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In this article, we have presented a method for finding the approximate center of a linear programming polytope. )is method
provides a point near the center of a polytope in few simple and easy steps. Geometrical interpretation and some numerical
examples have also been presented to demonstrate the proposed approach and comparison of quality of the center obtained by
using the new method with existing methods of finding exact and approximate centers. At the end, we also presented com-
putational results on the randomly generated polytopes to compare the quality of the center obtained by using the new method.

1. Introduction

Linear programming (LP) is a mathematical technique for
optimizing a linear function subject to a set of linear con-
straints and nonnegativity restrictions. Linear programs
frequently show up in various areas of applied sciences
today. )e prime reason for this is their manageable,
enormous impact in various disciplines; it has become a core
research area of many mathematicians, economists, decision
scientists, etc. Linear programming was developed during
World War II, when a system with which to maximize the
efficiency of resources was of utmost importance. Since then,
many researchers have strived to advance their ideas and
made centering of the polytope as a core step in the major
optimization techniques (named as interior point methods)
in science and industry.

2. Definitions of the Center of a Polytope

)ere are several ways to define the center of a polytope, it
may be the center of gravity i.e., centroid, mean position of
all vertices i.e., vertex centroid, point at the location where
product of distances from all boundary lines is maximized
i.e., analytic center, center of the least volume ellipsoid that
contains the polytope, or the center of the biggest ball

inside the polytope. )erefore, the center of a polytope
depends on the definition we are using. But, fortunately, all
those definitions are equivalent in the sense that, as shown
in [1], if we get a polynomial time algorithm for a center of a
polytope, then that algorithm could also be used to con-
struct a polynomial time algorithm for solving linear
program.

Many techniques [2–4] are used for finding the center of
a polytope, but they are taking so many iterations, slow in
convergence, and require mostly complex computations.

Most of the interior point methods for solving LPs
depend on the computations of a center finding method,
either explicitly or implicitly [3, 5].

)e analytic center [6–12] is no doubt the most used
notion of center of a polytope in linear optimization because
of its easy computation, but its disadvantage is that it can be
pushed near the boundary of the polytope by using re-
dundant constraints because its position depends on the
spatial positions of the half-spaces that define the polytope.
So in that case, analytic center may not look like located at a
good central position (see also Section 3). )e P-center [3],
also to be discussed in Section 4, provides a much better
center than the analytic center, but it is found in practice that
it takes much longer time to obtain a good approximation of
the P-center.
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3. Analytic Center

Let S be a polytope described by a (normalized) system of
linear inequalities:

􏽘

n

j�1
aijxj ≤ bi, i � 1, 2, . . . , m. (1)

)e analytic center of S is the point
ξ � (ξ1, ξ2, . . . , ξn) ∈ Rn which satisfies the following
maximization problem:

Maximize 􏽙
m

i�1
bi − 􏽘

n

j�1
aijxj

⎛⎝ ⎞⎠

subject to x ∈ S.

(2)

When S is bounded, this maximization problem always
has a solution.

In general, the analytic center depends on how the set of
particular inequalities is defined. )e addition of redundant
inequalities could push analytic center towards the
boundary. In the Sections 4 and 5, we discuss two new
efficient and alternative methods, which could be used to
find a good approximation of the central location of a
polytope.

4. P-Center [3]

Consider a linear programming polytope described by a set
S � x ∈ Rn : Ax≤ b{ }, where A ∈ Rm×n. Let Hi � x : aT

i􏼈

x≤ bi} be the half-space corresponding to the ith row of A
and Gi � x : aT

i x � bi􏼈 􏼉 be the corresponding hyperplane.
)e method assumes that the polytope is full dimensional.
)e overall technique is based on the following definitions of
projections.

4.1. Orthogonal Feasible Projections. Let xk be some feasible
interior point; for each hyperplane Gi, we can easily generate
two distinct points (projections) P+

i (xk) and P−
i (xk) on the

boundary, defined by P+
i (xk) � xk + θiai and P−

i (xk) � xk −

λiai, where θi � max t : xk + tai ∈ S􏼈 􏼉 and λi � max t : xk −􏼈

tai ∈ S}.

