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Wiener and Randić indices have long been studied in chemical graph theory as connection strength measures of graphs. Later,
these indices were used in different fields such as network analysis. We consider two optimization problems related to these
indices, with potential applications to network theory, in particular to epidemiological networks. Given a connected graph and a
fixed total edge weight, we investigate how individual weights must be assigned to edges, minimizing the connection strength of
the graph. In order to measure the connection strength, we use the weightedWiener index and a modified version of the ordinary
Randić index. Wiener index optimization is linear, while Randić index optimization turns out to be both nonlinear and
nonconvex. Hence, we adopt the technique of separable programming to generate solutions. We present our experimental results
by applying relevant algorithms to several graphs.

1. Introduction

Topological indices of graphs have served as numerical
invariants of chemical structures, characterizing the to-
pology of the chemical structure graph theoretically. In
most cases, these indices were used to measure the
connection strength of chemical compounds. %e first-
ever such topological index found in the literature was the
Wiener index, of which the intention was exploring
thermodynamic and physiochemical properties of alkanes
in terms of molecular shapes [1].Consequently, variants of
the Wiener index and different other indices appeared for
similar purposes, introducing a new field, chemical graph
theory, into theoretical chemistry [2–4]. %ough different
indices intended for different characterizations of
chemical compounds, they shared in common the notion
of connection strength or compactness of the relevant
graph structure.

%ough these indices were originally confined to the
chemical graph theory, their scope has later been extended as
to include other subject areas as well. %e applicability of
topological indices to networks beyond chemical structures
was initiated with the pioneering work by Gutman and

Mohar in 1996, in which it was proven that a variant of the
Wiener index coincides with the Kirchhoff index of electrical
networks [5]. In 2002, Otte and Rousseau further extended
the scope of topological indices by using them to analyze
social networks [6]. In a recent work, Imran et al. analyzed
interconnection networks using topological indices [7]. All
these works used topological indices to characterize existing
networks with fixed vertex and edge weights in order to
derive information about the network. In contrast to this,
Ghosh et al. investigated how the edge weights can be
assigned subject to a fixed total weight, in order to optimize a
topological index, together with an application into electrical
circuits [8]. %is application was interpreted as assigning
resistors to the edges of an electric network, subject to a total
fixed sum of resistance, aimed at minimizing the total ef-
fective resistance or, analogously, maximizing the connec-
tion strength. %e topological measure for the total effective
resistance has been taken as the algebraic connectivity
(smallest nontrivial Laplacian eigenvalue) of the relevant
graph, which is proven to be closely associated with the
Wiener index [5]. Interestingly, the relevant optimization
problem turns out to be convex, guaranteeing efficient
solvability.
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Optimizing topological indices subject to different
constraints in different contexts has been the subject of
interest in several previous works. Most of these optimi-
zation problems were related to the chemical graph theory,
in particular to the design of chemical compounds. In [9],
Raman and Maranas developed an integer programming
model to optimize a combination of topological indices
includingWiener and Randić indices and Kier’s shape index
[10]. Optimizing the molecular interconnectivity index for
the design of polymers had been discussed in [11], with a
solution scheme for the resulting nonconvex mixed-integer
linear programming formulation. A computational scheme
for designing new molecules in medicinal chemistry was
described in [12] by Siddhaye et al., where the first-order
molecular connectivity index was optimized through an
integer programming reformulation and the branch-and-
bound approach. An optimization problem of a different
flavour in the context of chemical graph theory was con-
sidered in [13], where the simplex algorithm was used to
derive optimal versions of several topological indices.

A few works on optimizing topological indices appear
outside the realm of chemical graph theory as well. A
concept paper by Preuß et al. [14] had proposed the opti-
mization of Wiener and Randić indices to solve the maxi-
mum terrain coverage problem. A recent work [15] explored
the possibility of optimizing theWiener index for solving the
critical node detection problem, where Benders algorithm
[16] was adopted as the solution technique. An application of
algebraic connectivity maximization to communication
networks was discussed in [17].

