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Most of the papers have explored the interactions between solitons with a zero background, while reports about exact solutions for
nonzero background are rare. Hence, this paper is aimed at exploring the breather, lump, and interaction solutions with a small
perturbation to (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation. General high-order periodic breather
solutions are obtained using Hirota’s bilinear method with a small perturbation. At the same time, combining the use of long
wave limit methods and module resonance constraints, general lump solutions and mixed solutions to gKP equation are
generated. Finally, the space-time structures of the breather solutions, lump solutions, and interaction solutions are investigated
and discussed.

1. Introduction

The soliton, also known as a solitary wave, is a special
form of ultrashort pulse, or a pulse-like traveling wave
whose shape, amplitude, and velocity remain constant
during its propagation [1]. So far, soliton phenomena
have been discovered in many subject areas, for example,
laser self-focusing in media, acoustic and electromagnetic
waves in plasma, motion of domain walls in liquid crys-
tals, vortex in fluid, dislocation of crystals, magnetic flux
in superconductors, and signal transmission in the ner-
vous system [2–4].

In mathematics, the progress of soliton theory is
embodied in the discovery of a large number of nonlinear
partial differential equations with soliton solutions [5, 6]
and has gradually established a more systematic mathe-
matical and physical partial differential equations and the
theory of soliton [7, 8]. In order to solve these nonlinear
mathematical physical equations, scholars working in the
field of solitons have developed a series of solution
methods, such as the inverse scattering method [8], Hirota
bilinear method [7], numerical method, and symbolic cal-
culations [9].

In this paper, we consider the ð2 + 1Þ-dimensional gen-
eralized Kadomtsev-Petviashvili equation [10] as follows:

ut + cuux + buxxxð Þx +
c0
2 uyy = 0, ð1Þ

where u = uðx, y, tÞ denotes a scalar function of the space
variables x, y and time variable t, the parameters c is the
nonlinear term coefficient, b is the dispersion coefficient
along the x-axis, c0 is the velocity of the linear wave, and
c0/2 is the dispersion coefficient along the y-axis.

When c = 6, b = 1, and c0/2 = −1, Equation (1) is reduced
to the KPI equation:

uxt + 6 uuxð Þx + uxxxx − uyy = 0: ð2Þ

And the exact solutions with a zero background includ-
ing N-soliton solution and lump solution to the standard
Kadomtsev-Petviashvili equation has been studied systema-
tically in Refs. [7, 11, 12]. In recent years, the research on
the lump solution of Equation (3) has been very hot, mainly
focusing on the normal scattering of lump waves [13],
anomalous scattering between lump waves [14–18], and
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bound states of lump waves [19]. The reports on anomalous
scattering focus on the diversity of scattering patterns, such
as triangular patterns, and polygonal patterns [17]. At the
same time, the resonance phenomenon between lump
chains (we called breather waves in this paper) and lump
waves has been fully studied [20–23].

When c = 6, b = 1, and c0/2 = 1, Equation (1) is reduced
to the KPII equation:

uxt + 6 uuxð Þx + uxxxx + uyy = 0: ð3Þ

This equation can be used to describe some nonlinear
phenomena in shallow water [24]. For the KP2 system,
Kodama has made a very outstanding contribution in the
field about the resonance phenomena between line
waves [25].

Considering that the above-described solutions are all
obtained on the zero background, the solutions with a non-
zero background in the actual system are more general and
can describe the objective world more accurately. In this
paper, applying Hirota’s bilinear method with a perturbation
parameter u0 to Equation (1), we obtain periodic breather
wave solutions. Meanwhile, we generate lump and interac-
tion solutions with a nonzero background to Equation (1)
from solitons by taking long wave limits [12]. The arrange-
ment of this paper is organized as follows: in Section 2,
under the variable transformation, we construct bilinear for-
malism with a perturbation parameter. In Section 3, we
mainly investigate general higher-order breather and lump
solutions of Equation (1). In Section 4, we describe how to
obtain mixed solutions and interaction solutions.

