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This paper presents the study of a multichoice multiobjective transportation problem (MCMOTP) when at least one of the
objectives has multiple aspiration levels to achieve, and the parameters of supply and demand are random variables which are not
predetermined. The random variables shall be assumed to follow extreme value distribution, and the demand and supply
constraints will be converted from a probabilistic case to a deterministic one using a stochastic approach. A transformation
method using binary variables reduces the MCMOTP into a multiobjective transportation problem (MOTP), selecting one
aspiration level for each objective from multiple levels. The reduced problem can then be solved with goal programming. The novel
adapted approach is significant because it enables the decision maker to handle the many objectives and complexities of real-world
transportation problem in one model and find an optimal solution. Ultimately, a mixed-integer mathematical model has been
formulated by utilizing GAMS software, and the optimal solution of the proposed model is obtained. A numerical example is

presented to demonstrate the solution in detail.

1. Introduction

The transportation problem is a well-known specific ap-
plication of linear programming, in which an item is to be
transported from $m$ sources to $n$ destinations [1]. The
availability of the product at the $i”'$ source is denoted by
$a;$, where i = 1,2,...,m, and the demand required at the
$j$ destination is $b;$, where j =1,2,...,n The penalty
$c;j$ is the cost coefficient of the objective function that can
represent the expense of transporting wares from sources to
destinations, which is desired to be minimized [1].

There may be more than one objective to the problem,
and they could be conflicting, for example, minimizing the
cost of transportation as well as minimizing the shipping
time. Here, the two goals have the same direction, i.e.,
minimization, but there is a trade-off. For example, using a
car as the transport means may be lower in cost than by air
freight but will take much longer. Hence, goal programming

is introduced so that the decision maker (DM) may set
multiple choices for the aspiration levels in at least one goal
in a transportation problem, defining a multiaspiration level
goal programming transportation problem. In addition, the
supply and demand parameters can be random variables, so
it becomes a stochastic multiaspiration level goal pro-
gramming transportation problem.

Mabhapatra [2] considers a model of a multichoice sto-
chastic transportation problem (MCSTP), where the supply
and demand parameters of the constraints follow extreme
value distribution. Some of the cost coefficients of the ob-
jective function are a multichoice type. In an optimal so-
lution, the number of units to be transported should be
determined while satistying source and destination demands
to ensure minimum transportation costs.

In this paper, we will look at the problem from another
angle, by including the concept of goal programming to
allow the model to deal with more than one conflicting
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objective and set multiaspiration levels to certain goals. The
new model becomes a stochastic multiaspiration level goal
programming transportation problem with an extreme value
distribution.

Often, one cannot determine an exact value of any
parameters in the problem because of uncertainty in supply
or demand parameters for a number of reasons. For ex-
ample, fluctuating markets or service output levels from
suppliers, raw material defects, machine performances,
delivery delays, and transportation issues are among the
factors which cause uncertainty in supply assumptions.
Similarly, unknown customer demand for products or
services offered by the buyer, customer preferences, com-
petition, and an unpredictable economy are among the
factors that contribute to demand uncertainty. A stochastic
problem can be formulated to overcome these uncertainties
by considering that random variables follow a specific
distribution instead of assuming fixed values. Here, an ex-
treme value distribution will be assumed to convert the
constraints from probabilistic to deterministic with the
disjoint chance-constrained method. Extreme value distri-
bution is used when there is a requirement for a limiting
distribution to the maximum or minimum of a sample of
independent and identically distributed random variables.
The probability density function of extreme value distri-
bution type I [3] is as follows:

L _(x-ap)

S e ()]

exp[— ; —00<x<00, £>0,

fxsaB) =
0; otherwise.
(1)

Goal programming is an extension of linear pro-
gramming which handles multiobjective optimization where
the individual objectives are often conflicting. Every one of
these measures is assigned a goal or target value to be ac-
complished. Undesirable deviations from this arrangement
of target values are then minimized through an achievement
function. This can be a vector or a weighted sum depending
on the goal programming variant adopted or the DM’s
requirements.

The type of goal programming model employed is de-
termined by the nature of the DM’s goals. The initial goal
programming formulations order the undesirable deviations
into a hierarchy by criticality, which enables more priority to
be given to minimizing deviation of the more important
factors. This is known as lexicographic (preemptive) or non-
Archimedean goal programming.

