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In this study, the author proposes a new carbon taxing policy. +is proposed carbon tax has two tax components. +e first
component is constant, and the second component depends on the green efficiency of production. +e green efficiency of
production is measured by the average amount of emissions per unit production in an assessment year.+e green efficiency-based
tax component can be reset every year. Lesser average emission rate indicates better green efficiency. +e second component of
this proposed carbon tax forces the firm to improve the green efficiency of production, which results in cleaner production. +e
author incorporates this new carbon tax policy in a production-inventory system with a price-sensitive demand rate. A rule is
provided for the implementation of this new tax. Emissions during setup, production, and storage are considered as independent
random variables. +e firm has the opportunity of investing in green technologies to improve green efficiency. A profit
maximization policy is adopted to solve the developed model. A solution algorithm is also provided. +e model is illustrated by
numerical examples with randomly generated model parameters. +e results of numerical examples show the environmental
benefits of the proposed carbon tax.

1. Introduction

Over the past decades, global warming has received growing
attention worldwide. It poses a serious threat to our planet
because its consequences are devastating, far-reaching, and
long-lasting. Global warming gradually damages our
planet’s ecosystem, which results in the extinction of many
plant and animal species. Rise of sea level, depletion of the
ozone layer, increase in average, earth’s temperature, ex-
treme weather conditions, frequent and intense storm,
drought, flood, and increased clear-air turbulence are some
of the catastrophic effects of global warming (https://www.
carbonpricingleadership.org/who/ [1, 2]). Industrialization,
urbanization, transportation, and electricity generation are
some human activities, which emit a huge amount of GHGs
because these activities need to burn fossil fuels. +e In-
tergovernmental Panel on Climate Change (IPCC), which

includes more than 1,300 scientists from the United States
and other countries, forecasts a temperature rise of 2.5 to 10
degrees Fahrenheit over the next century (https://climate.
nasa.gov/effects/). Tollefson [3] predicted, “two degrees of
warming could destroy ecosystems on around 13% of the
world’s land area, increasing the risk of extinction for many
insects, plants, and animals. Holding warming to 1.5°C
would reduce that risk by half.”+ere is a growing consensus
that carbon emissions are a leading contributor to global
warming [4]. +e industrial sector is one of the major
contributors of GHGs emissions. In 2014, the United States
(US) Environmental Protection Agency (EPA) reported that
industry was the third major contributor to GHG emissions,
contributing 21% of the total GHG emissions in the US. +e
industrial process consists of production/manufacturing,
transportation, storage, waste disposal, etc. Each of these
activities emits a huge amount of GHGs. +e amount of
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emissions varies from industry to industry. +e growing
environmental consciousness of the users of the end
products compels the manufacturers to tend towards green
products. In a manufacturing system, three main phases of
emissions are: production setup/order placing, production
process, and storage [1, 4]. Emission rates in these three
sources are different. Efficient production and inventory
control, wise managerial decisions, green technology
implementation, and environmental awareness can con-
siderably reduce carbon emissions during manufacturing
activities [1]. Strict environmental legislation is also essential
to mitigate emissions. Regulatory bodies of many developed
and developing countries are enacting carbon policies to
reduce emissions. Carbon tax and emission trading systems
(also known as cap-and-trade) are the most common
mechanisms implemented in many countries to mitigate
emissions. Many countries adopted a carbon tax policy to
reduce carbon emissions and promote energy saving. Chile,
Colombia, Finland, Argentina, Sweden, Switzerland,
Netherland, Norway, Alberta, UK, and Italy are some
countries/states who implemented a carbon tax. Environ-
mental legislation affects the optimal inventory decision and
must be incorporated in designing a sustainable inventory
model [5]. +ere is a growing interest among many re-
searchers to include environmental parameters in designing
their models. A number of research papers are available in
the existing literature which includes sustainability in the
production-inventory system and supply chain [5–28].
Garćıa-Alvarado et al. [18] analyzed a stochastic closed-loop
inventory model with environmental constraints. +ey
adopted a discrete-in-time periodic review policy with a
finite horizon. Battini et al. [16] incorporated sustainability
in a single product replenishment problem under the tra-
ditional economic order quantity (EOQ) framework. Glock
et al. [11] developed an inventory model with price- and
quality-sensitive demand. +ey considered a single product
with sustainability as a quality attribute and measured in
terms of the level of scraps and emission in the supply chain.
Zanoni et al. [26] published a research article on the joint
economic lot size model with price and environmentally
sensitive demand in a vendor-buyer supply chain. Absi et al.
[6, 12] developed single item, multisourcing, and carbon-
constrained lot size models. Hovelaque and Bironneau [21]
investigated an inventory system with price and emission-
dependent demand under environmental conditions. +ey
showed the environmental benefit of a carbon tax. He et al.
[22] investigated the production lot-sizing issues of a firm
under a carbon tax and cap-and-trade regulations. Dye and
Yang [5] and Tsao et al. [25] developed sustainable inventory
models with trade credit under various environmental
regulations. It is important to note that none of these studies
included green investment as one of the model parameters.
A firm should invest money on green technologies for
cleaner production that also reduces the burden of the
carbon tax. +e green investment amount is an important
decision parameter, and it should be included as a model
parameter, while developing a sustainable model. Some