2. Bilinear Formalism with a
Perturbation Parameter

Under the variable transformation,

u x, y, tð Þ = u0 +
12b
c

ln fð Þxx, ð4Þ

where f ðx, y, tÞ is a complex function and u0 is a free real
number.

Substituting Equation (4) into Equation (1), then Equa-
tion (1) becomes the following equation:

ln fð Þxxt + cu0 ln fð Þxxx + 12b ln fð Þxx ln fð Þxxx
+ b ln fð Þxxxx +

c0
2 ln fð Þxyy = 0:

ð5Þ

When Equation (5) integrates once with respect to x, we can
obtain the following equation:

ln fð Þxt + cu0 ln fð Þxx + 6b ln fð Þ2xx + b ln fð Þxxxx +
c0
2 ln fð Þyy = 0:

ð6Þ

The bilinear form of Equation (1) with a small perturba-
tion parameter u0 is generated as

DxDt + cu0D2
x + bD4

x +
c0
2 D2

y

� �
f · f = 0: ð7Þ

The operator D is the Hirota’s bilinear differential oper-
ator defined by

Dm
x D

n
t f · g = ∂

∂x
−

∂
∂x′

� �m ∂
∂t

−
∂
∂t ′

� �n

f x, y, tð Þ · g x′, y′, t ′
� �����

x′=x,t′=t
:

ð8Þ

3. General Higher-Order Breather and
Lump Solutions

In this section, we mainly investigate general high-order
breather and lump solutions of Equation (1).

3.1. First-Order Breather and Lump Solutions. We first
assume f in Equation (4) as the following formal form to
derive first-order breather solutions in Equation (1):

f = 1 + εf1 + ε2 f2, ð9Þ

with

f1 = eη1 + eη2 ,
f2 = eη1+η2+A12 ,

ð10Þ

where

ηs =wst + ksx + psy + ϕs, s = 1, 2, ð11Þ

and ws, ks, ps, and ϕs are freely complex parameters.
Substituting f defined in Equation (9) into Equation (7)
and collecting the power order of ε, one can obtain the fol-
lowing equations at the ascending power order of ε:

ε0 : DxDt + cu0D2
x + bD4

x +
c0
2 D2

y

� �
1 · 1ð Þ = 0,

ε1 : DxDt + cu0D2
x + bD4

x +
c0
2 D2

y

� �
1 · f1 + f1 · 1ð Þ = 0,

ε2 : DxDt + cu0D2
x + bD4

x +
c0
2 D2

y

� �
1 · f2 + f1 · f1 + f2 · 1ð Þ = 0,

ð12Þ

namely,

f1xt + cu0 f1xx + bf1xxxx +
c0
2 f1yy = 0, ð13Þ

cu0 f1xx f1 − f 21x + f2xx
À Á

+ b f1xxxx f1 − 4f1xxx f1x + 3f 21xx + f2xxxx
À Á

+ f1xt f1 − f1x f1t + f2xt = 0:
ð14Þ

Substituting functions f1 and f2 defined in Equation (10)
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into Equation (13) and Equation (14), we have

2bk41 + 2ck21u0 + c0p
2
1 + 2k1w1

À Á
eη1 + 2bk42 + 2ck22u0 + c0p

2
2 + 2k2w2

À Á
eη2 = 0,

ð15Þ

and

2 w1 −w2ð Þ k1 − k2ð Þ + 2 cu0 k1 − k2ð Þ2 + 2 b k1 − k2ð Þ4 + c0 p1 − p2ð Þ2Â Ã
eη1+η2

+ 2 k1 + k2ð Þ w1 +w2ð Þ + 2 cu0 k1 + k2ð Þ2 + 2 b k1 + k2ð Þ4 + c0 p1 + p2ð Þ2Â Ã
eη1+η2+A12 = 0:

ð16Þ

By solving Equations (15) and (16), we can obtain the
following formulas:

eA12 = −
2 k1 − k2ð Þ4b + 2 u0 k1 − k2ð Þ2c + p1 − p2ð Þ2c0 + 2 w1 −w2ð Þ k1 − k2ð Þ
2 k1 + k2ð Þ4b + 2 u0 k1 + k2ð Þ2c + p1 + p2ð Þ2c0 + 2 w1 +w2ð Þ k1 + k2ð Þ