Lexicographic goal programming can be used when
prioritization is relevant to the goals. In preemptive goal
programming, the objectives can be separated into various
priority classes. Here, it is assumed that no two goals have
equal priorities. Each will then be satisfied sequentially from
most important to least important. The DMs can set mul-
tichoice aspiration levels (MCALs) for each goal to avoid
underestimating, accounting for the “more/higher is better”
and “less/lower is better” aspirations. To handle these
multiple aspiration levels, multiplicative terms of binary
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variables are utilized, where all binary variables constitute
mutually exclusive choices and only one variable is selected.
The number of binary variables required for a constraint is
equivalent to the total number of options of that constraint.

The article is subsequently organized as follows. In
Section 2, a problem overview will be considered; the
mathematical model will be presented in Section 3, and
Section 4 will discuss the transformation of the goal con-
straint involving multiple aspiration levels into an equivalent
form. Finally, a case study to demonstrate the model will be
presented in Section 5.

2. Problem Overview

Contini [4] considered the first formulation of the stochastic
goal programming model. He set the goals as uncertain
normally distributed variables. The technique for solving the
probabilistic programming model was to convert it into an
equivalent deterministic model. Many approaches have been
proposed to solve the probabilistic programming model, of
which the most common approach is chance-constrained
programming (CCP), developed by Charnes and Cooper
[5-7].

Chang [8] proposed a new idea for modelling the
multichoice goal programming problem using multiplicative
terms of binary variables to handle multiple aspiration levels.
Biswal and Acharya [9] proposed transformation techniques
to transform a multichoice linear programming problem
into an equivalent mathematical model in which constraints
are associated with multichoice parameters.

Many researchers have extensively studied the MCSTP.
Barik et al. [10] presented a stochastic transportation model
involving Pareto distribution. Roy et al. [11] presented an
equivalent deterministic model of MCSTP by assuming that
both availabilities $a;$ and demands $b;$ are random var-
iables following an exponential distribution. Biswal and
Samal [12] obtained an equivalent deterministic model of
MCSTP in which they considered that both $a;$ and $b,$
follow Cauchy distribution. Mahapatra [2] considered an
MCSTP with extreme value distribution, serving as a basis of
inspiration for this research. The novel contribution of this
paper is to include the multiobjective problem within the
model and to represent the multichoice problem in terms of
aspiration levels instead of a cost coeflicient parameter.
Mahapatra [2] also studied an MCSTP model involving
Weibull distribution, whereas Quddoos et al. [13] presented
an MCSTP involving a general form of distribution. Roy [14]
introduced Lagrange’s interpolating polynomial to deal with
the multichoice transportation problem. He subsequently
published a paper of the transportation problem with
multichoice cost and demand parameters and stochastic
supply [15], in which he used Lagrange’s interpolating
polynomial to select an appropriate value for the cost co-
efficients of the objective function and the demand of the
constraints in the transportation problem. By adopting
stochastic programming, the stochastic supply constraints
were transformed into deterministic constraints. One of the
key publications of Maity and Roy [16] proposed the
techniques of revised multichoice goal programming
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(RMCGP) and a utility function as an approach to the
MOTP. In another paper, they introduced a procedure for
converting a multichoice interval transportation problem
(MCITP) into a deterministic transportation problem to
solve [17]. In an additional publication, the same authors
demonstrated solving a fuzzy transportation problem (FTP)
using a multichoice goal programming approach [18]. Roy
etal. [19] also proposed the technique of introducing a conic
scalarizing function into the MOTP in combination with
RMCGP.

In this study, we will propose a new approach to the
transportation problem whereby the supply and demand
parameters are random variables following extreme value
distribution. Rather than minimizing the cost coefficient for
the transportation problem, we can minimize the time for
shipping, minimize the risk in shipping the items, and so on.
As an additional feature, each objective can have multiple
aspiration levels instead of only one. Now the problem
becomes a multichoice multiobjective stochastic trans-
portation problem. To overcome this difficulty, first we will
use a stochastic approach to turn the probabilistic constraint
into a deterministic one. Second, a general transformation
consisting of binary variables is applied to select one aspi-
ration level for each objective from multiple levels. The
reduced problem then becomes an MOTP and it will be
solved with goal programming.