researchers realized this fact and considered the green in-
vestment as a model parameter in their models. Jiang and
Klabjan [29] investigated a joint production capacity and
green investment decision policy under command-and-
control and market-based regulations for an emission in-
tensive company with stochastic demand. Lou et al. [30]
incorporated green technology investment as a model pa-
rameter in a supply chainmodel to analyze the consequences
of emission trading policy. Toptal et al. [31] analyzed a
retailer’s joint decision policy on inventory replenishment
and green investment with emission regulation policies. Bi
et al. [32] studied on governmental subsidy policy to mo-
tivate firms’ adoption of green investment when consumers
are environmentally discerning. Datta [1] published a re-
search article on a production-inventory system with de-
fective product under a carbon tax and green investment.
Zheng et al. [33] considered green technology investment in
a duopoly manufacturers’ game model under the cap-and-
trade policy. Recently, Datta et al. [34] published a research
article with a hybrid carbon tax and emission source-based
green investment. None of the above studies considered
random emissions. In the real world, the amount of GHGs
emitted by a firm to produce each unit of the product is not
exactly the same, varies randomly. Hence, the inclusion of
random emissions in a sustainable model will make the
model more realistic, particularly when the emissions rate is
more volatile.

In the present article, the author proposes a novel carbon
taxing policy. +is proposed carbon tax consists of a con-
stant tax component and another component based on green
efficiency of production. We analyze the effects of this taxing
policy on the optimal decisions in the production and in-
ventory system of a manufacturing firm.+e green efficiency
of production is measured by the average emission per unit
production in an assessment year. +is new carbon tax can
be highly effective if applied to large firms, which are the
main polluters. It guarantees cleaner production. In this
paper, the proposed carbon tax will be termed as green
efficiency-based (GE-based) carbon tax. +e model con-
siders independent random emissions released from three
main emission sources (setup, production process, and
warehouse/stock-holding) of the production system. +e
model also incorporates green investment as a decision
parameter. +e demand rate is assumed to be price sensitive.
To solve the model, the author adopts a profit maximization
policy with the selling price, green investment, and pro-
duction run-time as decision parameters. To the best of the
author’s knowledge, none of the existing published articles
focuses on random emissions and green efficiency-based
carbon tax system.+e author provides a solution algorithm.
Five randomly generated numerical problems are solved to
illustrate the model. To justify the contribution of this study,
a comparison of this study with some related published
works is shown in Table 1. +e rest of the paper is organized
as follows. Section 2 describes the assumptions and nota-
tions used in the model. Sections 3 and 4, respectively,
present the model development and the solution algorithm.
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In Section 5, the author proposes how this proposed carbon
tax can be implemented. Numerical illustrations are pre-
sented in Section 6. Section 7 shows the environmental
benefits of the proposed carbon tax. Section 8 performs an
analysis to observe the effects of the new green efficiency-
based tax component on the optimum solutions. In Section
9, the author presents concluding remarks and future scopes.

2. Assumptions and Notations

(i) Time horizon is infinite.
(ii) Shortages are not permitted.
(iii) +e product is nondeteriorating.
(iv) Emissions during setup, production, and holding

(storage) are independent random variables.
(v) Demand rate is a decreasing linear function of

selling price.
(vi) Carbon tax per unit emissions has two tax com-

ponents: one tax component is constant and the
other component depends on the green efficiency of
production.
P: production rate, which is known and constant (in
units/year).
τ: production run-time (in year).
T: length of a production cycle (in year).
s: selling price of each unit (in $), s> 0.

D: the demand rate (in units/year).+e demand rate
is a decreasing function of s. We take it as
D � α − βs, where α, β> 0 and s< (α/β).
Cu: unit cost (in $).
Ch: carrying cost per unit per year (in $).
Cs: setup cost per production cycle (in $).

e1: total emissions for setup activities, a random
variable (in ton).
e2: emissions per unit production run-time due to
machining operations, a random variable (in ton).
e3: emissions per unit per year for holding inven-
tory, a random variable (in ton).
fi(ei): probability density function of ei defined in
[0, Ri]. +e joint density function of e1, e2, and e3 is
f(e1, e2, e3) � f1(e1) · f2(e2) · f3(e3) because
e1, e2, and e3 are independent random variables.
μi: the expected value of ei defined by
μi � 􏽒

Ri

0 eifi(ei)dei, i � 1, 2, 3.
σ2i : the variance of ei defined by
σ2i � 􏽒

Ri

0 e2i fi(ei)dei − μ2i , i � 1, 2, 3.
ET: total emissions during a production cycle (in
ton).
EA: average emissions per year during a production
cycle (in ton).
G(> 0): index representing the green efficiency of
production (in ton/unit). +is index is the average
amount of emissions per unit production. A smaller
value of index G indicates cleaner production.
Ct: carbon tax per unit emission (in $). +is carbon
tax is the proposed carbon tax, an increasing
function of green efficiency index “G.” We take it in
the form Ct � a + bG, a, b≥ 0 where G � ET/Pτ.
APR: average profit per year in a production cycle
(in $).
EAP: EAP� E (APR), expected average profit per
year in a production cycle (in $).
I: total $ investment in green technology. +is in-
vestment is a one-off investment. +e green

Table 1: Comparison of the present study with other related studies.

