin approxima-
tions. Set v = ut and differentiate (1) with respect to time.
This yields

vtt − Δvt − ϕ ∇uk k2� �
Δv − 2ϕ′ ∇uk k2� �

Δu ∇u,∇utð Þ + f ′ uð Þv = ht:

ðA38Þ

Multiplying the above equation by v, we obtain that

d
dt

v, vtð Þ + 1
2 ∇vk k2

� �
+ ϕ ∇uk k2� �

∇vk k2 + f ′ uð Þv, v
	 


≤ vtk k2 + CR ∇u,∇vð Þj j2 + ht , vð Þ:
ðA39Þ

This implies that

d
dt

v, vtð Þ + 1
2 ∇vk k2

� �
≤ vtk k2 + C1 ∇vk k2 + ht tð Þk k2:

ðA40Þ

Multiplying the above equation by A−1vt with A = −Δ
and using Young’s inequality, we obtain that

d
dt

A−1/2vt
 2 + vtk k2 ≤ CR ∇vk k2 + ht tð Þk k2� �

: ðA41Þ

Denote

Y tð Þ = A−1/2vt
 2 + ε v, vtð Þ + 1

2 ∇vk k2
� �

, ðA42Þ

then we have that

a1 A−1/2vt
 2 + ∇vk k2
	 


≤ Y tð Þ ≤ a2 A−1/2vt
 2 + ∇vk k2
	 


,

ðA43Þ

for some positive constants ai depending on ε. Due to
(A40) and (A41), it is apparent that

dY tð Þ
dt

+ 1
2 vtk k2 ≤ C3 ∇vk k2 + C4 ht tð Þk k2 ≤ ~C3Y tð Þ + C4 ht tð Þk k2:

ðA44Þ

Multiplying (A44) by ðs − τÞ2, we get that

d
ds

s − τð Þ2Y sð Þ� �
+ s − τð Þ2

2 vt sð Þk k2 ≤ 2 s − τð ÞY sð Þ
+ ~C3 s − τð Þ2Y sð Þ + C4 s − τð Þ2 ht sð Þk k2:

ðA45Þ

It is easy to know

2 s − τð ÞY sð Þ ≤ 1 + s − τð Þ2Y2 sð Þ ≤ 1 + s − τð Þ2

� a2 A−1/2vt
 2 + ∇vk k2
	 


Y sð Þ: ðA46Þ

Since

A−1utt = −ut − ϕ ∇uk k2� �
u −A−1 f uð Þ − hð Þ, ðA47Þ

one can see that kA−1vtk ≤ CRð1 + khð·, sÞkÞ. Using

kA−1/2vtk2 ≤ CkA−1vtk · kvtk and Young’s inequality, we get

d
ds

s − τð Þ2Y sð Þ� �
+ s − τð Þ2

4 vt sð Þk k2 ≤ C5 s − τð Þ2

� 1 + ∇utk k2� �
Y sð Þ + C6 s − τð Þ2 h ·, sð Þk k2 + ht sð Þk k2� �

:

ðA48Þ

By Gronwall’s inequality and (16), one can find

t − τð Þ2Y tð Þ ≤ CR,T 1 + h ·, sð Þk k2 + ht sð Þk k2� �
: ðA49Þ

This implies (18). The proof is completed.
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