%e specific optimization problem considered by Ghosh
et al. [8] is of particular interest and can be contrasted with
the other optimization models with topological indices as
the optimization is done subject to a constant edge weight
sum. It is natural to seek what the nature of the problem
would be if algebraic connectivity is replaced by a different
topological index. Would that be an efficiently solvable
optimization problem? Also, what if the objective was
changed to minimizing the connection strength contrary to
the electric network context? %ese are not merely questions
of theoretical interest; there is a useful application to epi-
demiological networks. Consider the transmission of a
vector-borne disease throughout a geographical region. %is
region can be considered as a network, of which the vertices
represent cities or suburbs, while the edges represent their
interconnections such as roads and channels, along which
the vector-borne disease transmits [18]. %e weight of an
edge in this network could be regarded as a measure of
favorable conditions for breeding sites of vectors. It has been
claimed that the rapid transmission of such a disease is
largely influenced by the compactness of the network
[19, 20]. %us, the health planners might be interested in
minimizing the compactness of this network by eliminating
the favorable conditions for vectors along the roads or water
channels. However, this procedure is not without budgetary
constraints. %e total amount of budget available in the
control process for eliminating vector breeding sites must be
optimally utilized along the roads and channels. %us, the
total edge weight must be bounded by a constant. Whenever

the aim is the minimization of the compactness of the ep-
idemiological network, it is equivalent to optimizing an
appropriate topological index subject to a fixed total edge
weight. %is is the main problem of interest in this work.

We first consider theWiener index, which is the simplest
topological index for characterizing the compactness of the
network. However, in the context of epidemiological net-
works, a distance-based measure as Wiener index is less
significant than a degree-based measure as a region with
many interconnections is likely to contribute significantly to
the spread of the disease. We find the degree-based topo-
logical index introduced by Randić in 1975 [21] ideal for our
purpose. %ough this was originally intended for measuring
the extent of branching of the carbon atom in hydrocarbons,
similar to the Wiener index, later developments of the
Randić index have proven its applicability in different
contexts [22–24].

Accordingly, we consider bothWiener index and Randić
index to measure the compactness of the network in our
optimization problem. %e problem of optimizing the
Wiener index turns out to be linear, thus trivially solvable.
On the contrary, optimizing the Randić index is a chal-
lenging task as it turns out to be both nonlinear and non-
convex. In order to overcome the computational hardness,
we adopt the technique of separable programming [25, 26]
and replace respective nonlinear functions by their piecewise
linear approximations, eventually ending up with an ap-
proximate solution to the problem.

%e remainder of the paper is organized as follows. In
Section 2, we reformulate the problem of minimizing the
Wiener index of a graph subject to a fixed total edge weight
as a linear program. In Section 3, we consider the same
optimization problem by replacing the Wiener index with
the Randić index, which turns out to be nonconvex. Our
reformulation using separable programming techniques can
be found in the same section. Section 4 contains our
computational results, from which the discussion in Section
5 is motivated.

2. Optimizing the Wiener Index

%e simplest and the pioneering topological index of graphs
is the Wiener index. Consider a simple connected undi-
rected graph G(V, E) with n vertices.%en, theWiener index
W(G) of a graph G is defined as

W(G) � 􏽘

n

i�1
􏽘

n

j�1
dist(i, j), (1)

where dist(i, j) is the distance between ith and jth vertices of
G. One may find several papers on findingWiener indices of
different graphs [27–29]. %ough it is the unweighted ver-
sion of the Wiener index which is used often, the vertex-
weighted graph version was introduced later [30], which has
achieved progress in the past few years [31, 32]. Further-
more, an edge-weighted version (known as the Gutman
index) was introduced as a natural extension of the Wiener
index [33]. We follow this as the edge-weighted Wiener
index in our optimization problem. Accordingly, for a graph
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G together with functions d and w, where di is the degree of
the vertex i and wij is the weight of the edge (i, j), the
weighted Wiener index is expressed as follows:

Ww(G) � 􏽘
n

i�1
􏽘

(i,j)∈E
wijdidj. (2)

Our objective is minimizing the function Z1 � Ww(G) in
equation (2), subject to relevant constraints. In terms of the
epidemiological network context, the sole major constraint is
the availability of budget for the control process.%is constraint
enforces that the allocation of resources to roads and channels
must be done subject to a fixed total budget. Let the total
(maximum possible) budget for resources be denoted by C.
%en, the relevant constraint can be expressed as

􏽘
(i,j)∈E

wij ≤C.
(3)

Finally, the nonnegativity of wij must be specified by

∀(i, j) ∈ E, wij ≥ 0. (4)

It can be seen that the optimization problem given by
equations (2)–(4) is linear. %erefore, the solution is non-
trivially obtained for Wiener index optimization.