Studies Model type Random
emissions?

GE-based
carbon tax? Demand rate Green

investment?

Aliabadi et al. [14] Inventory No No Credit period, price, and emission
dependent No

Arslan and Turkay [7] EOQ model No No Constant No
Battini et al. [16] EOQ model No No Constant No
Chen et al. [10] EOQ model No No Constant No
Datta [1] Production-inventory No No Price-dependent Yes
Gautam and
Khannna [19] Inventory in supply chain No No Constant No

Hammami et al. [20] Production-inventory No No Finite and constrained No
Jiang and Klabjan
[29] Production model No No Stochastic Yes

Konur et al. [4] Inventory control (multi-
echelon)

Randomly
generated No Stochastic No

Lin and Sarker [23] Inventory No No Constant No
Toptal et al. [31] Inventory model No No Constant Yes
Datta et al. [34] Production-inventory No No Price-dependent Yes
+is study Production-inventory Yes Yes Price-dependent Yes
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investment $I reduce the total emissions to a pro-
portion of e− λI.
Imax: cap/budget on green investment (in $).
(·)∗: (·) is at optimum.

3. The Model Development

We assume that the firm starts its production after all
necessary green installations. +e production starts at time
t� 0 and continues until time t � τ. During production run-
time [0, τ], the inventory level accumulates at the rate of
(P − D(s)) per year and reaches the maximum level at time
t � τ. During the period [τ, T], the inventory level depletes
at the rate of D (s) per year and becomes zero at time t�T.
+e cycle length is T years. Let us now calculate the average
emissions per year in a production cycle.

Total emission in a production cycle without investment
is

ET � e1 + e2τ + e3(P − D)τ
T

2
. (1)

Using the relation T � (Pτ/D), we obtain

ET � e1 + e2τ +
e3(P − D)Pτ2

2D
. (2)

With the green investment, it becomes ETe− λI.
+e average emission per unit time without investment is

EA � ET/T, and with the green investment, it becomes
EAe− λI.

+e index representing the green efficiency of produc-
tion is defined by

G �
ETe

− λI

Pτ
. (3)

Costs, revenue, and the average profit per year during the
cycle [0, T]:

setup cost � Cs,

unit cost � CuPτ,

holding cost �
Ch

2
􏼒 􏼓(P − D)τT,

green investment � I,

carbon tax � CtETe
− λI

� a + b
ETe

− λI

Pτ
􏼠 􏼡ETe

− λI

� ae
− λI

ET +
be

− 2λI

Pτ
E
2
T.

(4)

Total revenue by selling the goods� Pτs.
+e average profit per year in a production cycle is

APR �
1
T

(total income − setup cost − unit cost − holding cost − green investment − carbon tax). (5)

Using the relation T � (Pτ/D), we obtain

APR(τ, s, I) � s − Cu( 􏼁D(s)( 􏼁 −

Cs + I( 􏼁D(s)

Pτ
+

Chτ
2

(P − D(s)) +
a D(s)e

− λI

P

e1

τ
+ e2 +

e3Pτ(P − D(s))

2D(s)
􏼠 􏼡

+
b D(s)e

− 2λI

P
2

e
2
1

τ2
+ e

2
2 +

e
2
3P

2τ2(P − D(s))
2

4 D(s){ }
2 +

2e1e2

τ
+

e1e3P(P − D(s))

D(s)

+
e2e3Pτ(P − D(s))

D(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

Because of the presence of three random variables
e1, e2, and e3 in APR, we require to maximize the expected
average profit EAP(τ, s, I), defined by
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EAP(τ, s, I) � E(APR) � 􏽚
R3

0
􏽚

R2

0
􏽚

R1

0
APR · f e1, e2, e3( 􏼁de1de2de3,

� 􏽚
R3

0
􏽚

R2

0
􏽚

R1

0
APR · f e1( 􏼁 · f e2( 􏼁 · f e3( 􏼁de1de2de3

� s − Cu( 􏼁D(s)( 􏼁 −
Cs + I( 􏼁D(s)

Pτ
−

Chτ
2

(P − D(s))

−
a D(s)e

− λI

P

􏽒
R1

0 e1f e1( 􏼁de1

τ
+ 􏽚

R2

0
e2f e2( 􏼁de2 +

􏽒
R3

0 e3f e3( 􏼁de3Pτ(P − D(s))

