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The aim of this study is to analyze nonlinear Liouville-Caputo time-fractional problems by a new technique which is a
combination of the iterative and ARA transform methods and is denoted by IAM. First, the ARA transform method and its
inverse are utilized to get rid of time fractional derivative. Later, the iterative method is applied to establish the solution of the
problem in infinite series form. The main advantages of this method are that it converges to analytic solution of the problem
rapidly and implementation of method is easy. Finally, outcomes of the illustrative examples prove the efficiency and accuracy
of the method.

1. Introduction

The mathematical problems including fractional differential
equations play a significant role in analysis and modelling
of various scientific processes such as damping laws, electri-
cal circuits, fluid mechanics, and relaxation processes since
fractional derivative is nonlocal operator [1–5]. As a result,
fractional mathematical problems attract a growing atten-
tion of numerous scientist from diverse branches of science.
The adversity of fractional differential equations is that
solving them analytically is hard or impossible. Therefore,
numerous numerical methods such as reduced differential
transform method (RDTM) [6], Adomian decomposition
method (ADM) [7], homotopy perturbation method (HPM)
[8], variational iteration method (VIM) [9, 10], homotopy
analysis method (HAM) [11], fractional difference method
(FDM) [12], and new iterative method (NIM) [13] have been
developed to establish numerical solution in series form.

ARA transform is a new integral transform method to
tackle with any kind of differential equations. The differen-
tial equation is reduced into algebraic equation or simpler
differential equation by this method. Moreover, the ARA
transform method is more applicable than the Laplace trans-
form method since the domain of this method covers the
domain of the Laplace transform method [14]. Combination

of this transform with other numerical methods produces
new and effective methods to construct numerical or ana-
lytical solution of differential equations. In this study, the
combination of ARA transform method with iterative
method is utilized to construct the solution of nonlinear
fractional differential problems of biological population.
Iterative method is a very common method to obtain the
numerical solution of mathematical problems including
differential equations [15].

The main goal of this research is to establish numerical
or analytical solutions of nonlinear Liouville-Caputo time-
fractional problems by means of IAM which is a new effec-
tive and versatile method. The novelty of this study is that
this is the first study in which ARA transform method is
applied to fractional differential problem including frac-
tional equation in Liouville-Caputo sense.

The rest of the paper is organized as follows: fundamen-
tal definitions and properties of fractional calculus and ARA
transform, the ARA transform of fundamental functions,
and existence of ARA transform for Liouville-Caputo deriv-
ative and Riemann-Liouville integral are given in Section 2.
Implementation and convergence analysis of the method
for nonlinear fractional mathematical problems is presented
in Section 3. Illustrative examples including Liouville-
Caputo time-fractional biological population problem are
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presented and analyzed in Section 4. Finally, the outcomes of
this method are presented in conclusion.

2. Preliminary Results

In this section, preliminaries, notations, and features of the
fractional calculus are given [12, 16].

Definition 1. Riemann-Liouville time-fractional integral of a
real valued function uðtÞ is defined as

Iαt u tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1u sð Þds, ð1Þ

where α > 0 denotes the order of the integral.

Definition 2. αth order of the Liouville-Caputo fractional
derivative of uðtÞ is defined as

Dα
t u tð Þ = 1

Γ n − αð Þ
ðt
t0

t − sð Þn−α−1u nð Þ sð Þds, t ∈ t0, t0 + T½ �,

ð2Þ

where n − 1 < α < n and uðnÞðtÞ = dnu/dtn. If α is an integer,
then the Liouville-Caputo fractional derivative becomes the
integer-order derivative.

Definition 3. αth order of the Liouville-Caputo fractional
derivative of uðtÞ is defined as

Dα
t u tð Þ = 1

Γ 1 − αð Þ
ðt
t0

t − sð Þ−αu′ sð Þds, t ∈ t0, t0 + T½ �, ð3Þ

where 0 < α < 1.

Definition 4. The Mittag-Leffler function with the parame-
ters α and β is given as follows [17].