3. Optimizing the Randić Index

%e topological index introduced for characterizing the con-
nection strength of chemical compounds by Milan Randić is
widely known in chemical graph theory.%is has been a subject
of interest for graph theorists, and several works can be found
on graph-theoretic aspects of the Randić index [34–36]. Being
an elegant measure for the connection strength, this index has
been applied in different contexts as well. Examples include
measuring the robustness in cybernetics [22], reliability of
communication networks [37], connectivity of mobile net-
works [38], and information content of a graph [39]. %e
ordinary Randić index is expressed as follows:

R(G) � 􏽘
(i,j)∈E

1
�������
d(i)d(j)

􏽰 . (5)

Clearly, Randić index is a degree-based topological in-
dex, unlike the distance-based Wiener index. %us, unlike
Wiener index optimization which was more into theoretical
interest, Randić index optimization is directly relevant to our
epidemiological application mentioned in Section 1.
Moreover, a reduction of the Randić index results in the
reduction of the Wiener index, a fact which can be seen by
comparing equations (1) and (5) [40].

%e edge-weighted version of the Randić index was
introduced by Araujo and De la Peña as follows [41]:

Rw(G) �
􏽐

n
i�1

���������
􏽐(i,j)∈Ewij

􏽱
􏼒 􏼓

2

􏽐
n
i�1􏽐(i,j)∈Ewij

. (6)

Aimed at minimizing the edge-weighted Randić index,
now we express the objective function to be minimized as
Z2 � Rw(G), subject to the same budgetary and non-
negativity constraints given by (3) and (4), respectively.

%us, the problem turns out to be nonlinear. A closer
look might reveal its nonconvexity. Recalling the problem of
optimizing the topological index taken as algebraic con-
nectivity turned out to be convex, a closed-form solution was
obtained [8]. In contrast to this, optimizing the Randić index
is a nonconvex optimization problem; thus, it is challenging
to find the global optimum. Hence, instead of looking for
closed-form exact solutions, we seek an approximate solu-
tion by using appropriate optimization and approximation
schemes. It is not difficult to see that our objective function
in equation (6) can be easily convertible to a form expressible
as sums of functions of individual decision variables. %is
motivates us to make use separable programming technique
for approximating the solution.

3.1. Separable Programming Formulation. %e method of
separable programming was first introduced for constrained
optimization of nonlinear convex functions, whenever these
functions are expressible as sums of functions of a single
variable [25]. Functions with the latter mentioned property
were called separable, and later works investigated the
possibility of expanding the technique to nonconvex func-
tions as well [42, 43]. Since its inception, separable pro-
gramming has been a very useful optimization technique,
with applications to several real problems including agri-
cultural planning [44], linear complementarity problem
[45], newsboy problem [46], and demand allocation [47].

Notice that the objective function in equation (6) is
nonlinear and nonconvex. Hence, we convert the objective
function to a separable form. Let

ai � 􏽘
n

j�1
wij. (7)

From equation (6), our objective function can be restated
as

Z2 �
􏽐

n
i�1

��
ai

√
( 􏼁

2

C
�
1
C

􏽘

n

i�1
ai + 􏽘

n

i�1
􏽘

n

s�1

����
aias

√⎛⎝ ⎞⎠. (8)

Since ��
ai

√ > 0 for all i ∈ 1, 2, . . . , n{ }, ����
aias

√ can be
replaced by yr, where r ∈ 1, 2, . . . , n(n − 1)/2{ }. %en, it is
possible to transform the objective function to the separable
form with the following constraint in the separable form:

log yr( 􏼁 � log
��
ai

√
( 􏼁 + log

��
as

√
( 􏼁. (9)

Now, the objective function can be restated as

Z2 �
1
C

􏽘

n

i�1
ai + 2 􏽘

((n(n−1))/2)

r�1
yr

⎛⎝ ⎞⎠. (10)