2D(s)
⎛⎝ ⎞⎠

−
b D(s)e

− 2λI

P
2

􏽒
R1

0 e
2
1f e1( 􏼁de1

τ2
+ 􏽚

R2

0
e
2
2f e2( 􏼁de2 +

P
2τ2(P − D(s))

2
􏽒

R3

0 e
2
3f e3( 􏼁de3

4 D(s){ }
2

+
2􏽒

R1

0 e1f e1( 􏼁de1 · 􏽒
R2

0 e2f e2( 􏼁de2

τ
+

P(P − D(s)) 􏽒
R1

0 e1f e1( 􏼁de1 · 􏽒
R3

0 e3f e3( 􏼁de3

D(s)

+
Pτ(P − D(s)) 􏽒

R2

0 e2f e2( 􏼁de2 · 􏽒
R3

0 e3f e3( 􏼁de3

D(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

On simplifying, we obtain

EAP(τ, s, I) � E(APR),

� s − Cu( 􏼁D(s)( 􏼁 −

Cs + I( 􏼁D(s)

Pτ
+

Chτ
2

(P − D(s)) +
a D(s)e

− λI

P

μ1
τ

+ μ2 +
μ3Pτ(P − D(s))

2D(s)
􏼠 􏼡

+
b D(s)e

− 2λI

P
2

σ21 + μ21
τ2

+ σ22 + μ22􏼐 􏼑 +
σ23 + μ23􏼐 􏼑P

2τ2(P − D(s))
2

4 D(s){ }
2

+
2μ1μ2
τ

+
μ1μ3P(P − D(s))

D(s)
+
μ2μ3Pτ(P − D(s))

D(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(8)

+e following optimization problem represents the
proposed system:

maximize EAP(τ, s, I)

subject to τ > 0, 0< s<
α
β

, 0≤ I≤ Imax.
(9)

Let us express EAP in powers of τ as follows:

EAP � X1τ
2

+ X2τ + X3 +
X4

τ
+

X5

τ2
, (10)

where

X1 � −
e

− 2λI
b σ23 + μ23􏼐 􏼑 P − D(s){ }

2

4D(s)
,

X2 � −
e

− λI
aμ3 + Ch􏼐 􏼑

2
+

e
− 2λI

bμ2μ3
P

⎧⎨

⎩

⎫⎬

⎭ P − D(s){ },
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X3 � s − Cu( 􏼁D(s) −
e

− λI
a D(s)μ2

P
−

e
− 2λI

b D(s) σ22 + μ22􏼐 􏼑

P
2 −

e
− 2λI

bμ1μ3 P − D(s){ }

P
,

X4 � −
Cs + I + e

− λI
aμ1􏼐 􏼑D(s)

P
+
2e

− 2λI
bμ1μ2D(s)

P
2

⎧⎨

⎩

⎫⎬

⎭,

X5 � −
e

− 2λI
b σ21 + μ21􏼐 􏼑D(s)

P
2 . (11)

One can observe that X1, X2, X4, X5 < 0.

In the above equation, X1, X2, X3, X4, andX5 are
functions of the decision variables s and I.

+e following are two important properties derived from
the structural characteristics of EAP.

Property 1. For fixed s and I, the expected average profit
EAP is concave in τ, and it attains its maximum value in the
interval:

τ ∈ 0, max
X4

2X1
􏼠 􏼡

(1/3)

,
2X5

X2
􏼠 􏼡

(1/3)⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠. (12)

Proof. To prove the concavity of EAP in τ, we need to show
that (z2EAP/zτ2)< 0.

For fixed s and I, the expressions X1, X2, X3, X4, andX5
become constant, and so EAP depends on τ only. Now,
differentiating EAP twice successively with respect to τ, we
obtain

zEAP
zτ

� 2X1τ + X2 −
X4

τ2
−
2X5

τ3
,

z
2
(EAP)

zτ2
� 2X1 +

2X4

τ3
+
6X5

τ4
.

(13)

We obtain (z2(EAP)/zτ2)< 0 because X1, X4, X5 < 0
and τ > 0. +is proves the concavity of EAP in τ.

+e value of τ, which maximizes EAP, is the positive root
of (z(EAP)/zτ) � 0.

Now, (z(EAP)/zτ) � 0

⟹ 2X1τ + X2 −
X4

τ2
−
2X5

τ3
� 0,

⟹ L(τ) � 0,

(14)

where L(τ) � 2X1τ4 + X2τ3 − X4τ − 2X5
For any fixed values of s and I, equation (14) is a

polynomial equation in τ of degree 4 with constant coeffi-
cients. We observe that there is only one change in sign in
the polynomial L(τ). So, by Descartes’ rule of sign, the

polynomial equation (14) has at most one positive root. We
further observe that L(0) � −2X5 > 0 and L(τ)⟶
−∞(< 0) as τ⟶∞. +erefore, by the property of poly-
nomial equations, the equation (14) has an odd number of
positive roots. Combining these results, we conclude that the
equation (14) has a unique positive root. +is positive root
maximizes EAP because EAP is concave in τ.

