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Under the background of severe air pollution and energy shortage, electric vehicles (EVs) are promising vehicles to support green
supply chain and clean production. In the world, the renewal of EVs has become a general trend.*erefore, the concern about EVs
is a hot issue at present, but EVs have the characteristics of limited driving distance and long charging time. When the EVs are
used in logistics transportation, these characteristics have a significant impact on the vehicle routing problems. *erefore, based
on the research experience of traditional vehicle routing optimization, combining with the characteristics of EVs, this paper
presents an optimal problem of electric vehicle routes with time windows based on two charging methods and it also designs a
mathematical model which was caused by early and late arrival as the objective function to minimize the transportation cost,
vehicle use cost, power supply cost, and penalty cost. *e model is solved using an ant colony algorithm. Finally, the ant colony
algorithm is tested and analysed with an example.

1. Introduction

*e research on vehicle routing began in the 1950s, Dantzig
and Ramser firstly proposed the concept of vehicle routing
problem (VRP), which refers to the purpose of distributing
or collecting goods between distribution centres and a
certain number of customers with different needs through
the design of vehicle routing, and finally reached the goals,
such as the shortest distance, the least time, and the least cost
[1]. *e importance of transportation in the logistics system
distribution activities is undeniable, but in recent years, the
large use of fossil fuel vehicles has resulted in the rapid
consumption of oil resources and excessive emissions of
greenhouse gases, so considering the balance and optimi-
zation of monetary costs and the environmental problems of
fossil fuel vehicles, many vehicle routing problemmodels for
fuel or emissions have risen, such as the fuel consumption
rate of the VRP was considered by Xiao et al. [2], fuel
consumption and carbon emission of the VRP considered by
Zhang et al. [3], a time-dependent VRPmodel of minimizing
fuel consumption of Norouzi et al. [4], the green vehicle

routing problem (GVRP) model of Poonthalir and Nadar-
ajan [5], and the vehicle scheduling problem of minimizing
carbon emission of Wang et al. [6].

Because of the environmental protection characteristics
of EVs, in recent years, with the rapid growth of the market
share, EVs have been introduced into the market as personal
and commercial alternative energy vehicles. In 2018, the
number of electric vehicles worldwide exceeded 5.1 million,
an increase of 2 million from 2017, and the growth of new
vehicles almost doubled (IEA, 2019). In China, electric
vehicles are growing at the rate of more than 50% per year
(IEA, 2018). In 2018, the number of electric vehicles in China
ranked first in the world [7]. Compared with traditional fuel
vehicles, the main advantages of electric vehicles are zero
greenhouse gas emissions, high efficiency, and low operating
noise [8], which helps logistics companies get more and
more social and environmental customer support. And it
gets a green image [9]. Fernandez and Casals use sustainable
analysis and practical estimation methods that take into
account the life cycle carbon emissions of electric vehicles to
analyse the contribution of electric vehicles to reducing

Hindawi
Advances in Operations Research
Volume 2020, Article ID 5612872, 10 pages
https://doi.org/10.1155/2020/5612872

mailto:my15131881021@163.com
https://orcid.org/0000-0002-4425-4817
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5612872


greenhouse gas emissions [10, 11]. Wu et al. used the life
cycle assessment method to estimate that the total life cycle
greenhouse gas emission reduction potential of battery
electric vehicles will gradually reach 13.4% in 2020 [12]. In
addition to environmental benefits, EVs also have economic
benefits. Compared with traditional fossil fuel powered
vehicles, EVs consume 10% to 15% of the fuel cost of tra-
ditional vehicles at the same distance [13]. *erefore, the
focus on EVs has become a hot issue at present. However,
due to the characteristics of EVs such as low endurance
mileage and long charging time, it becomes a significant and
challenging task to study its VRP.

Electric vehicles refer to cars that use electric engines to
provide energy through their own chemical batteries. *e
electrical energy used by EVs can be converted into many
kinds of clean energy, which is the main force of environ-
mental protection vehicles in the future with a high energy
utilization rate and being clean and pollution-free. As a
distribution vehicle, electric vehicles need to be charged much
time for long-distance distribution, and the power replen-
ishment time is longer than the refueling time.*erefore, it is
necessary to consider the charging problems that may occur
in the charging process. Based on traditional fuel vehicle route
optimization, the introduction of the charging stations is the
primary issue of electric vehicle upgrading combining with
the characteristics of EVs. Electric distribution companies
apply some coordination methods to control the charging
load.*at can affect the charging duration. Yang et al. studied
the charging scheduling of electric vehicles on the highway
[14]. Dogan and Alci optimized the charging schedule of
electric vehicles considering the cost of battery degradation
[15]. Dogan et al. based on a heuristic algorithm for charge
and discharge coordination optimization [16]. Aravinthan
and Jewell proposed a two-step method for scheduling EV
charging, which limits the impact on EV charging on dis-
tribution assets [17].