Eα,β λ t − t0ð Þαð Þ = 〠
∞

k=0

λ t − t0ð Þαð Þk
Γ αk + βð Þ , α, β > 0, λ ∈ R: ð4Þ

If t0 = 0, α = β = q, then we get

Eq,q λtqð Þ = 〠
∞

k=0

λtqð Þk
Γ αk + βð Þ , q > 0: ð5Þ

Moreover, substituting q = 1, in equation (5), we have
E1,1ðλtÞ = eλt . If the reader wants more information, they
should refer to [17]. The following functions are used to
obtain the solution of the problem discussed in this study.

Definition 5. The ARA integral transform of order n of the
continuous function gðtÞ on the interval ð0,∞Þ is defined
as [14]

Gn g tð Þ½ � sð Þ =G n, sð Þ = s
ð∞
0
tn−1e−stg tð Þdt, s > 0: ð6Þ

Definition 6. The inverse of the ARA transform is given by

g tð Þ =G−1
n+1 Gn+1 g tð Þ½ �½ �

= −1ð Þn
2πi

ðc+i∞
c−i∞

est
 

−1ð Þn
 

1
sΓ n − 1ð Þ

�
ðs
0
s − xð Þn−1G n + 1, xð Þdx + 〠

n−1

k=0

sk

k!
∂kG 0ð Þ
∂sk

!!
ds,

ð7Þ

whereGðsÞ = Ð∞0 e−stgðtÞdt is ðn − 1Þ times differentiable [14].

Now, significant properties which play a vital role for the
solution of fractional differential equations are presented as
follows:

Property 7. The ARA transform of Mittag-Leffler for n = 1
are computed as follows:

Gn tβ−1Eα,β λtαð Þ
h i

sð Þ

= s
ð∞
0
tn−1e−stt

β−1〠
∞

k

λtαð Þk/Γ αk+βð Þ
� �

dt

= 〠
∞

k

λk

Γ αk + βð Þ s
ð∞
0
e−st tn+β−2+αkdt

= 〠
∞

k

λk

Γ αk + βð Þ s
ð∞
0
tn−1e−st tβ−1+αkdt

= 〠
∞

k

λk

Γ αk + βð Þ
Γ β − 1 + αk + nð Þ

sβ−1+αk+n−1

= 1
sβ+n−2

〠
∞

k

λk

Γ αk + βð Þ
Γ β + αk + n − 1ð Þ

sαk
:

ð8Þ

For n = 1,

G1 tβ−1Eα,β λtαð Þ
h i

sð Þ

= 1
sβ−1

〠
∞

k

λk

Γ αk + βð Þ
Γ β + αkð Þ

sαk

= 1
sβ−1

1
1 − λ/sαð Þ
� �

= sα−β+1

sα − λ
:

ð9Þ

Property 8. The ARA transform of tpα for p ∈ℕ is defined as
follows:
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Gn t
pα½ � sð Þ = s

ð∞
0
tn−1e−st tpαdt = s

ð∞
0
tpα+n−1e−stdt

= Γ pα + nð Þ 1
s

� �pα+n
s
ð∞
0

tpα+n−1e−st

Γ pα + nð Þ 1/sð Þpα+n dt

= Γ pα + nð Þ 1
s

� �pα+n
s = Γ pα + nð Þ

spα+n−1
:

ð10Þ

Property 9 [14]. The ARA transform of convolution is
defined as follows:

Gn f tð Þ ∗ g tð Þ½ � sð Þ = −1ð Þn−1s〠
n−1

j=0
cn−1j F jð Þ sð ÞG n−1−jð Þ sð Þ:

ð11Þ

For n = 1, it becomes

G1 f tð Þ ∗ g tð Þ½ � sð Þ = sF sð ÞG sð Þ, ð12Þ

where GðsÞ = Ð∞0 e−stgðtÞdt and FðsÞ = Ð∞0 e−st f ðtÞdt.