3. Mathematical Model

Initially, the classical transportation problem is considered.
If x;; represents the amount transported from the source to
the destination, then the transportation model can be de-
fined as follows.

Model 1

Find x;

g i=12

minz = ZC’] 1], (2)

,m; j=1,2,...,n,

Subject to (s.t.)

Y xj<ap Vi (3)
j=1
> X 2b, Vi (4)

2.4=b) (5)
i j

Vi, j, (6)

where ¢;; is the transportation cost per unit, x;; is the amount
shipped, a; is the amount of supply at source i, and b; is the
amount of demand at destination j [20].

Now, we consider a mathematical model for a stochastic
multiaspiration level goal programming transportation
problem with an extreme value distribution as follows.

Model 2

Lex min

{n, pi}s

s.t. fix)+m = pi=91,90--.9, q9=12,....k

(7)

where f;(x) is the linear function of the i'" goal, g; is the
aspiration levels of the i goal, x; ; is the amount shipped,
is the amount of supply at source i, b; is the amount of
demand at destination j, #; is the negative deviational var-
iable, and p; is the positive deviational variable.

3.1. Converting the Probabilistic Constraint into a De-
terministic Constraint Using the Disjoint Chance-Constrained
Method. From Mahapatra [2], three cases of randomness on
the right-hand side of the supply and demand constraints
were considered:

(1) Only a;,i=1,2,...,m follows extreme value

distribution

(2) Only bj, j=12,...,n follows extreme value
distribution

(3) Botha;,i=1,2,...,m andbj, j=12,...,nfollow

extreme value distribution

This led to three different models (for more details, see
Mahapatra [2]. The final transformed constraint is then
considered here as the probabilistic constraint (4) trans-
formed into a deterministic linear constraint:

i < o - By [In{-In(y)}]. ®)

The probabilistic constraint (5) transformed into a de-
terministic linear constraint:
m
x;;2&; - B; [In{-In(1 - 8;)}]. 9)

i=1



Now, a deterministic multiaspiration level goal pro-
gramming transportation problem with an extreme value
distributions model will be obtained as follows.

Model 3

Lex min {n, p;}.
s.t. fi)+m-pi=9195--9, 9=12,....k
qu_ = Bi[In{-In(y))}], i=1,2,....m,
j=1
Y x;2d - Bi[In{-In(1-8,)}], j=12...n
i1
%20, m, p; 20,
0<¢;<1,
0<y, <1,
(10)
where ity = B lIn{-In(y)} = 37 1oc ﬁ] [In{-In(1-

é j)}] is the feasibility condition.

4. Transformation of the Goal Constraint
Involving Multiaspiration Levels to an
Equivalent Form

Considering the goal constraint with multiple aspiration
levels,

fix)+n,-pi =91, 92 9y (11)

A binary variable will be utilized to select a single as-
piration level, and we can utilize the relation Inn/In2 to
determinate the number of binary variables needed with »
aspiration levels under the given linearized constraint [21].

Let x = z;z;, where x satisfies the following inequalities:
(z,-+zj—2)+1§xs(2—z,-—zj)+1, (12)
x<z, (13)
X<z, (14)
x>0. (15)

The inequalities are identified:

(i) If z; = z;=1 then x = 1 (from (12))
(ii) If z; z;=0 then x = 0 (from (13)-(15))

And so, the new goal constraint will be

—pi= Z 9i;Si; (B),

Jj=1

fi(x) +ny, i=12,...,m, (16)

where §;;(B) represents the function of the binary serial
number.
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A stochastic multiaspiration level goal programming
transportation problem with extreme value distribution
model will be as follows.

Model 4

Lex min

{n, pi}:
s.t. fi(x)+mn—p; = ZgUS (B),

zxijS o = B;[In{-In(y)}], i=12....m

(17)

where Zz 1% /31 11’1{ lll yl} >Z] 1 ] B[ln lll(
8 )}] is the feasibility condition.

5. Case Study

In this section, a case study from Mahapatra [2] is con-
sidered with modifications and the assumption of extreme
value distribution instead of Weibull distribution. In this
case study, a cold drink supply company transports cold
drinks from three product centres at Dankuni, Howrah,
and Asansol to four destination centres at Jhargram,
Kharagpur, Tarkeshwar, and Contai. In the summer
season, the cold drinks are in high demand at each of
the four destination centres. The transportation time
cost is an essential factor in a transportation planning
programme as well as the transportation cost. The
manufacturing time at production centres depends on the
availability of current supply, machine condition, skilled
labour, etc. Delivery time is related to the transporting
means and seamless distribution of a product in due time
to destination centres. The transportation time cost t;jand
cost coefficient ¢;; from each source to each destination are
considered in Table 1.