At present, fast charging is the most common charging
strategy. Schucking et al. proposed five charging strategies and
believed that DC fast charging is essential [18]. In addition to
fast charging on the issue of charging strategy, battery
switching is also a relatively popular charging strategy. Adler
and Mirchandani used real-time highway data to find the
optimal battery exchange strategy [19]. Yang and Sun studied
the location routing problem of the battery switching station
of EVs with large capacity and optimized the routing plan and
the selection of battery switching stations [20]. Dai et al.
regarded the battery exchange strategy of EVs as the back-
ground and it provided reference for the determination of
decision variables such as the number of backup batteries in
AC power station and the charging selection of EVs [21].
Margaritis et al. analysed the advantages and disadvantages of
battery exchange strategy to the government, users, and
enterprises based on the EU [22].*is study combines the two
charging strategies of fast charging and battery switching.*e
fast charging time is related to the remaining power, fixed
battery replacement time, and the power replenishment
method with less time is selected.

In the large-scale application of EVs in modern logistics,
in addition to considering the plan to charge or replace

batteries on the way, the delivery time is also extremely
important for logistics companies, so we need to consider
some important practical factors, such as customer time
windows. In the actual distribution activities, more and
more logistics enterprises begin to pay attention to the
timeliness of package delivery. For customers, “punctuality”
is one of the important factors affecting customer experi-
ence, so the vehicle routing problem with time windows
(VRPTW) has also become an important part of the re-
search. By adding time windows constraints to the basic VRP
model and Solomon built VRPTW model, in which time
window is a hard time window that must be observed [23].
Qureshi further expanded the concept of the hard time
window, extended the problem to the category of the soft
time windows, and determined the strictness of time win-
dows by setting penalty function [24].*e soft time windows
problem is widely used. Goeke considered the problem
between time windows and EVs is pickup and delivery [25].
Keskin and Catay studied partial charging strategies for
electric vehicles with time windows [26]. Desaulniers et al.
studied the effective route optimization of battery electric
commercial vehicle fleets, and they considered four variants
of the route problem of electric vehicle with time windows
[9]. Goeke studied the pickup and delivery of EVs with time
windows (PDPTW-EV). In the PDPTW-EV, access location
is limited by time windows [25]. Many scholars introduced
charging stations and time windows for discussion [27, 28].
*is study combines the two hot charging strategies of fast
charging and battery switching. *e fast charging time is
related to the remaining power, fixed the switching time, and
the power replenishment method with less time is selected.
*is paper not only considers the problem of charging
stations, but also uses the broken line time windows to limit
the distribution time based on the soft time windows.

In summary, compared with other similar studies, the
main contributions of this paper are as follows: (1) in order
to calculate the cost of logistics enterprises more accurately
and save cost, this paper considers the cost of transportation
as much as possible, that is to say, fixed cost, transportation
cost, charging cost, and time penalty cost. And it establishes
a mixed-integer linear programming model (MILP) with the
goal of minimizing the total cost; (2) in order to save
charging time, two commonly used charging methods are
considered, and one with shorter charging time is selected;
and (3) considering the customer’s time tolerance, the
broken line soft time windows is adopted.

*e rest of this paper is organized as follows: Section 2
describes the problem and identifications of the main as-
sumptions. In Section 3, the MILP model is established and
the description of the method of solving the model is
provided. In Section 4, the test results of an example are
given and the sensitivity analysis is carried out. Finally, the
paper summarizes in Section 5.

2. Problem Description

*is problem can be abstracted as that an enterprise uses
EVs to provide distribution services for n customers with
time windows after the distribution centre is fully charged.
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Each customer’s demand, service duration, good service
time windows, and customer tolerance level are needed to be
known. Finally, reasonable planning of the vehicle distri-
bution route is necessary so that the total cost of distribution
is small.

*e soft time windows can relax the constraints of time
windows, optimize resource allocation, and reduce energy
consumption and road congestion, so the time windows
studied in this paper mainly are soft time windows. As
shown in Figure 1, in the traditional soft time windows,
whether the vehicle arrives before or after l, the customer is
allowed to serve, but they are required to pay the corre-
sponding penalty fee, which is generally a simple linear
relationship with the degree of time deviation. However, for
the deviation of the best service time windows, customers
have the difference between tolerance and intolerance.
*erefore, based on the traditional soft time windows,
considering the tolerance range of customers, this paper
proposes a broken line time window.