Let us now prove that the positive root of the polynomial
equation (14) lies in the open interval

0, max
X4

2X1
􏼠 􏼡

(1/3)

,
2X5

X2
􏼠 􏼡

(1/3)⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠. (15)

We obtain

L(τ) � 2X1τ
4

+ X2τ
3

− X4τ − 2X5

� τ 2X1τ
3

− X4􏼐 􏼑 + X2τ
3

− 2X5􏼐 􏼑,

τ >
X4

2X1
􏼠 􏼡

(1/3)

⟹ τ3 >
X4

2X1
⟹ 2X1τ

3
− X4 < 0, ∵X1 < 0,

τ >
2X5

X2
􏼠 􏼡

(1/3)

⟹ τ3 >
2X5

X2
⟹X2τ

3
− 2X5 < 0, ∵X2 < 0.

(16)

So, L(τ)< 0 for τ >max (X4/(2X1))
(1/3), ((2X5)/􏽮

X2)
(1/3)}. But, L(0) � −2X5 > 0.
Hence, the positive root lies in the open interval

(0, max (X4/(2X1))
(1/3), ((2X5)/X2)

(1/3)
􏽮 􏽯).

We complete the proof of Property 1.

Property 2. For fixed s and τ, the function EAP is concave in
green investment I.

We obtain

z(EAP)

zI
� −Y1 + Y2e

− λI
+ Y3e

− 2λI
, (17)

where
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Y1 �
D(s)

Pτ
> 0,

Y2 � aλ
μ1D(s)

Pτ
+
μ2D(s)

P
+
μ3(P − D(s))τ

2
􏼠 􏼡> 0,

Y3 � bλ

σ23 + μ23􏼐 􏼑τ2 P − D(s){ }
2

2D(s)
+
2μ2μ3τ P − D(s){ }

P
+
2 σ22 + μ22􏼐 􏼑D(s)

P
2

+
2μ1μ3 P − D(s){ }

P
+
4μ1μ2D(s)

P
2τ

+
2 σ21 + μ21􏼐 􏼑D(s)

P
2τ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0.

(18)

We observe that Y1, Y2, andY3 are functions of s andτ.

For any fixed values of s and τ, the values of Y1, Y2, andY3
are constant.

Now, (z2(EAP)/zI2) � −λY2e
− λI − 2λY3e

− 2λI < 0 be-
cause λ, Y2, Y3 > 0. Hence, EAP is concave in I. +is com-
pletes the proof of Property 2.

Let us now find a decision rule to find the optimum value
I∗ of the green investment I for any fixed values of s and τ.
We have already proved the concavity of EAP in I for fixed
values of s and τ. +erefore, the optimum value of I can be
obtained by solving the equation z(EAP)/zI � 0.

Now

z(EAP)

zI
� 0,

⟹ − Y1 + Y2e
− λI

+ Y3e
− 2λI

� 0,

⟹Y1Z
2

− Y2Z − Y3 � 0,

(19)

where Z � eλI.
By the property, the above quadratic equation has exactly

one positive root.
Its positive root is

Z
+

�
Y2 +

����������

Y
2
2 + 4Y1Y3

􏽱

2Y1
. (20)

We know

I �
1
λ
lnZ

+
�

< 0, if Z
+ < 1,

� 0, if Z
+

� 1,

> 0, if Z
+ > 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

and I ∈ [0, Imax]. +erefore, the following rule can be used to
select the optimum value of I, for fixed s and τ:

I
∗

� min Imax, max 0,
1
λ
lnZ

+
􏼒 􏼓􏼚 􏼛. (22)

It is a tedious task to prove the joint concavity of EAP in
τ, s, and I because the Hessian matrix is too complex.
+erefore, we develop a solution algorithm for finding the
optimum solution of the developed model based on the
above properties.

4. Solution Algorithm

We develop the algorithm based on two concavity
properties that we discussed in Section 3. In the algorithm,
we consider the selling price“s” as an input variable. For
each value of “s,” we find the optimal solution by using
equations (14) and (20) and applying rule (22). For this
purpose, the variable “s” is discretized by taking the initial
value as “0” and incrementing it by a specific step size in
each step within its domain. +e solution algorithm is
given below.

Solution algorithm:

Step 1: input model parameters P, a, b, α, β, Cs,

Ch, Cu, Imax, λ, μ1, μ2, μ3, σ1, σ2, and σ3 Also, set
the value of z, the step size of s.
Step 2: set EAP∗ � −L, where L is a large positive
number. +is, -L is the initial guess of the optimum
expected average profit EAP.
Step 3: set s � 0.
Step 4: calculate D � α − sβ. Also, set green invest-
ment I� 0.
Step 5: solve equation (14) for τ with most recent
values of s and I. We can use bisectionmethod to solve
this equation taking starting interval as mentioned in
Property 1.
Step 6: use equations (20) and (22) to find I with most
recent values of s and τ.
Step 7: repeat steps 5 and 6 until τ and I become stable.
It converges very rapidly.
Step 8: calculate the expected average profit (EAP) by
equation (8).
If >EAP∗, reset EAP∗ �EAP, s∗ � s, τ∗ � τ, and
I∗ � I.