The cold drinks supply company is seeking to reach the
following goals: goal 1 is to minimize the transportation time
cost and goal 2 is to minimize the cost of transportation. The
target values are 112,000 or 113,000 hours and $150,000 or
$160,000, respectively.

Due to the fluctuation of the above factor, a stochastic
multiaspiration level goal programming transportation
problem approach has been considered, in which the supply
and demand parameters follow extreme value distribution.
The specified probability levels with shape and scale pa-
rameters for supply are listed in Table 2, and the specified
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TaBLE 1: Transportation time cost ¢;; and cost coefficient ¢;; from each source to each destination.

No. Route x;; Transportation time cost #;; (in hours) Cost coefficient ¢;; (in dollars)
1 1,1): x,, 12 21
2 1,2): x5 15 25
3 1,3): x5 19 30
4 (1,4): x,, 24 34
5 (2,1): x,, 16 27
6 (2,2): x5, 18 28
7 (2,3): x5 9 15
8 (2,4): x,, 17 26
9 (3,1): x5 24 34
10 (3,2): x5, 12 24
11 (3,3): x35 25 37
12 (3,4): x5, 28 40

TaBLE 2: Values of location and scale parameter with SPL of a;.

Shape parameter Scale parameter SPL

@ = 3000 B, =36 y, = 0.01
@, = 2500 B, =30 ¥, = 0.02
a; = 2000 By =24 y; = 0.03

probability levels with shape and scale parameters of de-
mand parameters are provided in Table 3.

Lex min {P1> P2}

s.t.

X, <2994.502,
X, < 2495.908,
X3, <1996.9989,
x;, >1707.038,
x;, > 1505.94,
x;3 > 1254.452,

x;, > 1003.147,
i=1
ij» Mg g >0,

TasLE 3: Values of location and scale parameter with SPL of b;.

Shape parameter Scale parameter SPL

a, = 1700 B, =22 8, =0.04
@, = 1500 B, =2.0 8, =0.05
a = 1250 By =16 8, =0.06
a, = 1000 B, =12 8, =0.07

Utilizing the data in Tables 1-3, the deterministic
multiaspiration level goal programming transportation
problem is formulated as follows:

- p; = 112000z, + 113000(1 - z,),

— p, = 150000 z, + 160000 (1 - z,),

(18)

i=1,2,3, j=1,2,3,4,9g=1,2 2z, =00rl, k=1,2.



Checking that the feasibility condition is satisfied:

i o; — B [In{-In(y;)}] = 7487.399
o (19)

S

> 3 &~ f;[In{-In(1-6,)}] = 5470.577.
j

I
—

The deterministic linear mixed-integer problem is then
solved using GAMS (software), where the optimal solution is
obtained:

x), = 736.904,
x5 = 1254.452,
x4 = 1003.147,
x,, = 1707.038,

Xy, = 769.037,
(20)

p1=0,

P2 =0,

n; = 12112.028,

n, = 2213.805,

wherez, =0andz, = 0.

The remaining decision variables are zero. The results
show that goal 1 has an aspiration level of 113,000 hours and
zero positive deviation, which means that the transportation
time cost achieved the aspiration level exactly, and goal 2 has
an aspiration level of $160,000 and zero positive deviation,
which means that transportation cost also reached the de-
sired aspiration level exactly.

6. Conclusion

In this paper, we have explored a study of problem when the
supply and demand parameters are the stochastic type and
follow extreme value distribution. Three different ap-
proaches (the stochastic approach, binary variable approach,
and goal programming approach) can be combined to reach
an optimal solution to the transportation problem. This
provides a new capability to handle real-life DM problems
such as agricultural, managerial, economical, and industrial.
One numerical example has been presented to illustrate the
approach, which was solved using GAMS software. One can
apply the proposed model to real-life problems in feature
work or adapt other multiobjective techniques such as the
e-constraint method, weighting method, or fuzzy pro-
gramming methods and compare their performance.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. R. Mahapatra, S. K. Roy, and M. P. Biswal, “Multi-choice
stochastic transportation problem involving extreme value

Advances in Operations Research

distribution,” Applied Mathematical Modelling, vol. 37, no. 4,
pp. 2230-2240, 2013.