4.2. Central Location Using Orthogonal Projections. A vertex
centroid of a polytope could be defined as the average of all
points on the boundary and [3] defined the P-center as an
approximation of vertex centroid, which could be obtained
by taking average of some finite number of points on the
boundary of a polytope. )e main task of the method is to
generate points on the boundary as much as possible. For
this purpose, an initial feasible interior point is needed and
then the method generates the iterates by taking a convex
combination of the orthogonal projections into the hyper-
planes associated with the inequalities that define the
polytope.

Each Gi could generate two points P+
i (xk) and P−

i (xk) on
the boundary of S and a midpoint xk

i � (P+
i (xk) + P−

i (xk))/2
on the chord joining them. )e new iterate xk+1 is obtained

by taking the average of all m midpoints xk
i : i � 1, . . . , m􏼈 􏼉.

)at is xk+1 � 􏽐
m
i�1x

k
i /m.

If max abs(xk+1 − xk)􏼈 􏼉< ε (where ε is the tolerance
value), then stop with the result that “P-center is obtained up
to tolerance level of ε.” Otherwise, perform the (k + 1)th
iteration taking xk+1 as the initial interior point.

Carlos defined it as an approximation to the vertex centroid
because in every iteration, he has taken 2 -m distinct points on
the boundary in distinct directions. Method looks to be very
effective and he has also shown that quality of the center is
also very good, even most of the times the centrality of
P-center is way better than analytic center, but practically,
it is found that it become very slow to converge and to
attain a particular tolerance. Sometimes, it requires a huge
number of iterations just to reach near about centroid.
Computational results are shown in the Section 6.

5. A New Approximation of Central Location:
CN-Center

In this section, we describe a recursive version of the method
described in Section 4. Because of the recursive nature of this
method, it uses the most updated value of center for next
computation so it has a quick movement towards the central
location. We would call the central location obtained by this
method as CN-center.

Overall, for a problem ofm constraints, each iteration of
this procedure holds m steps. Here onward, xk

i denotes the
coordinates of center obtained in ith intermediate step of kth
iteration, xk denotes the center obtained after kth iteration,
and x0 denotes the coordinates of the initial feasible point.

Here, x
∧k+1

would be used to represent the midpoint of
P+

i (xk) and P−
i (xk), where P+

i (xk) and P−
i (xk) on the

boundary defined by P+
i (xk) � xk + θiai and P−

i (xk) � xk −

λiai, where θi � max t : xk + tai ∈ S􏼈 􏼉 and λi � max t : xk −􏼈

tai ∈ S}.
For any kth iteration, the method needs an interior

feasible point xk− 1:

Step k1: compute x
∧k

1 ≔ 1/2(P+
1(xk− 1) + P−

1(xk− 1)). Set

xk
1 ≔ x
∧k

1.
Step ki: compute x

∧k

i ≔ 1/2(P+
i (xk

i− 1) + P−
i (xk

i− 1)). Set

xk
i ≔ 1/i(􏽐

i− 1
j�1x

k
j + x
∧k

i ), ∀i � 2, . . . , m.

Now, since all hyperplanes have contributed, we can set
xk ≔ xk

m. We can terminate the procedure when
max abs(xk − xk− 1)􏼈 􏼉< ε, where ε is the required tolerance. If
the tolerance level is not achieved, then the process could
proceed to (k + 1)th iteration, taking xk as an initial point.

)e main difference between computation of P-center
and CN-center could simply be illustrated by performing
initial two steps of the first iteration.