%is is to be minimized subject to
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􏽘

n

i�1
􏽘
j∈V

wij ≤C, (11a)

ai � 􏽘
n

j�1
wij, ∀i ∈ 1, 2, . . . , n{ }, (11b)

log yr( 􏼁 � log
��
ai

√
( 􏼁 + log

��
as

√
( 􏼁, ∀r ∈

1, 2, . . . , n(n − 1)

2
􏼨 􏼩, (11c)

wij ≥ 0, ∀i, j ∈ 1, 2, . . . , n{ }, (11d)

ai > 0, ∀i ∈ 1, 2, . . . , n{ }, (11e)

yr > 0, ∀r ∈
1, 2, . . . , n(n − 1)

2
􏼨 􏼩. (11f)

3.2. Linearly Approximated Program. Notice that the con-
straint given by equation (11c) is nonlinear. In order to
approximate by piecewise linear functions, first, we restate
equation (11c) as

gr1 yr( 􏼁 + 􏽘
2

p�1
gr(1+p) xp􏼐 􏼑 � 0, ∀r ∈

1, 2, . . . , n(n − 1)

2
􏼨 􏼩,

(12)

where

gr1 yr( 􏼁 � logyr, (13a)

gr2 x1( 􏼁 � −log
��
ai

√
, (13b)

gr3 x2( 􏼁 � −log
��
as

√
. (13c)

Let the domain of gr1(yr) be the interval [C0, C]. %en,
we divide the interval into m subdivisions of length d by
defining αrk as follows:

C0 � αr1 ≤ αr2 ≤ · · · ≤ αrm � C, (14)

where

αrk − αr(k+1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � d. (15)

Now, a point yr ∈ [C0, C] can be uniquely expressed as

yr � λrkαrk + λr(k+1)αr(k+1) � 1, (16)

where

λrk + λr(k+1) � 1. (17)

%en, the piecewise linear approximation to gr1(yr) can
be expressed as

gr1 yr( 􏼁 � 􏽘

m

k�1
λrkgr1 αrk( 􏼁, (18)

where

yr � 􏽘
m

k�1
λrkαrk,

􏽘

m

k�1
λrk � 1.

(19)

Let the domain of grp(xp) be the interval [C1, C]. %en,
we divide the interval into h subdivisions of length q by
defining βpl as follows:

C0 � βp1 ≤ βp2 ≤ · · · ≤ βph � C, (20)

where

βpl − βp(l+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � q. (21)

%en, the piecewise linear approximation to grp(xp) can
be expressed as

grp xp􏼐 􏼑 � 􏽘
h

l�1
μplβpl, (22)

where

xp � 􏽘
h

l�1
μplβpl,

􏽘

h

l�1
μpl � 1.

(23)

Now, the nonlinear program is approximated by the
following problem:

minimize Z3 �
1
C

􏽘

((n(n−1))/2)

r�1
􏽘

m

k�1
λrkαrk + 􏽘

n

i�1
􏽘

h

l�1
μilβil

⎛⎝ ⎞⎠,

(24)

subject to
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􏽘

n

i�1
􏽘
j∈V

wij ≤C, (25a)

􏽘

n

i�1
􏽘

h

l�1
μilβil � 􏽘

(i,j)∈E
wij, (25b)

􏽘

m

k�1
λrkgr1 αrk( 􏼁 + 􏽘

2

p�1
􏽘

h

l�1
μplgrp βpl􏼐 􏼑 � 0, ∀r ∈

1, 2, . . . , n(n − 1)

2
􏼨 􏼩, (25c)

􏽘

m

k�1
λrk � 1, ∀r ∈

1, 2, . . . , n(n − 1)

2
􏼨 􏼩, (25d)

λrk, αrk ≥ 0, ∀r ∈
1, 2, . . . , n(n − 1)

2
􏼨 􏼩,∀k ∈ 1, 2, . . . , m,{ } (25e)

􏽘

h

l�1
μil � 1, ∀i ∈ 1, 2, . . . , n{ }, (25f)