,

ð17Þ

2bk4s + 2ck2s + c0p
2
s + 2ksws = 0, s = 1, 2: ð18Þ

Under the constraints of Equations (17) and (18), when
ε = 1, f can be written as

f = 1 + eη1 + eη2 + eη1+η2+A12 , ð19Þ

which corresponds to the two-soliton solution of Equation
(1). To guarantee the corresponding breather solutions being
real functions, there are two restrictions for a valid calcula-
tion: (1) η1 = �η2, so η1 and η2 are conjugates of each other.
(2) Parameters ks,ws, ps, s = 1, 2 must satisfy the constraint
of Equation (18).

In particular, the following parameter constrains may be
used to facilitate the calculation:

k1 = −k2 = i · k,
p1 = p2 = p,
ϕ1 = ϕ2 = ϕ0,

ð20Þ

where k, p, and ϕ0 are freely real parameters. Then, we can

obtain η1 = �η2, and the function f in Equation (19) can be
rewritten as

f =H yð Þ
ffiffiffiffiffi
M

p
cosh θð Þ + cos wt + kxð Þ

h i
, ð21Þ

where

H yð Þ = 2 epy+ϕ0 ,

w = 2 bk4 − 2 cu0 k2 + c0 p
2

2k ,

θ = py + ϕ0 + ln
ffiffiffiffiffi
M

p� �
,

M = −
6 bk4 − c0 p

2

c0 p2
:

ð22Þ

The first-order breather solutions in Equation (1) in the
(x,y)-plane are shown in Figure 1. It is seen that there are dark-
type and bright-type breather solutions in Equation (1).

To generate rational solution, we take a long wave limit
with the provision in Equation (19).

ps = Psε,
ks = Ks ε, ε↦ 0,
eϕs = −1,
s = 1, 2:

ð23Þ

Then, the expansions of f in Equation (19) are given as
follows:

f = θ1θ2 + a12ð Þε2 + o ε2
À Á

, ð24Þ
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Figure 1: Two types of breather solutions in Equation (1) with parameters c0 = 1, b = −1, k = 1, p = 2, and ϕ0 = 0 at t = 0. (a) Bright-type
breather with u0 = 2 and c = −1. (b) Dark-type breather with u0 = −2 and c = 1.
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where

θs = −Kscu0t −
Ps

2c0
2Ks

t + Ksx + Psy, s = 1, 2,

a12 =
24bK1

3K2
3

c0 K1P2 − K2P1ð Þ2 :
ð25Þ

In order to get rational solutions in Equation (1), divide
both sides of Equation (24) byε2, and then, attempt to com-
pute the limiting value asεapproaches0. For convenience, let
us still call the limit that we just obtained f . Then, the f is
given as follows:

f = θ1θ2 + a12: ð26Þ

To guarantee the corresponding rational solutions being
lump solutions, where K1 = �K2 and P1 = �P2, then u in Equa-
tion (4) can be written as

u = u0 −
12b θ21 ∂/∂xð Þθ2ð Þ2 + θ22 ∂/∂xð Þθ1ð Þ2 − 2a12 ∂/∂xð Þθ1ð Þ ∂/∂xð Þθ2ð ÞÂ Ã

c θ1θ2 + a12ð Þ2 :

ð27Þ

This lump solution u in Equation (27) possesses three
critical points:

A1 =
2 cK1K2u0 − P1P2c0

2K2K1
t, K1P2 + K2P1ð Þc0t

2K2K1

� �
,

A2 =
c0t K1P2 − K2P1ð Þ 2 cK1K2u0 − P1P2c0ð Þ + 12

ffiffiffi
2

p
K1

2K2
2 ffiffiffiffiffiffi

c0b
p

2c0 K1P2 − K2P1ð ÞK1K2
, K1P2 +K2P1ð Þc0 t

2K2K1

 !
,

A3 =
c0t K1P2 − K2P1ð Þ 2 cK1K2u0 − P1P2c0ð Þ − 12

ffiffiffi
2

p
K1

2K2
2 ffiffiffiffiffiffi

c0b
p

2c0 K1P2 − K2P1ð ÞK1K2
, K1P2 + K2P1ð Þc0t

2K2K1

 !
,

ð28Þ

which are derived by solving ux = 0 and uy = 0. Based on the
analysis of these critical points at the second-order deriva-
tives in

uxxuyy − uxy
À Á2, ð29Þ

to determine whether the aforementioned critical points are
local maximum points or local minimum points.