Iteration 1. Step 1: both the methods identically take an
interior feasible point, say x0, as starting point and find
two points P+

1(xk) and P−
1(xk) on the boundary of the

feasible region using the direction of normal of first
constraint. )en, both methods take the average of
boundary points to get a new point, say x0

1.
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Figure 1: Polytope 1, P-center is obtained in 56 iterations but CN-center is obtained in just 11 iterations. Centrality wise both looked equivalent.
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Figure 2: Polytope 2, convergence towards center.
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Figure 3: Polytope 3, convergence towards center.
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Iteration 1. Step 2: difference of strategy starts from
here; the method of P-center now again finds the av-
erage of two other boundary points using normal of 2nd
constraint and the same starting point x0, and calls it
x0
2.

In contrast, method of CN-center takes normal of 2nd
constraint and a new point x0

1 to obtain the average of
boundary points, denoting it by x

∧0

2. Now, x0
2 is obtained

by taking the average of x0
1 and x

∧0

2.

6. Computational Experiences

We performed numerical experiences to compare the CN-
center against P-center, analytic center, and centroid in
several polytopes in MATLAB and convergence with a
suitable tolerance level. First, we show pictures of polytopes in
2D space to illustrate the convergence of the CN-center,
P-center, analytic center, and centroid. Second, we present the
numerical results in tables for randomly generated polytope.

To visualize the convergence of P-center and CN-center,
we have taken some examples from [13]. Figures 1–4

represent four polytopes with convergences to their
P-center and CN-center, respectively.

Table 1 shows the measure of coordinates of center x,
number of iterations, and measure of centrality C(x) for
P-center and CN-center for each polytope illustrated in
Figures 1–4

As we see in Table 1 as well as in Figures 1–4, centrality
C(x) of CN-center and P-center is almost equal but con-
vergence towards CN-center is multiplex faster than
P-center.

Now, we are taking other four different polytopes and
presenting the comparison between observable quality of
analytic center, P-center, centroid, and CN-center. Table 2
and Figure 5 represent numerical and graphical results.
Based on Figures 1–5, it is easy to see that location-wise CN-
center is almost equal to P-center but with a less number of
iterations.

Our calculation shows that if we take the initial point
near a narrow corner of the region, then there is a huge
difference in the number of iterations for P-center and CN-
center as shown in Figure 6, and if we take the initial point
near a wide corner of the region (see Figure 7), difference in
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Figure 4: Polytope 4, convergence towards center.

Table 1: A comparison of number of iterations and quality of P-center and CN-center.

Polytope number
P-center CN-center

C(x) X Iterations C(x) X Iterations
1 0.7597 (1.4453, 3.4772) 56 0.6903 (1.3980, 3.6719) 11
2 0.9272 (0.9790, 3.0236) 38 0.9262 (0.9843, 3.0236) 7
3 0.3332 (0.3602, 0.7120) 16 0.3311 (0.3585, 0.7503) 2
4 0.1594 (0.1947, 0.3126) 12 0.1656 (0.2014, 0.3064) 3

Table 2: A numerical comparison between coordinates of analytic center, P-center, CN-center, and centroid.

Polytope number Analytic center P-center CN-center Centroid
1 (2.3932, 2.8696) (1.4453, 3.4772) (1.3980, 3.6719) (1.4364, 0.6318)
2 (0.6340, 3.5490) (0.9790, 3.0236) (0.984, 3.0236) (1.0000, 3.0000)
3 (0.3732, 0.8454) (0.3602, 0.7120) (0.358, 0.7503) (0.3524, 0.7403)
4 (0.2152, 0.3704) (0.1947, 0.3126) (0.2014, 0.3064) (0.2644, 0.2738)
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Figure 5: Graphical comparison of quality between analytic center (denoted by yellow square), P-center (denoted by blue asterisk), CN-
center (denoted by black dot), and centroid (denoted by green diamond).
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Figure 6: When initial point lies near a narrow corner, convergence of CN-center is much quicker than P-center.
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Figure 7: When initial point lies near a wide corner, both P-center and CN-center bear almost equal number of iterations.

Table 3: Computational results of randomly generated LPs using MATLAB.