μil, βil ≥ 0, ∀i ∈ 1, 2, . . . , n{ },∀l ∈ 1, 2, . . . , h{ }, (25g)

and at most two adjacent λrk’s are positive.
It can be seen that the linearly approximated problem

given by equations (24) and (25) can be solved efficiently if
the adjacency restriction is satisfied. Furthermore, it has
been proven theoretically that if each individual function in
the objective function is strictly convex and each individual
function in constraints is convex for each relevant variable,
then the solution of the linearly approximated formulation
without the adjacency restriction is feasible to the original
problem [26], which, however, is not the case with our
problem given by equations (10) and (11). Several numerical
techniques are available in the literature to overcome this
issue and to find approximate solutions [42, 48–50]. We
adopted the scheme given by Markowitz and Manne [50] to
generate our computational results.

4. Computational Results

We implemented the algorithms using the mixed-integer
programming model in SageMath. %e experimentation
took place over many graph structures up to 15 vertices. In
particular, we tested all connected graphs up to 6 vertices. As
for Wiener index optimization, despite the triviality of the
formulation, some observations were of particular interest.
For instance, the total weight was always assigned to a single
edge of the graph. Furthermore, this edge always belonged to
the edge dominating set of the graph (Table 1). %is is quite
natural, as the edges in the dominating set are the most
significant in maintaining the connection strength of the
graph, as each edge in the graph is either in the edge
dominating set or adjacent to at least one edge in the edge
dominating set. For instance, when the graph G1 in
Figure 1(a) was considered for Wiener index optimization,
of which the results were derived making C in equation (3)

equal to one, the optimal solution assigned a total weight of 1
to the edge (1, 4) in G1. Interestingly, this edge alone makes
an edge dominating set. It is easy to see that the vertex
corresponding to (1, 4) in L(G1) as illustrated in Figure 2
makes a dominating set. Similarly, (1, 2) in G2 (Figure 1(c))
and (1, 3) in G3 (Figure 1(c)) were chosen which are the
elements in dominating sets of their line graphs.

In contrast to this, in Randić index optimization, dif-
ferent weights were allocated to different edges. %erefore, it
is natural to ask how Randić index optimization deals with
the graph symmetries. In particular, it is important to see if
the edge equivalences are considered when assigning
weights. %erefore, we investigated the edge equivalences of
these graphs to examine any possible connection to the
optimal weighted assignment. Edge equivalence of graphs is
defined under global symmetry relations of graphs, char-
acterized in terms of edge automorphisms. %is is defined in
analogous to the notion of automorphisms in algebraic
graph theory. %e automorphism group of a graph G is the
group formed by all structure-preserving permutations of its
vertices and is denoted by aut(G). Two vertices u and v in G
are said to be structurally equivalent if there is an auto-
morphism σ in aut(G) such that σ(u) � v. Edge automor-
phism group of a graph G is defined as the automorphism
group of the line graph L(G) of G defined as the graph
obtained by associating a vertex with each edge of G and
connecting two vertices with an edge if the corresponding
edges of G have a vertex in common. %us, the edge set of a
graph can be classified into equivalence classes, in the sense
of global symmetry. %e respective classification of the three
graphs in Figure 1 can be seen in Figure 3.

Now, the question can thus be restated as follows: if two
edges are structurally equivalent, does the optimal Randić
index allocation assign equal weights to them? If yes, does it
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Table 1: Optimal weight assignments for minimizing the Wiener index with edge dominating sets of graphs in Figure 1.

Graph Nonzero weight assignment Edge dominating set
G1 w(1, 4) � 1 (1, 4){ }

G2 w(1, 2) � 1 (1, 2), (1, 4){ }

G3 w(1, 3) � 1 (0, 4), (1, 3){ }

0

1

2

3

4

(a)

0

1

2

3

4

(b)

5

0

1

2 3

4

(c)

Figure 1: %ree example graphs. (a) G1. (b) G2. (c) G3.

(0, 1) (3, 4)

(0, 4)(1, 4)

(2, 4)(1, 2)

(1, 3)

Figure 2: %e line graph L(G1).