In order to describe the properties of lump solutions
more clearly and facilitate discussion, let us set b = −1. Then,
the lump solution can be classified into two patterns:

(a) Bright lump. u0 > 0, c < 0: u has one local maximum
(point A1) and two minimum points (points A2
and A3) (see Figure 2(a))

(b) Dark lump. u0 < 0, c > 0: u has two local maximum
(points A2 and A3) and one minimum point (point
A1) (see Figure 2(b))

Two different patterns of lump solutions, namely,
bright-type and dark-type lump solutions, are shown in
Figure 2.

3.2. Second-Order Breather and Lump Solutions. In order to
obtain the general high-order breather solutions and lump
solutions in Equation (1), we assume that the auxiliary func-
tion f in Equation (7) has higher-order expansions in terms
of ε:

f = 1 + εf1 + ε2 f2+⋯+εn f n: ð30Þ

Again, substituting Equation (30) into bilinear Equation
(7) and then collecting the coefficient of ε, 2n + 1 equations
would be yielded corresponding to different orders of ε.
Maybe it is tedious and troublesome to solve these 2n + 1
equations. According to the work of Hirota, Kaur and Waz-
waz, and Singh et al., [7, 26, 27], we calculate and verify that
f has the following form:

f = 〠
μ=0,1

exp 〠
N

j<s
μjμsAjs + 〠

N

j=1
μjη j

 !
, ð31Þ

where the sum of μ is the sum over all the possibilities of
μj = 0, 1, ðj = 1, 2⋯ Þ.
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Figure 2: Two types of lump solutions in Equation (1) with parameter c0 = 1, b = −1, K1 = 1 − i, K2 = 1 + i, P1 = −2, and P2 = −2 at t = 0 . (a)
Bright-type lump solution with u0 = 1 and c = −1. (b) Dark-type lump solution with u0 = −1 and c = 1.
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The above coefficients and parameters are given explic-
itly as follows:

η j = kjx + ωjt + pjy + ϕj,

eAjs = −
2 b kj − ks
À Á4 + 2 cu0 kj − ks

À Á2 + c0 pj − ps
� �2

+ 2 wj −ws

À Á
kj − ks
À Á

2 b kj + ks
À Á4 + 2 cu0 kj + ks

À Á2 + c0 pj + ps
� �2

+ 2 wj +ws

À Á
kj + ks
À Á ,

ð32Þ

2 bks4 + 2 cks2u0 + c0ps
2 + 2 ksws = 0: ð33Þ

In order to obtain the second-order breather solutions in
Equation (1) and for a valid calculation, there are also some
restrictions as the first-order breather solution: (1) η1 = �η2,
and η3 = �η4, so η1 and η2 and η3and η4 are conjugates of each
other; (2) ks, ws, and ps have to satisfy the constraint of
Equation (33); and (3) N = 4 in Equation (31). Then, the
evolution of second-breather solutions in Equation (1) are
shown in the Figure 3.

The way to get second-order lump solutions is roughly
the same as the way to get first-order lump solutions. We
take N = 4 and exp ðϕsÞ = −1, s = 1, 2, 3, 4 in Equation (31)
and take a long wave limit with the provision in Equation
(31) and eliminate the oðε4Þ. Then, f is given as follows:

f =
Y
j

θj +〠
j<s
ajs
Y
k≠js

θk +〠
j<s

Y
ajs, ð34Þ

with

θs =
−2Ks

2cu0 − Ps
2c0

À Á
t

2Ks
+ Ksx + Psy,

ajs =
24bKj

3Ks
3

c0 KjPs − KsPj

À Á2 ,
ð35Þ

where j = 1, 2, 3, 4, s = 1, 2, 3, 4, and j < s, Kj, Pj are complex
parameters. To guarantee the corresponding rational solu-

tions being lump solutions, there is a restriction for a valid
calculation: K1 = �K2, K3 = �K4, P1 = �P2, and P3 = �P4.