Step 9: s � s + z where z is an increment in s. For one
decimal place accuracy in s, the value of z can be taken
as 0.1.
Step 10: if s< α/β, go to step 4. Else next step.
Step 11: display/print the values of EAP∗, s∗,

τ∗, and I∗.
Step 12: stop.

In the above algorithm, steps 4 to 8 calculate the opti-
mum values of the decision variables τ, I and, EAP for most
recent value of s. Step 11 gives the optimum solution of the
developed model.
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5. Implementation of the Proposed Carbon Tax

Many countries have currently implemented a constant
carbon tax system that might be increased or decreased in
subsequent years.+e constant carbon tax component “a” in
this proposed model can be easily implemented according to
the existing carbon taxing system adopted by many coun-
tries. Every carbon emitter must pay this tax irrespective of
whether the emitter is a small firm or a large firm. +e
second tax component “b” (GE-based) would only be im-
posed on the large firms. +is component represents an
additional tax burden for these polluters since they make a
significant contribution to climate change. +is new carbon
tax ensures cleaner production since the firm will try to
reduce G by investing in green technology and waste re-
duction. Ideally, the tax rate “b” should be variant for dif-
ferent industry-based firms since the energy usage and
greenhouse gases (GHGs) released by a firm for producing
one unit of their product depends on the type of the in-
dustry. While estimating the tax rate “b” (in $) for the firms
belonging to a particular industry, we can consider the best
performer (with the least G) among these firms in the
previous year as the benchmark. It means that, if the gov-
ernment decides to impose an additional carbon tax of $x
per unit emission for the best performing firm with the least
G in the previous year, then “b” can be taken as $(x/G). It is
mandatory for every firm on which this additional tax is
applicable to disclose its annual production and emission
data to the regulatory body/government. +e second ex-
ample in the next section provides some ideas about how the
government can estimate the tax component “b.”

6. Numerical Examples

In this section, we present two numerical examples. +e
purpose of Example 1 is to validate the model by checking
the correctness of the algorithm provided in Section 4.
Example 2 demonstrates how the GE-based tax component
“b” can be estimated and the impact of the proposed GE-
based carbon tax on the firms’ optimal solutions.

Example 1. We consider five numerical problems by ran-
domly generated model parameters from a specified range
for each parameter using uniform distributions. Table 2
displays the ranges of the parameters and their generated
values. For the sake of simplicity, except λ, all generated
numbers are rounded to the nearest integers. +ese prob-
lems are solved by using the proposed algorithm, and the
results are displayed in Table 3. In Table 3, a “∗” indicates the
value at optimum.

Example 2. In this example, we consider the same five
problems as in Example 1 and assume that these problems
represent five firms belonging to the same industry sector.
+ey have the same carbon tax structure. To demonstrate the
estimation of tax component “b,” and the impact of the GE-
based carbon tax on the firms’ optimal solutions, we con-
sider two consecutive years. In the first year, all firms will pay
the carbon tax at a constant rate “a.” Each firm’s optimal

policy is to maximize its expected average profit (EAP) per
year. In the second year, the government will implement the
GE-based carbon tax to all the firms. At the beginning of the
second year, the government will announce the values of the
tax components “a” and “b” for the second year to all five
firms. Accordingly, the firms will adjust their optimal de-
cisions. We consider the first year’s constant carbon tax rate
as $20 per ton. Using the proposed algorithm, we find the
optimal solution of all five firms and presented in Table 4.

We can observe that the least value of the green indexG∗ is
0.01835 of Firm 1. In the second year, suppose the government
wants to impose an additional tax of $50 per ton on this best-
performing firm, if it maintains the same G∗. We set b G∗ � 50.
+is gives, b� 50/G∗ � 2724.79, which is rounded to 2725. +e
government announces the second year’s tax components as
a� 20 and b� 2725. Now, all the firms recalculate their optimal
solutions, presented in Table 5.

We observe that the green efficiency is improved in the
second year due to the imposition of GE-based carbon tax.

7. Environmental Benefits of GE-Based
Carbon Tax

In this section, we perform two types of analyses to justify
the proposed GE-based carbon tax’s environmental benefits.
First, we perform a comparative analysis between the GE-
based carbon tax and the equivalent constant carbon tax on
all five problems of Example 1. Here, the equivalent constant
carbon tax means the effective carbon tax per unit emission
of GE-based carbon tax at optimum, i.e., Ct � a + b × G∗.
Second, we consider Example 2 and compare the results
between the first year and the second year. Table 6 shows the
results of GE-based carbon tax and the equivalent constant
carbon tax of all five problems.

From these results, the following facts are observed in all
five problems.