0

1

2

3

4

(a)

0

1

2

3

4

(b)

Figure 3: Continued.
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always distinguish two nonequivalent pairs of edges? %e
answers seemed to be negative. For instance, the edge au-
tomorphism group of G1 is given by

aut L G1( 􏼁( 􏼁 � ((1, 2), (1, 3))((2, 4), (3, 4)), ((0, 1), (0, 4))((1, 2), (2, 4))((1, 3), (3, 4)), ((0, 1), (1, 2))((0, 4), (2, 4)){ }, (26)

which implies that (0, 1) and (0, 4) are structurally equiv-
alent edges, as illustrated in Figure 3(a). However, according
to Table 2, they are allocated different weights. On the
contrary, same weight has been assigned to (1, 2) and (1, 4),
despite they belong to a different equivalence class. %ere-
fore, it seems Randić index optimization does not reflect the
global symmetry of a graph. Having said that, it must be
mentioned that, during our experimentation, we encoun-
tered many graphs for which the Randić index optimization
was perfectly harmonious with edge classification by
equivalences. For instance, the three edge equivalence classes
of G2 (Figure 3(b)) are distinguished by the optimal allo-
cation (Table 2), where each class is assigned its own weight
unique to that class.

5. Discussion

Motivated by an epidemiological application and a previous
work done by Ghosh et al. [8] related to electrical circuits, we
considered the problem of assigning weights to edges of a
graph, subject to a total fixed edge weight, with the aim of
minimizing the connection strength of a graph, character-
ized first by the Wiener index and then by the Randić index.
%ough these two topological indices are closely related to
each other, in particular, a change in the Randić index results
in a change in the Wiener index, the two optimization
problems of our consideration were far different from each
other. Wiener index optimization was trivial, as it was a
linear formulation, while Randić index optimization was a
nonlinear and a nonconvex optimization problem. %ere-
fore, we adopted the technique of separable programming to
find approximate solutions to Randić index optimization.
Finally, we presented our computational experience in the

sense of dominating sets and global symmetry relations of a
graph.

In a theoretical point of view, interesting comparisons
can be made regarding optimizations of different topological
indices. Recalling the optimization of the algebraic con-
nectivity (first nontrivial Laplacian eigenvalue) is convex,
one can compare Wiener index optimization, of which the
solution procedure is much simpler, and Randić index
optimization, of which it is harder. %is may be extended
further by considering optimization of different topological
indices such as the Balaban index [51, 52], Harary index
[53, 54], Graovac–Pisanski index [55], and Hosoya index
[56]. On the contrary, it is interesting to investigate how
these indices are related to the global symmetry of the graph.
Although topological indices are studied extensively from
graph-theoretic perspectives, their relation to automor-
phisms has not been paid much attention. It will be an
interesting future work to consider if the optimal allocation
of weights for other topological indices shows any relation
with edge equivalences of graphs. It is noteworthy that a
recent work introduced a variant of the Wiener index,
moderated in light of global symmetry of graphs as char-
acterized by the automorphism group [57]. It is natural to
expect this version to resemble the global symmetry of the
graph, of which the verification is left for future research
studies. Furthermore, the relation of different topological
indices to the edge dominating set could also be investigated.

In a practical point of view, different epidemiological
conditions might require optimization of different topo-
logical indices. In the context of rapid transmission of a
vector-borne disease, as our problem of interest, resources to
control the disease must be assigned to edges

0

1

2 3

4

5

(c)

Figure 3: Line graph of G1 and classification of the edge sets into equivalence classes for the graphs in Figure 1. (a) G1. (b) G2. (c) G3.
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(interconnections). Instead, if it is a slowly propagating
disease, resources may be allocated to vertices (regions),
which could be restated as optimization of vertex-weighted
versions of these indices, instead of the edge-weighted
versions we have considered. In spite of the recent trend of
intelligent resource allocation when controlling epidemics
[58–61], only limited works are available in the mathe-
matical and computational epidemiology literature on uti-
lizing the resources optimally in order to minimize the
transmission rate of the disease. Future research studies in
this direction might be helpful for health planners, in
particular in epidemic-prone countries where limitation of
resources becomes a major obstacle to the control process.
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gutman index and minimum degree,” Discrete Applied
Mathematics, vol. 173, pp. 77–82, 2014.

[34] J. Gao and M. Lu, “On the randić index of unicyclic graphs,”
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