Since there are too many parameters involved, in order
to directly describe the properties of the second-order lump
solutions, it is advisable to assign values to the following
parameters: b = −1, c0 = 1, K1 = −2 − i, K2 = −2 + i, P1 = 2,
P2 = 2, K3 = −2 + i, K4 = −2 − i, P3 = −2, and P4 = −2. If
using parametersu0 = 1andc = −1, then we obtain thef
which can lead to bright-type lump solutions in Equation
(1); if using parametersu0 = −1andc = 1, then we can get
dark-type lump solutions. After calculation, it can be found
that f corresponding to bright-type lump solutions is the
same as f corresponding to dark-type lump solutions. Then,
f in Equation (34) can be written as

f = 289 t4
25 + 1292 t3x

25 + 2294 t2x2
25 + 104 t2y2

25
+ 76 tx3 − 16 txy2 + 25 x4 − 24 x2y2 + 16 y4

+ 70341 t2
100 + 3207 tx

2 + 4725 x2
4 + 1791 y2 + 2480625

64 :

ð36Þ

According to Equation (4), the bright-type lump is
explicitly as follows:

u = 1 + 12 ln fð Þxx, ð37Þ

and the dark-type lump is explicitly as follows:

u = −1 − 12 ln fð Þxx, ð38Þ

where f is Equation (36). The second-order lump solutions
in Equation (1) in the (x,y)-plane are shown in the Figure 4.

3.3. Higher-Order Breather and Lump Solutions. The similar
procedures described previously could be generalized to
the higher-order breather and lump solutions. To guaran-
tee the nth-order breather solutions being real functions,
there are two restrictions for a valid calculation: (1) take
η1 = �η2, η3 = �η4 ⋯ η2 n−1 = �η2 n in Equation (31). (2)
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Figure 3: Two types of second-order breather solutions in Equation (1) with parameters c0 = 1, b = −1, k1 = −1/2, k2 = i/2, p1 = −1, p2 = −1,
k3 = −3/5 i, k4 = 3/5 i, p3 = −1, p4 = −1, ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, and ϕ4 = 0 at t = 0. (a) Bright-type breather with u0 = 1 and c = −1. (b) Dark-
type breather with u0 = −1 and c = 1.
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Parameters ks, ps, and ws must satisfy the constrain of
Equation (33). Then, we obtain the nth-order breather
solutions in Equation (1).

For example, if we want to obtain the third-order
breather solutions, according to the description in the previ-
ous paragraph, we will take η1 = �η2, η3 = �η4, and η5 = �η6 in
Equation (31). In order to describe the properties of the
third-breather solution more clearly and facilitate the cal-
culation, the parameters can be assigned as follows: c0 =
1, b = −1, k1 = −i, k2 = i, p1 = 2, p2 = 2, k3 = i, k4 = −i, p3 =
−7/4, p4 = −7/4, k5 = i, k6 = −i, p5 = −3/2, p6 = −3/2, ϕs = 0,
and s = 1, 2, 3, 4, 5, 6. If using parameters u0 = 1 and c = −
1, then we can derive bright-type breather solutions; if
using parameters u0 = −1 and c = 1, we can derive dark-
type breather solutions. Under the conditions of these
parameters, bright-type breather solutions and dark-type
breather solutions have the same f . The third-breather
solutions in Equation (1) in the (x,y)-plane are shown in
the Figure 5.