Theorem 10 (the existence of ARA transform for Riemann-
Liouville integral). If the Riemann-Liouville integral RL0 Iαt f ðtÞ
of the function f ðtÞ is piecewise continuous in every finite
interval and fulfils

tn−1
�� f

0RL
Igtα f tð Þ ≤ Keβt , ð13Þ

then ARA transform exists for all s > β.

Proof. By the property of integration the ARA transform of
the Riemann-Liouville integral leads to the following

s
ð∞
0
tn−1e−st RL0 I

α
t f tð Þdt = s

ðγ
0
tn−1e−st RL0 I

α
t f tð Þdt

+ s
ð∞
γ

tn−1e−st RL0 I
α
t f tð Þdt,

ð14Þ

piecewise continuity of RL0 Iαt f ðtÞ implies the existence of first
integral on the right side, and the convergence of improper
integral on the right side is shown below:

s
ð∞
γ

tn−1e−st RL0 I
α
t f tð Þdt

�����
����� ≤ s

ð∞
γ

e−st tn−1 RL
0 I

α
t f tð Þ

��� ���dt
≤ s
ð∞
γ

Keβt−stdt = lim
c⟶∞

− sK
e−t s−βð Þ

s − β

����
c

γ

= sK
s − β

e−γ s−βð Þ:

ð15Þ

As a result, the ARA transform of RL
0 Iαt f ðtÞ exists.☐

Theorem 11 (ARA transform of Riemann-Liouville integral
for n = 1). If the Riemann-Liouville integral RL

0 Iαt f ðtÞ of the
function f ðtÞ is piecewise continuous in every finite interval
and fulfils

tn−1 RL
0 I

α
t f tð Þ

��� ��� ≤ Keβt , ð16Þ

then ARA transform of it for n = 1 is computed as

G1
RL
0 I

α
t f tð Þ

h i
sð Þ = 1

sα
G1 f tð Þ½ � sð Þ, ð17Þ

for all s > β.

Proof. For n = 1, we have

G1
RL
0 I

α
t f tð Þ

h i
sð Þ =G1

1
Γ αð Þ

ðt
0
t − xð Þα−1 f xð Þdx

� �
sð Þ: ð18Þ

In terms of convolution, it can be rewritten as follows

G1
1

Γ αð Þ tα−1 ∗ f tð Þ	 
� �
sð Þ, ð19Þ

by using convolution property of the ARA transform, we
reach the following

1
Γ αð Þ s

ð∞
0
e−st tα−1dt

� � ð∞
0
e−st f tð Þdt

� �

= 1
Γ αð Þ s

Γ αð Þ
sα

ð∞
0
e−st f tð Þdt

� �

= 1
sα
s
ð∞
0
e−st f tð Þdt = 1

sα
G1 f tð Þ½ � sð Þ:

ð20Þ

☐

Theorem 12 (the existence of ARA transform for Liouville-
Caputo derivative). If the αth order of Liouville-Caputo deriv-
ative C

0D
α
t f ðtÞ of the function f ðtÞ is piecewise continuous in

every finite interval, f ðtÞ is n times continuously differentiable
and fulfils

tn−1 C
0D

α
t f tð Þ�� �� ≤ Keβt , ð21Þ

then ARA transform exists for all s > β.

Proof. By the property of integration the ARA transform of
the Liouville-Caputo derivative leads to the following

s
ð∞
0
tn−1e−st C0D

α
t f tð Þdt

= s
ðγ
0
tn−1e−st C0D

α
t f tð Þdt + s

ð∞
γ

tn−1e−st C0D
α
t f tð Þdt,

ð22Þ
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piecewise continuity of C0D
α
t f ðtÞ implies the existence of first

integral on the right side, and the convergence of improper
integral on the right side is shown below:

s
ð∞
γ

tn−1e−st C0D
α
t f tð Þdt

�����
�����

≤ s
ð∞
γ

e−st tn−1 C
0D

α
t f tð Þ�� ��dt ≤ s

ð∞
γ

Keβt−stdt

= lim
c⟶∞

− sK
e−t s−βð Þ

s − β

����
c

γ

= sK
s − β

e−γ s−βð Þ:

ð23Þ

As a result, the ARA transform of C
0D

α
t f ðtÞ exists.☐

Theorem 13 (ARA transform of Liouville-Caputo derivative
for n = 1). If the αth order of Liouville-Caputo derivative C

0
Dα
t f ðtÞ of the function f ðtÞ is piecewise continuous in every

finite interval and fulfils

tn−1 C
0D

α
t f tð Þ�� �� ≤ Keβt , ð24Þ

where m − 1 < α ≤m, then ARA transform of it for n = 1 is
computed as

G1
C
0D

α
t f tð Þ	 


sð Þ = sαG1 f tð Þ½ � sð Þ − 〠
m−1

k=0
f kð Þ 0ð Þsα−k, ð25Þ

for all s > β.

Proof. The ARA transform of Liouville-Caputo derivative for
n = 1 can be written as

G1
C
0D

α
t f tð Þ	 


sð Þ =G1
RL
0 Im−α

t f mð Þ tð Þ
h i

sð Þ: ð26Þ

Taking f ðmÞðtÞ = gðtÞ and using Theorem 11 lead to

G1
RL
0 Im−α

t g tð Þ	 

sð Þ = 1

sm−α G1 g tð Þ½ � sð Þ, ð27Þ

Replacing gðtÞ by f ðmÞðtÞ and utilizing integration by
parts lead us to the following result

1
sm−α G1 f mð Þ tð Þ

h i
sð Þ = sαG1 f tð Þ½ � sð Þ − 〠

m−1

k=0
f kð Þ 0ð Þsα−k: ð28Þ

☐

3. Main Results

In this section, the implementation of IAM for nonlinear
fractional partial differential equation with initial conditions
is presented. Let us consider the following nonlinear frac-
tional initial value problem:

C
0D

α
t u x, y, tð Þð Þ + Ru x, y, tð Þ +Nu x, y, tð Þ
= g x, y, tð Þ,m − 1 < α ≤m,m ∈ℕ,

ð29Þ

∂k

∂tk
u x, y, 0ð Þ = hk x, yð Þ, k = 0, 1, 2,⋯,m − 1, ð30Þ

where C
0D

α
t ðuðx, y, tÞÞ, R, N , and gðx, y, tÞ represent frac-

tional derivative, the linear equation operator, the general
nonlinear differential operator, and the source term, respec-
tively. In order to apply ARA transform to nonlinear frac-
tional initial value problem, uðx, y, tÞ must be m times
continuously differentiable function with respect to variable
t based on Definition 5. In other words, uðx, y, tÞ must
belong to the Banach space Wm

2 ½0, T� where it is defined as

Wm
2 0, T½ � = u = u :,:,tð Þ: u, u 1ð Þ,⋯, u m−1ð Þ ∈ AC 0, T½ �

n o
:

ð31Þ

Without loss of generality taking u = uðx, y, tÞ. Making
use of the ARA transform on equation (29), we obtain

G1
C
0D

α
t u

	 

sð Þ + G1 Ru +Nu½ � sð Þ =G1 g x, y, tð Þ½ � sð Þ: ð32Þ

Taking the property of the ARA transform into account
leads to

sαG1 u½ � sð Þ − 〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k +G1 Ru +Nu½ � sð Þ

=G1 g x, y, tð Þ½ � sð Þ,

G1 u½ � sð Þ = 1
sα

〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k − 1

sα
G1 Ru +Nu½ � sð Þ

+ 1
sα
G1 g x, y, tð Þ½ � sð Þ:

ð33Þ

Employing inverse ARA transform gives

u = G−1
1

1
sα

〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k +G1 g x, y, tð Þ½ � sð Þ

" #" #

−G−1
1

1
sα

G1 Ru +Nu½ � sð Þ½ �
� �

:

ð34Þ

Now, the application of the iterative method produces

u = 〠
∞

i=0
ui: ð35Þ

Linearity of the operator R leads to

R 〠
∞

i=0
ui

 !
= 〠

∞

i=0
R uið Þ, ð36Þ
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and decomposition of the nonlinear operator N can be writ-
ten as

N 〠
∞

i=0
ui

 !
=N u0ð Þ + 〠

∞

i=0
N 〠

i

k=0
uk

 !
−N 〠

i−1

k=0
uk

 !( )
: ð37Þ

Plugging (35), (36), and (37) in (34) allows us to have

〠
∞

i=0
ui =G−1

1
1
sα

〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k +G1 g x, y, tð Þ½ � sð Þ

" #" #

− G−1
1

"
1
sα

"
G1

"
R uið Þ +N u0ð Þ

+ 〠
∞

i=1
N 〠

i

k=0
uk

 !
−N 〠

i−1

k=0
uk

 !( )#
sð Þ
##

:

ð38Þ

The recurrence relation is obtained as follows:

u0 =G−1
1

1
sα

〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k + G1 g x, y, tð Þ½ � sð Þ

" #" #
,

ð39Þ

u1 = −G−1
1

1
sα

G1 R u0ð Þ +N u0ð Þ½ � sð Þ½ �
� �

, ð40Þ

um+1 =G−1
1

"
1
sα

"
G1

"
R umð Þ −

(
N 〠

m

k=0
uk

 !

−N 〠
m−1

k=0
uk

 !)#
sð Þ
##

,m ≥ 1:
ð41Þ

Finally, the approximate solution of m-term is con-
structed as

u x, y, tð Þ ≅ u0 + u1 + u2+⋯+um,m = 1, 2,⋯ ð42Þ

Theorem 14. In the Banach space Wm
2 ½0, T�, the solution of

nonlinear fractional differential equation (29) in series form
is convergent if the following inequality satisfies for some con-
stant γ, 0 < γ < 1

G−1
1

1
sα

G1 R umð Þ − N 〠
m

k=0
uk

 !
−N 〠

m−1

k=0
uk

 !( )" #
sð Þ

" #" #�����
�����

≤ γ G−1
1

"
1
sα

"
G1

"
R um−1ð Þ −

(
N 〠

m−1

k=0
uk

 !�����
−N 〠

m−2

k=0
uk

 !)#
sð Þ
##�����,∀m ∈ℕ,

ð43Þ

or kum+1k ≤ γkumk.

Proof.

Sm x, y, tð Þ = u1 + u2 + u3+⋯+um, ð44Þ

represent the sequences of partial sums form ≥ 1. In order to
prove that the series solution of nonlinear fractional differ-
ential equation (29) is convergent, it is enough to show that
fSmgm≥1 is a Cauchy sequence in a given Banach space B.
For this aim, we take

Sm+1 − Smk k

= G−1
1

1
sα

G1 R umð Þ − N 〠
m

k=0
uk

 !
−N 〠

m−1

k=0
uk

 !( )" #
sð Þ

" #" #�����
�����

≤ γ G−1
1

1
sα

G1 R um−1ð Þ − N 〠
m−1

k=0
uk

 !
−N 〠

m−2

k=0
uk

 !( )" #
sð Þ

" #" #�����
�����

≤ γ2 G−1
1

1
sα

G1 R um−2ð Þ − N 〠
m−2

k=0
uk

 !
−N 〠

m−3

k=0
uk

 !( )" #
sð Þ

" #" #�����
�����

≤⋯ ≤ γn+1 G−1
1

1
sα

〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k +G1 g x, y, tð Þ½ � sð Þ

" #" #�����
�����:
ð45Þ

For every n,m ∈ℕ, n ≥m, utilizing (43) and triangle
inequality successively, we get