At optimum, the average emission per unit time (EA
∗ )

is lesser for GE-based carbon tax compared to an
equivalent constant carbon tax.
At optimum, the green index (G∗) is lesser for GE-
based carbon tax compared to an equivalent constant
carbon tax.
At optimum, the green investment amount (I∗) is
higher for GE-based carbon tax compared to an
equivalent constant carbon tax.

In the second analysis, we calculate the percentage
changes of the G∗, EA

∗ , I∗ and EAP∗ due to the imposition
of the GE-based tax component in the second year (Example
2). +e results are presented in Table 7.

We can observe in Table 7 that, in the second year, there is a
massive percentage reduction in average emissions (column 3)
and significant improvement in green efficiency (column 2).
Also, there is a considerable increase in green investments
(column 4). +e percentage reduction in expected average
profit for each firm (except Firm 2) is significantly less. Due to
an insufficient green budget, Firm 2 could not achieve the
actual optimum solution. Without budget restriction, in the
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second year, Firm 2 will generate an optimum solution:
G∗ � 0.01252, EA

∗ � 3.3167, I∗ � 32307.59, and
EAP∗ � 3688.14.+erefore, Firm 2 will increase its profit in the
second year. We further observe in Tables 3 and 4 that, the

optimum selling prices (s∗) are the same in both the years,
indicating that no loss of demand after the imposition of GE-
based carbon tax. +ese analyses justify the environmental
benefits of the proposed GE-based carbon tax.

Table 2: Ranges of model parameters and generated parameter values.

Parameter Range
Numerical problems

1 2 3 4 5
A (20, 60) 33 21 50 27 35
B (20, 60) 27 46 41 47 52
α (800, 1000) 914 895 836 975 969
β (2, 10) 2 10 2 5 9
P (1000, 2000) 1641 1752 1065 1903 1962
Cs (80, 120) 88 94 90 113 91
Cu (15, 30) 29 28 18 22 21
Ch (1, 5) 3 2 3 3 1
λ (0.0001, 0.0003) 0.0027 0.0003 0.0013 0.0019 0.0008
Imax (8000, 15000) 11972 13402 10558 8367 14265
μ1 (30, 60) 46 33 49 42 30
μ2 (30, 60) 43 31 55 59 39
μ3 (30, 60) 58 42 59 47 38
σ21 (0, 6) 6 4 6 4 3
σ22 (0, 6) 5 3 6 6 2
σ23 (0, 6) 1 5 5 2 4

Table 3: Optimum solutions of numerical problems.

Example τ∗ (year) I∗ ($) T∗ (year) s∗ ($) EAP∗ ($) E∗A (ton) G∗ (ton/unit)

1 0.6401 3157.96 2.5042 244 88958.05 4.4748 0.01050
2 0.0163 13402.00& 5.7115 89 −3396.92 10.8133 2.1627
3 1.5274 6924.27 4.0871 219 76566.88 3.7073 0.00931
4 0.6224 4258.15 2.7869 110 34267.70 6.6331 0.01561
5 1.5932 11696.82 8.3356 66 14049.08 4.1478 0.01106
&Green investment fund is fully utilized. +e actual optimum green investment amount is $27554.66, which is not achieved due to the green budget
restriction.

Table 4: Optimum solutions for the first year.

First year
Firm a b s∗ I∗ E∗A G∗ EAP∗

1 20 0 244 2936.55 7.8173 0.01835 89036.12
2 20 0 89 0 117.8957 23.5791 −2212.83
3 20 0 219 6098.82 10.1011 0.02538 76746.94
4 20 0 110 4041.92 9.7194 0.02287 34330.47
5 20 0 66 10852.38 7.8176 0.02085 14137.32

Table 5: Optimum solutions for the second year.

Second year
Firm a b s∗ I∗ E∗A G EAP∗

1 20 2725 244 3360.96 2.2762 0.00628 88931.74
2 20 2725 89 13402.00∗∗ 3.254 0.65081 −14403.51
3 20 2725 219 7091.49 3.0226 0.00759 76592.39
4 20 2725 110 4698.21 3.0346 0.00714 34188.20
5 20 2725 66 12343.18 2.5478 0.00679 14026.40
∗∗Green budget is fully utilized. Insufficient green budget is the reason for a huge loss.
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8. Effects of the Green-Based Tax Component
“b” on the Optimum Solutions

In this section, we perform an analysis on the five problems
defined in Example 1 to observe the effects of the new tax
component “b” on the optimum values G∗, E∗A, and I∗. We
take the range of “b” as 10–100 and present the results
graphically in Figures 1–3. Figure 1 shows the changes in
optimum green efficiency (G∗) for changes in “b.” Figure 2
shows the changes in optimum average emission (E∗A) for the
changes in “b.” Figure 3 represents the changes in optimum
green investment (I∗) for the changes in “b.”

We observe the following properties from this analysis:

G∗ is strictly decreasing functions of “b.” +is result
indicates the better green efficiency for higher “b.”
EA
∗ is strictly decreasing functions of “b.” +is result

shows the lower emissions for higher “b.”
I∗ is an increasing function of “b.” +is result indicates
that the firm will invest more in green technologies if
“b” increases.