Number of constraint
P-center CN-center

Coordinates of center Number of iteration Coordinates of center Number of iteration

25

(0.0965, 0.0752) 6 (0.1122, 0.0793) 1
(0.0465, 0.0746) 8 (0.0469, 0.1064) 1
(0.3132, 0.7748) 12 (0.3187, 0.8938) 1
(0.4704, 0.0892) 24 (0.4837, 0.0898) 2
(0.5839, 0.1610) 21 (0.5442, 0.1541) 2
(0.0686, 0.2428) 32 (0.0731, 0.3027) 5
(0.1244, 0.3280) 12 (0.1294, 0.3847) 1
(0.3476, 0.0421) 24 (0.3151, 0.0403) 4
(0.2793, 0.1585) 12 (0.2714, 0.1569) 2
(0.2134, 0.0223) 2 (0.2255, 0.0221) 3
(0.1856, 0.0341) 23 (0.2183, 0.03257) 3

50

(0.0346, 0.0922) 13 (0.0328, 0.1205) 1
(0.0761, 0.0101) 19 (0.0943, 0.0098) 2
(0.1607, 0.2225) 6 (0.1714, 0.2511) 1
(0.1092, 0.0408) 17 (0.1538, 0.0368) 2
(0.1669, 0.0229) 19 (0.1592, 0.0229) 1
(0.2277, 0.0482) 28 (0.2159, 0.0479) 2
(0.4047, 0.03670) 31 (0.3385, 0.0342) 3
(0.1925, 0.3076) 14 (0.1881, 0.3085) 1
(0.1546, 0.1301) 12 (0.1678, 0.1517) 1
(0.2142, 0.0126) 89 (0.3065, 0.0111) 10
(0.3657, 0.2198) 16 (0.370951, 0.2122) 1

Table 4: Comparison of average number of iterations for higher dimensional random LPs.

Order P-center CN-center
3× 5 62.71 16.57
5× 3 35.85 8.23
5× 5 85.5 55.33
10× 5 136.8 34.4
10×10 476.44 77.22
15×15 650.71 249.85
15×10 348.6 96.34
20× 20 331.44 258.88
30× 20 213.2 162.7
20× 30 508.2 236
30× 30 206.75 193.125
Note: here, ε � 0.001 is more than enough. If we observe the convergence pattern of CN-center, we can see that convergence is initially fast and gets slower in
later iterations. Generally, we do not need exact central point; for practical purposes, any good central location is enough for working. So a good central point
is obtainable by CN-center within just a few iterations for a 100×100 or even a very high dimensional problem.
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the number of iterations for P-center and CN-center would
not be so significant.

Now, Table 3 presents some computational results on
number of iterations needed for obtaining P-center and CN-
center of randomly generated 2D LPs with higher number of
constraints.

Finally, results for higher dimensional random LPs are
presented in Table 4. Here, we have taken the average of
number of iterations of 20 random LPs of each order with
ε � 0.001. Results showed that the new approach is still
superior in efficiency even in higher dimensional problems.

7. Applications

)ere are a lot of areas where approximate center finding
methods for LPs could be used, for example, solving both
linear and general convex programming [13], the support
vector machine (SVM) solution that corresponds to the
center of the largest sphere inscribed in version space [9, 14],
computing cubature formulae [15], and sphere method for
linear programming [16].

8. Conclusion

In this paper, we have presented a modified form of P-center
[3] and called it as CN-center. Our experimental results
show that quality of centrality of P-center and CN-center is
almost same, but in terms of number of iterations,CN-center
is much faster in computation of a good central location in
the feasible region in lower and as well as in higher di-
mensional problems.

Generally, finding the central location of an LP is the
main crucial step for most of the interior point methods.
Usually, we do not need the exact center instead a good
central location would be enough if it is obtained in less
number of computations. So, in this sense, CN-center is a
better option to use instead of P-center or analytic center.

Data Availability

Data were randomly generated using MATLAB software.
)e seed of the random numbers and associated MATLAB
files could be provided on request.
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