Sn − Smk k = Sm+1 − Sm + Sm+2 − Sm+1+⋯+Sn − Sn−1k k

≤ γm+1 1 − γn−m

1 − γ

� �
G−1
1

"
1
sα

"
〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k

�����
+G1 g x, y, tð Þ½ � sð Þ

##�����:
ð46Þ

The assumption 0 < γ < 1 implies that 1 − γn−m ≤ 1
which yields

Sn − Smk k ≤ γm+1

1 − γ
G−1
1

"
1
sα

"
〠
m−1

k=0

∂k

∂tk
u x, y, 0ð Þsα−k

�����
+G1 g x, y, tð Þ½ � sð Þ

##�����:
ð47Þ

Boundedness of G−1
1 ½1/sα½∑m−1

k=0 ð∂k/∂tkÞuðx, y, 0Þsα−k +
G1½gðx, y, tÞ�ðsÞ�� implies the following:

lim
n,m⟶∞

Sn − Smk k = 0: ð48Þ

This result implies that the sequence fSmgm≥1 is a Cau-
chy sequence in Banach space B. As a result, the series solu-
tion (35) is convergent.☐
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4. Illustrative Example

As illustrative examples, nonlinear fractional initial value
problems of biological population models are presented in
this section to show how IAM is implemented.

Example 1. Consider the following generalized time-
fractional biological population model:

C
0D

α
t u =

∂2

∂x2
u2 + ∂2

∂y2
u2 + hu, ð49Þ

with the initial condition

u x, y, 0ð Þ = ffiffiffiffiffi
xy

p , ð50Þ

where u = uðx, y, tÞ, 0 < α ≤ 1, ðx, yÞ ∈ℝ2, t > 0.

Employing the ARA transform on equation (49) with the
initial condition (50) produces the following:

G1 u½ � sð Þ = ffiffiffiffiffi
xy

p + 1
sα
G1

∂2

∂x2
u2 + ∂2

∂y2
u2 + hu

" #
sð Þ: ð51Þ

Applying inverse ARA transform to equation (51) leads
to

u = ffiffiffiffiffi
xy

p +G−1
1

1
sα

G1
∂2

∂x2
u2 + ∂2

∂y2
u2 + hu

" #
sð Þ

" #" #
: ð52Þ

Substituting (35)–(37) into (52) and utilizing (39), the
components of the solution are established as follows:

u0 = u x, y, 0ð Þ = ffiffiffiffiffi
xy

p ,

u1 =G−1
1

1
sα

G1
∂2

∂x2
u20 +

∂2

∂y2
u20 + hu0

" #
sð Þ

" #" #

=G−1
1

1
sα

G1 h
ffiffiffiffiffi
xy

p½ � sð Þ½ �
� �

= h
tα

Γ α + 1ð Þ
ffiffiffiffiffi
xy

p ,

u2 =G−1
1

"
1
sα

"
G1

"
∂2

∂x2
u0 + u1ð Þ2 + ∂2

∂y2
u0 + u1ð Þ2

+ h u0 + u1ð Þ
#
sð Þ
##

−G−1
1

"
1
sα

"
G1

"
∂2

∂x2
u20

+ ∂2

∂y2
u20 + hu0

#
sð Þ
##

=G−1
1

1
sα

G1 h + h2
tα

Γ α + 1ð Þ
� � ffiffiffiffiffi

xy
p� �

sð Þ
� �� �

− h
tα

Γ α + 1ð Þ
ffiffiffiffiffi
xy

p = h2
t2α

Γ 2α + 1ð Þ
ffiffiffiffiffi
xy

p ,

u3 =G−1
1

"
1
sα

"
G1

"
∂2

∂x2
u0 + u1 + u2ð Þ2 + ∂2

∂y2
u0 + u1 + u2ð Þ2

+ h u0 + u1 + u2ð Þ
#
sð Þ
##

−G−1
1

"
1
sα

"
G1

"
∂2

∂x2
u0 + u1ð Þ2

+ ∂2

∂y2
u0 + u1ð Þ2 + h u0 + u1ð Þ

#
sð Þ
##

=G−1
1

1
sα

G1 h + h2
tα

Γ α + 1ð Þ + h3
t2α

Γ 2α + 1ð Þ
� � ffiffiffiffiffi

xy
p� �

sð Þ
� �� �

− h2
t2α

Γ 2α + 1ð Þ
ffiffiffiffiffi
xy

p
− h

tα

Γ α + 1ð Þ
ffiffiffiffiffi
xy

p = t3α

Γ 3α + 1ð Þ
ffiffiffiffiffi
xy

p
:

ð53Þ

Finally, the numerical solution of the problem is con-
structed as

u ≅ u0 + u1 + u2+⋯+um,

u ≅
�
1 + h

tα

Γ α + 1ð Þ + h2
t2α

Γ 2α + 1ð Þ
+ h3

t3α

Γ 3α + 1ð Þ+⋯+hm tmα

Γ mα + 1ð Þ
� ffiffiffiffiffi

xy
p

:

ð54Þ

As m tends to infinity, the numerical solution converges
to following analytical solution

u x, y, tð Þ = Eα,1 htαð Þ ffiffiffiffiffi
xy

p
: ð55Þ

The exact solution which is computed by taking α = 1
can be written as [18]:

u x, y, tð Þ = exp htð Þ ffiffiffiffiffi
xy

p
: ð56Þ

Example 2. Let us take the following generalized time-
fractional biological population model into consideration:

C
0D

α
t u =

∂2

∂x2
u2 + ∂2

∂y2
u2 + u, ð57Þ

with the initial condition

u x, y, 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
, ð58Þ

where u = uðx, y, tÞ, 0 < α ≤ 1, ðx, yÞ ∈ℝ2, t > 0.

Utilizing the ARA transform on equation (57) with the
initial condition (58) produces the following:

G1 u½ � sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
+ 1
sα
G1

∂2

∂x2
u2 + ∂2

∂y2
u2 + u

" #
sð Þ:

ð59Þ
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Applying inverse ARA transform to equation (59) leads
to

u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
+G−1

1
1
sα

G1
∂2

∂x2
u2 + ∂2

∂y2
u2 + u

" #
sð Þ

" #" #
:

ð60Þ

Substituting (35)–(37) into (60) and utilizing (39), the
components of the solution are established as follows:

u0 = u x, y, 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
,

u1 =
tα

Γ α + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
,

u2 =
t2α

Γ 2α + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
,

u3 =
t3α

Γ 3α + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
,

ð61Þ

…
Finally, the numerical solution of the problem is con-

structed as

u ≅ u0 + u1 + u2+⋯+um,

u ≅
�
1 + tα

Γ α + 1ð Þ + t2α

Γ 2α + 1ð Þ +
t3α

Γ 3α + 1ð Þ
+⋯+ tmα

Γ mα + 1ð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin xð Þ sin h yð Þ
p

:

ð62Þ

As m goes to infinity, the numerical solution converges
to following analytical solution

u x, y, tð Þ = Eα,1 tαð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
: ð63Þ

The exact solution which is computed by taking α = 1
can be written as [19]:

u x, y, tð Þ = exp tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sin h yð Þ

p
: ð64Þ

Example 3. Consider the following generalized time-
fractional biological population model:

C
0D

α
t u =

∂2

∂x2
u2 + ∂2

∂y2
u2 + hu 1 − ruð Þ, ð65Þ

with the initial condition

u x, y, 0ð Þ = exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
: ð66Þ

where u = uðx, y, tÞ, 0 < α ≤ 1, ðx, yÞ ∈ℝ2, t > 0.

Employing the ARA transform on equation (65) with the
initial condition (66) produces the following:

G1 u½ � sð Þ = exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
+ 1
sα
G1

"
∂2

∂x2
u2

+ ∂2

∂y2
u2 + hu 1 − ruð Þ

#
sð Þ:

ð67Þ

Table 1: The absolute errors between the approximate solutions u7 and the exact solution for Examples 1, 2, and 3 at α = 1.