+ese observations further justify the positive environ-
mental benefits of this proposed GE-based carbon tax.

Table 6: Comparison of GE-based carbon tax and equivalent constant carbon tax.

Example Carbon tax type Carbon tax (Ct) ($) s∗ ($) I∗ ($) EAP∗ ($) E∗A (ton) G∗ (ton/unit)

1 GE-based a + b × G 244 3157.96 88958.05 4.4748 0.01050
Equivalent constant a + b × G∗ 244 3154.354 88958.05 4.5158 0.01060

2 GE-based a + b × G 63 27554.66 3984.42 12.6239 0.04764
Equivalent constant a + b × G∗ 89 0 −2588.98 117.8358 23.56717

3 GE-based a + b × G 219 6924.27 76566.88 3.7073 0.00931
Equivalent constant a + b × G∗ 219 6917.62 76566.89 3.7350 0.00939

4 GE-based a + b × G 110 4258.15 34267.70 6.6331 0.01561
Equivalent constant a + b × G∗ 110 4242.21 34267.77 6.8234 0.01606

5 GE-based a + b × G 66 11696.82 14049.08 4.1478 0.01106
Equivalent constant a + b × G∗ 66 11673.94 14049.11 4.21980 0.01125

Table 7: Percentage changes in the decision variables in the second year with respect to the first year.

Firm % reduction in G∗ % reduction in E∗A % increase in I∗ % reduction in EAP∗

1 65.78 70.88 14.45 0.12
2& 97.24 97.24 NA 550.91
3 70.09 70.08 16.28 0.20
4 68.78 68.78 16.24 0.41
5 67.43 67.41 13.74 0.78
&Firm 2’s results are quite different from other firms. +is happens due to insufficient green budget. Budget is far less than its optimum value.
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Figure 1: b versus G∗ graph. (a) Problem 1. (b) Problem 2. (c) Problem 3. (d) Problem 4. (e) Problem 5.
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9. Concluding Remarks

A carbon tax is a powerful way to combat carbon emissions.
Many countries have enacted a carbon tax to mitigate carbon
emissions.+is carbon tax is constant and can bemodified in
subsequent years. In the present study, we propose a novel
green efficiency-based carbon taxing policy. +is proposed
carbon tax has two tax components, a constant tax com-
ponent and a green efficiency-based tax component. +is
proposed carbon taxing policy is different from all existing
carbon policies. We also suggest how this new tax can be
implemented. A solution algorithm is provided. +e fol-
lowing are some insights on the proposed GE-based carbon
tax derived from this study.

+is carbon tax has a very significant positive effect on
the environment.
It has almost no effect on annual demand.
It has a less negative effect on the optimal profit.
However, in some situations, it can have a positive
impact on the optimal profit.

+e proposed carbon tax ensures cleaner production
and has better environmental benefits than the
equivalent constant carbon tax at optimum.
For fixed values of the selling price (s) and green in-
vestment (I), the profit function is concave in pro-
duction run-time (τ). +is property confirms the
existence of a unique optimum value of production
run-time for every set of values of selling price and
green investment amount.
For fixed values of the selling price (s) and pro-
duction run-time (τ), the profit function is concave
in green investment (I). +is property confirms the
existence of a unique optimum value of the green
investment for every set of selling price and pro-
duction run-time.

+e results of some related models can be derived as
special cases of this model. Some of the special cases are
mentioned below.

(a) A constant carbon tax model with tax rate “a” can be
obtained by substituting b� 0. +is gives, τ �

E A
∗

b
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Figure 2: b versus EA
∗ graph. (a) Problem 1. (b) Problem 2. (c) Problem 3. (d) Problem 4. (e) Problem 5.
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Figure 3: b versus I∗ graph. (a) Problem 1. (b) Problem 2. (c) Problem 3. (d) Problem 4. (e) Problem 5.
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(X4/X2)

􏽰
�

����������������������������������������������

(2(Cs + I + aμ1e− λI)D(s))/(P(P − D(s))(Ch + aμ3e− λI))

􏽱

,
by equation (14) and I∗ � (1/λ)ln(Y2/Y1).

(b) +e model with constant carbon tax “a” and
without green investment can be obtained by
substituting b� I� 0. In this case, τ ��������������������������������������

(2(Cs + aμ1)D(s))/(P(P − D(s))(Ch + aμ3))
􏽰

.
(c) +e model with constant demand rate D and

without carbon tax can be obtained by substituting
D(s)�D and a� b� I� 0. +is gives, τ ��������������������

(2CsD)/(P(P − D)Ch)
􏽰

, which agrees with the
corresponding basic EOQ formula with a finite re-
plenishment rate.

+e corresponding cap-and-trade policy model with
carbon price $a and annual carbon quota Q units can be
derived from this developed model by substituting b� 0 and
adding aQ to EAP. One can extend this model by incor-
porating imperfect products and variable production rates.
A hybrid carbon policy model would also be of great interest.
+is model can also be extended by incorporating inflations.
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