The process of obtaining nth-order lump solutions is
roughly similar to that of obtaining first-order lump solutions
and second-order lump solutions. In order to obtain nth-order
lump solutions, we take N = 2n in Equation (31). Then, we
take a long wave limit with the provision in Equation (31):

ps = Psε,
ks = Ksε, ε↦ 0,
eϕs = −1,
s = 1, 2⋯N:

ð39Þ

And just like we did with Equations (24) and (26), we get
rid of the higher-order terms of oðεNÞ, and then, we get a poly-
nomial f . General higher-order rational solutions in Equation
(1) can be presented in the following forms:

u = uo +
12b
c

ln f Nð Þxx, ð40Þ

where

f N =
YN
s=1

θs +
1
2〠

N

j,s
ajs
YN
p≠j,s

θp+⋯+ 1
M!2M 〠

N

l,s⋯m,n
alsajk ⋯ amn

⏞M YN
q≠l,s⋯m,n

θq+⋯,

ð41Þ

with

θs =
−2Ks

2cu0 − Ps
2c0

À Á
t

2Ks
+ Ksx + Psy,

ajs =
24bK j

3Ks
3

c0 K jPs − KsPj

À Á2 :
ð42Þ

To guarantee the corresponding rational solutions being
lump solutions, there are some restrictions for a valid calcula-
tion: K1 = �K2, K3 = �K4,⋯K2n−1 = �K2n and P1 = �P2, P3 = �P4,
⋯P2n−1 = �P2n.

For example, if we want to get third-lump solutions, we
have to set N equal to 6 in Equation (41). In order to
describe the properties of third-lump solution more clearly,
we assign the following values to the following parameters:
c0 = 1, b = −1, K1 = 3 i, K2 = −3 i, P1 = 1, P2 = 1, K3 = 2 i,
K4 = −2 i, P3 = −2, P4 = −2, K5 = 3 i, K6 = −3 i, P5 = 2, and
P6 = 2. And if using u0 = 1 and c = −1, then we obtain
bright-type lump solutions; if using u0 = −1 and c = 1, then
we obtain dark-type lump solutions. Under the parameter
constraints above, two types of lump solutions have the
same f , as shown below:

f = 9 t2 + 12 tx + 4 x2 + 4 y2
À Á

121 t2 + 198 tx + 81 x2 + 36 y2
À Á

361 t2 + 684 tx + 324 x2 + 36 y2
À Á

324

+ 4996352617 t4
5400 + 222120217 t3x

75 + 88451544 t2x2
25 + 2053073 t2y2

15 + 46738512 tx3
25

+ 5841228 txy2
25 + 9216018 x4

25 + 2409264 x2y2
25 −

828282 y4
25 + 196632775107 t2

1250

+ 154136915604 tx
625 + 60286704219 x2

625 + 16102685466 y2
625 + 1976312557827

1250 :

ð43Þ

And then from Equation (40), we can get two types of
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Figure 4: Two types of second-order lump solutions in Equation (1) with parameters b = −1, c0 = 1, K1 = −2 − i, K2 = −2 + i, P1 = 2, P2 = 2,
K3 = −2 + i, K4 = −2 − i, P3 = −2, and P4 = −2 at t = 0. (a) Bright-type lump with u0 = 1 and c = −1. (b) Dark-type lump with u0 = −1 and
c = 1.
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lump solutions. The third-lump solutions in Equation (1)
in the (x,y)-plane are shown in Figure 6.

In addition, interaction solutions between breather
solutions and lump solutions also can be obtained from
solitons by taking long wave limits. If using N = 6, p1 =
P1ε, p2 = P2ε, k1 = K1ε, k2 = K2ε, P1 = �P2, K1 = �K2, ϕ1 = iπ,
ϕ2 = iπ, η3 = �η4, and η5 = �η6 in Equation (31), then we
can obtain interactions between a lump and two breathers
after taking a long wave limit. In order to better describe
the structure of interactions, we assign the parameters as
follows: c0 = 1, b = −1, K1 = 4 i, K2 = −4 i, P1 = 10, P2 = 10,
k3 = i, k4 = −i, p3 = −5/3, p4 = −5/3, k5 = i, k6 = −i, p5 = 11/
6, p6 = 11/6, ϕ1 = iπ, ϕ2 = iπ, ϕ3 = 0, ϕ4 = 0, ϕ5 = 0, and ϕ6
= 0. If using u0 = 1 and c = −1, then we get the bright-
type interactions; if using u0 = −1 and c = 1, then we can
obtain dark-type interactions. Two types of interactions
between a lump and two breathers in Equation (1) in
the (x,y)-plane are shown in Figure 7.