[2] D. R. Mahapatra, “Multi-choice stochastic transportation
problem involving Weibull distribution,” An International
Journal of Optimization and Control: Theories & Applications
(IJOCTA), vol. 4, no. 1, pp. 45-55, 2013.

[3] B. S. Everitt, The Cambridge Dictionary of Statistics, Cam-
bridge University Press, Cambridge, UK, 2002.

[4] B. Contini, “A stochastic approach to goal programming,”
Operations Research, vol. 16, no. 3, pp. 576-586, 1968.

[5] A. Charnes and W. W. Cooper, “Chance-constrained pro-
gramming,” Management Science, vol. 6, no. 1, pp. 73-79, 1959.

[6] A. Charnes and W. W. Cooper, “Chance constraints and
normal deviates,” Journal of the American Statistical Associ-
ation, vol. 57, no. 297, pp. 134-148, 1962.

[7] A.Charnesand W. W. Cooper, “Deterministic equivalents for
optimizing and satisficing under chance constraints,” Oper-
ations Research, vol. 11, no. 1, pp. 18-39, 1963.

[8] C.-T. Chang, “Multi-choice goal programming,” Omega,
vol. 35, no. 4, pp. 389-396, 2007.

[9] M. P. Biswal and S. Acharya, “Transformation of a multi-
choice linear programming problem,” Applied Mathematics
and Computation, vol. 210, no. 1, pp. 182-188, 2009.

[10] S. K. Barik, M. P. Biswal, and D. Chakravarty, “Stochastic
programming problems involving pareto distribution,”
Journal of Interdisciplinary Mathematics, vol. 14, no. 1,
pp. 40-56, 2011.

[11] S. K. Roy, D. R. Mahapatra, and M. P. Biswal, “Multi-choice
stochastic transportation problem with exponential distribu-
tion,” Journal of Uncertain Systems, vol. 6, pp. 200-213, 2012.

[12] M. P. Biswal and H. K. Samal, “Stochastic transportation
problem with Cauchy random variables and multi choice
parameters,” Journal of Physical Sciences, vol. 17, pp. 117-130,
2013.

[13] A. Quddoos, M. G. Ull Hasan, and M. M. Khalid, “Multi-choice
stochastic transportation problem involving general form of
distributions,” Springer Plus, vol. 3, no. 1, pp. 1-9, 2014.

[14] S. K. Roy, “Lagrange’s interpolating polynomial approach to
solve multi-choice transportation problem,” International
Journal of Applied and Computational Mathematics, vol. 1,
no. 4, pp. 639-649, 2015.

[15] S. K. Roy, “Transportation problem with multi-choice cost
and demand and stochastic supply,” Journal of the Operations
Research Society of China, vol. 4, no. 2, pp. 193-204, 2016.

[16] G. Maity and S. K. Roy, “Solving multi-objective trans-
portation problem with interval goal using utility function
approach,” International Journal of Operational Research,
vol. 27, no. 4, pp. 513-529, 2016.

[17] S. K. Roy and G. Maity, “Minimizing cost and time through
single objective function in multi-choice interval valued
transportation problem,” Journal of Intelligent & Fuzzy Sys-
tems, vol. 32, no. 3, pp. 1697-1709, 2017.

[18] G. Maity and S. K. Roy, “Solving fuzzy transportation problem
using multi-choice goal programming,” Discrete Mathematics,
Algorithms and Applications, vol. 9, no. 6, article 1750076, 2017.

[19] S. K. Roy, G. Maity, G. W. Weber, and S. Z. A. Gok, “Conic
scalarization approach to solve multi-choice multi-objective
transportation problem with interval goal,” Annals of Oper-
ations Research, vol. 253, no. 1, pp. 599-620, 2017.

[20] H. A. Taha, Operations Research: An Introduction, Pearson/
Prentice Hall, Upper Saddle River, NJ, USA, 2011.

[21] C.-T. Chang, “An efficient linearization approach for mixed-
integer problems,” European Journal of Operational Research,
vol. 123, no. 3, pp. 652-659, 2000.



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