Example 1 Example 2 Example 3
x, y, tð Þ h = 1 h = 1, r = 2
0:1,0:1,0:1ð Þ 2:509104035652854 × 10−14 2:50771625687207 × 10−14 2:771116669464391 × 10−13

0:2,0:2,0:2ð Þ 1:298636198576730 × 10−11 1:298622320788923 × 10−11 7:930767154107343 × 10−11

0:3,0:3,0:3ð Þ 5:04943808987690 × 10−10 5:049211049268365 × 10−10 2:27200946945061 × 10−9

0:4,0:4,0:4ð Þ 6:802539864736446 × 10−9 6:801572194348182 × 10−9 2:537049281770010 × 10−8

0:5,0:5,0:5ð Þ 5:127268321025724 × 10−8 5:125487789747751 × 10−8 1:690687270183844 × 10−7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

0

5

10

15

u 
(x

,y
,t)

Truncated solution for α = 0.66
Truncated solution for α = 0.75
Truncated solution for α = 0.9
Truncated solution for α = 1
Exact solution

Figure 1: The 2D graphs of exact and approximate solutions u7 by
IAM for various of α for Example 1 at t = 1:5 and h = y = 1.
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Applying inverse ARA transform to equation (67)
leads to

u = exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
+G−1

1

"
1
sα

"
G1

"
∂2

∂x2
u2

+ ∂2

∂y2
u2 + hu 1 − ruð Þ

#
sð Þ
##

:

ð68Þ

Substituting (35)–(37) into (68) and utilizing (39), the
components of the solution are established as follows:

u0 = u x, y, 0ð Þ = exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
,

u1 = h
tα

Γ α + 1ð Þ exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
,

u2 = h2
t2α

Γ 2α + 1ð Þ exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
,

u3 = h3
t3α

Γ 3α + 1ð Þ exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
,

ð69Þ

…
Finally, the numerical solution of the problem is con-

structed as

u ≅ u0 + u1 + u2+⋯+um,

u ≅
�
1 + h

tα

Γ α + 1ð Þ + h2
t2α

Γ 2α + 1ð Þ + h3
t3α

Γ 3α + 1ð Þ

+⋯+hm tmα

Γ mα + 1ð Þ
�
exp

ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
:

ð70Þ

As m tends to infinity, the numerical solution converges
to following analytical solution

u x, y, tð Þ = Eα,1 htαð Þ exp
ffiffiffiffiffi
hr
8

r
x + yð Þ

 !
: ð71Þ

The exact solution which is computed by taking α = 1
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Figure 3: The 2D graphs of exact and approximate solutions u7 by
IAM for various of α for Example 2 at t = 1:5 and x = 1.
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Figure 2: 3D graphs of exact and approximate solutions u7 by IAM
for various values of α for Example 1 at t = 1:5 and h = 1.
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Figure 4: 3D graphs of exact and approximate solutions u7 by IAM
for various values of α for Example 2 at t = 1:5.
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can be written as [20]:

u x, y, tð Þ = exp
ffiffiffiffiffi
hr
8

r
x + yð Þ + ht

 !
: ð72Þ

In Table 1, absolute errors between the exact solution
and the approximate solutions u7 at α = 1 for Examples 1,
2, and 3 are presented. Figures 1–6 and outcomes verify that
when the order of the fractional derivative α increases to 1,
the truncated solutions obtained by IAM continuously get

closer to the exact solutions. Notice that the outcomes are
compatible with 2D and 3D graphs of exact and approxi-
mate solutions u7. Furthermore, we concluded that increas-
ing the number of terms in approximate solutions implies
the improvement of accuracy of approximate solutions.

5. Conclusion

In this study, nonlinear fractional initial value problem is
investigated by a new numerical method IAMwhich is a com-
bination of the ARA transform and iterative methods. The
implementation and convergence analysis of IAM shows
how effective and accurate this method is. As an application
of this model, Liouville-Caputo time-fractional biological pop-
ulation problems are taken into consideration. The outcomes
of these examples also support the effectiveness and accuracy
of the method.

In the future works, the utilization of ARA transform
with other numerical methods is taken into account to ana-
lyze substantial nonlinear mathematical problems.
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