The idea and process of obtaining interactions between
two lumps and a breather are roughly the same as that of

obtaining interaction between a lump and two breathers. If
using N = 6, ps = Psε, ks = Ksε, ϕs = iπ, s = 1, 2, 3, 4, P2 j−1 =
�P2j, K2j−1 = �K2j, j = 1, 2, and η5 = �η6 in Equation (31), then
we can obtain interactions between two lumps and a
breather after taking a long wave limit. In order to better
describe the structure of interactions between a breather
and two lumps in Equation (1), we assign the parameters
as follows: c0 = 1, b = −1, K1 = 3 i, K2 = −3 i, P1 = 5, P2 = 5,
K3 = 3 i, K4 = −3 i, P3 = 6, P4 = 6, k5 = i, k6 = −i, p5 = 5/4, p6
= 5/4, ϕ1 = iπ, ϕ2 = iπ, ϕ3 = iπ, ϕ4 = iπ, ϕ5 = 0, and ϕ6 = 0,
then we get the bright-type interactions; if using u0 = −1
and c = 1, then we can obtain dark-type interactions. Two
types of interactions between a breather and two lumps in
Equation (1) in the (x,y)-plane are shown in Figure 8.

4. Interaction between Lumps and a Stripe

The method of obtaining interaction solutions is roughly
similar to that of obtaining rational solutions, but slightly
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different. In this part, we will describe how to obtain interac-
tion solutions.

4.1. Interaction between a Lump and a Stripe. To obtain the
interaction between a lump and a stripe of Equation (1),
we substitute N = 3, k1 = K1ε, k2 = K2ε, p1 = P1ε, p2 = P2ε,
ϕ1 = iπ, and ϕ2 = iπ into Equation (31), and then, we
expand the resulting f in terms of ε at ε = 0. Similar
to Equations (24) and (26), we also want to get rid of
oðε2Þ. In other words, we divide the expansion by ε2,
and then, we take the limit as ε is equal to 0. For con-
venience, the expression after we obtain the limit is still
called f , as follows:

f = θ1θ2 + a12 + eη3 a13a23 + θ2a13 + θ1a23 + θ1θ2 + a12ð Þ,
ð44Þ

with

ajs =

24bKj
3Ks

3

c0 KjPs − KsPj

À Á2 s < 3,

−
24bKj

3k3
3

6bKj
2k3

4 − c0 K j
2p3

2 + 2 c0 Pjp3k3Kj − c0 Pj
2k3

2 s = 3,

8>>>>><
>>>>>:

ð45Þ

θs =
−2Ks

2cu0 − Ps
2c0

À Á
t

2Ks
+ Ksx + Psy s = 1, 2, 3,

2 bk34 + 2 ck32u0 + c0p3
2 + 2 k3w3 = 0:

ð46Þ

In order for the mixed solution in Equation (44) to become
interaction between a lump and a stripe, there are some restric-
tions for a valid calculation: K1 = �K2, P1 = �P2, and parameters
k3, p3, ϕ3 must be real parameters. In order to describe the
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properties of mixed solutions more directly and concretely, the
parameters of Equation (45) are assigned as follows: K1 = 1 + i,
K2 = 1 − i, P1 = 1, P2 = 1, k3 = 1/2, p3 = 2, ϕ3 = 0, c0 = 1, and
b = −1. If using u0 = 1 and c = −1, we will get bright-type
interaction solutions; if using u0 = −1 and c = 1, we are going
to get dark-type interaction solutions. After calculation, two
types of interaction solutions have the same f under the
above parameters. The interactions between a lump and a
stripe in the (x,y)-plane are shown in the Figure 9.

f = 4 tx + 2 x2 + y2 + 17 t2
8 + 3

2 ty + 2 xy + 19248
389 −

1212 t
389 −

1296 x
389 −

816 y
389

� �
e−27 t/8+x/2+2 y

+ 4 tx + 2 x2 + y2 + 17 t2
8 + 3

2 ty + 2 xy + 48:

ð47Þ

4.2. Interaction between Two Lumps and a Stripe. The
method and idea of obtaining interaction between two lumps
and a stripe are roughly the same as the process of obtaining

interaction between a lump and a stripe, but the calculation
is more complicated. We substitute ks = Ksε, ps = Psε, exp
ðϕsÞ = −1, and s = 1, 2, 3, 4 into Equation (31), and then,
we expand the expression at ε = 0. And then, we are going
to divide this by ε4, and we are going to take the limit as ε
is equal to 0. For convenience, let us call this final result f .

f = θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2
+ a12a34 + a13a24 + a14a23 + eη5 a15a25a35a45 + a15a25a35θ4 + a15a25a45θ3ð
+ a15a25θ3θ4 + a15a35a45θ2 + a15a35θ2θ4 + a15a45θ2θ3 + a15θ2θ3θ4
+ a25a35a45θ1 + a25a35θ1θ4 + a25a45θ1θ3 + a25θ1θ3θ4 + a35a45θ1θ2
+ a35θ1θ2θ4 + a45θ1θ2θ3 + θ1θ2θ3θ4 + a12a35a45 + a12a35θ4 + a12a45θ3
+ a12θ3θ4 + a13a25a45 + a13a25θ4 + a13a45θ2 + a13θ2θ4 + a14a25a35
+ a14a25θ3 + a14a35θ2 + a14θ2θ3 + a15a23a45 + a15a23θ4
+ a15a24a35 + a15a24θ3 + a15a25a34 + a15a34θ2 + a23a45θ1
+ a23θ1θ4 + a24a35θ1 + a24θ1θ3 + a25a34θ1 + a34θ1θ2
+ a12a34 + a13a24 + a14a23Þ,

ð48Þ
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with

ajs =

24bK j
3Ks

3

c0 K jPs − KsPj

À Á2 s < 5,

−24bKj
3k5

3

6 bKj
2k5

4 − K j
2c0p5

2 + 2KjPjc0k5p5 − Pj
2c0k5

2 s = 5,

8>>>>><
>>>>>:

ð49Þ

and

θs =
−2Ks

2cu0 − Ps
2c0

À Á
t

2Ks
+ Ksx + Psy s = 1, 2, 3, 4,

2 bk54 + 2 ck52u0 + c0p5
2 + 2 k5w5 = 0:

ð50Þ

In order to ensure that mixed solution is an interaction
solution between two lumps and a stripe, we make some
restrictions in Equation (48). N = 5, K1 = �K2, K3 = �K4,
P1 = �P2, P3 = �P4, and parameters k5, p5, ϕ5 must be real
parameters. To intuitively describe the properties of mixed
solutions of five soliton, the parameters of Equation (48)
are assigned as follows: K1 = 1 + i, K2 = 1 − i, P1 = −2, P2 =
−2, K3 = 1 − i, K4 = 1 + i, P3 = 2, P4 = 2, k5 = 3/4, p5 = 2,
ϕ5 = 0, c0 = 1, and b = −1. If using u0 = 1 and c = −1, we
will obtain bright-type interaction solutions; if using u0 = −1
and c = 1,we will obtain dark-type interaction solutions.
Under the above parameter constraints, two types of mixed
solutions of five solitons correspond to the same f . The inter-
action solutions in the (x,y)-plane are shown in the Figure 10.

5. Conclusion

In this manuscript, applying Hirota’s bilinear method with a
perturbation parameter u0 to generalized Kadomtsev-
Petviashvili equation, we obtain a periodic breather wave
solution. Meanwhile, lump solutions and interaction solu-
tions are generated from solitons by taking long wave limits.
The exact solutions contain some free parameters u0, b, c, c0,
so some new and interesting space structures of breather,
lump, and interaction solutions are found and investigated,
which include structures of bright type and structures of
dark type. Our results show the diversity of the spatial and
space-time structures of solitary waves in nonlinear dynamic
systems. Meanwhile, we also hope that our results will pro-
vide some valuable information in the field of nonlinear
science.
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