According to the customer tolerance level (z) and service
duration (tf), the tolerance time window can be obtained on
the basis of the optimal time window [e′, l′], where
e′ � e − z × tf, l′ � l + z × tf. If the vehicle provides ser-
vices in the best time window [e, l], there will be no penalty
cost to be paid. If the vehicle provides services in the interval
[e′, e][e′, e] or [l, l′], there will be only less penalty cost to be
paid. If the vehicle starts service earlier than e′ or later than
l′, there will be more penalty cost to be paid. Compared with
the traditional soft time windows, the broken line soft time
windows take the actual feelings of customers into con-
sideration, which will be conducive to better coordination
between enterprises and customers, reasonable allocation,
and optimization of resources.

In view of the above considerations, the problems and
basic assumptions to be solved are as follows: (1) each vehicle
can meet the needs of multiple customer points, and each
customer point can only be served by one vehicle; after the
completion of the distribution service, the vehicle must drive
back to the distribution centre; (2) all vehicles are the same
type, and the total transportation volume shall not exceed the
capacity limit of EVs; (3) each customer’s location coordi-
nates, demand quantity, and service duration are known, and
there are optimal service time windows and tolerance time
windows; (4) the time window penalty coefficient of each
customer node is the same; (5) EVs can only be charged or
their battery can be replaced in the distribution centre or
power station; (6) each customer must be visited and can only
be visited once; (7) the road is smooth, without considering
traffic congestion and other special situations; (8) it is as-
sumed that the transportation cost generated by the vehicle is
linearly related to the route length, and the use cost of each
vehicle is fixed; and (9) the objective function of this problem
is to minimize the total distribution cost.

3. Materials and Method

In this part, according to the electric vehicle routing problem
with time windows (EVRPTW), we establish a MILP model
and determine the constraints.

3.1. Defining Variables. *e parameters and decision vari-
ables used to describe the MILP model are shown in the
following:

N: set of all nodes n in networks.
V: set of all nodes v in networks.
C: set of all nodes c in networks.
D: network D � N∪C∪ o consisting of sets of nodes,
D � 0, 1, 2, . . . , |N| + |C|{ }.
n: set of customer nodes, where n ∈ N.
v: set of EV nodes, where v ∈ V.
c: set of charging station nodes, where c ∈ C.
o: set of distribution centre nodes.
C0: fixed cost per vehicle.
C1: electric vehicle unit distance transportation cost.
EC: total electricity supplementary cost.
C2: charging cost per unit time.
C3: single battery replacement cost.
i, j: index of nodes, i � 0, 1, 2, . . . , n.
dij: distance from the node i to the node j, i, j ∈ D.
qn: demand of the customer node n, and n ∈ N.
Q: rated load capacity of electric vehicles.
P: battery capacity of electric vehicles.
g: charge coefficient.
P1

dv: the residual power of EVs when v reaches the node
D.
P2

dv: residual electricity of the electric vehicle V leaving
node D.
p: battery capacity of electric vehicles.
h: power consumption coefficient.
g: charge coefficient.
tfi: if i represents the customer point, tfi represents
the service time of electric vehicle at the node i; if i
represents the charging stations, then tfi represents the
electric vehicle’s power replenishment time, i ∈ N∪M

tci: single battery change time, and i ∈ C.
twi: waiting time of electric vehicles at the customer
node i.
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Figure 1: Penalty cost function under traditional soft time win-
dows and polygonal line soft time windows.
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tv
i : the time point when the vehicle v arrives at the
customer node i, where tv

0 � 0
t′vi : the start time of the v-car service customer node i.
tij: time of electric vehicles from i to j.
speed: driving speed of electric vehicles.
ei: the lower limit of the best service time windows of
the customer node i.
li: the upper limit of the best service window of the
customer node i.
ei
′: the lower limit of tolerance time windows of the
customer node i.
li′: upper limits of tolerance time windows of the cus-
tomer node i.
ρm: unit time penalty cost of vehicles violating the time
windows, m� (1, 2, 3, 4).
xijv: if the vehicle v is from i to j, then xijv � 1, oth-
erwise xijv � 0.
xov: if the vehicle v returns to the distribution centre
after delivering a customer group, then xov � 1, oth-
erwise xov � 0.
yiv: the task of the customer node i is completed by the
vehicle v, then yiv � 1, otherwise yiv � 0.

3.2. Model and Method. *e objective function is to mini-
mize the comprehensive cost, including transportation cost,
vehicle use cost, electricity replenishment cost, and time
window penalty cost. *e formula of the MILP model is as
follows:

Fmin � C0 􏽘
v∈V

xov + C1 􏽘
v∈V

􏽘
i∈D

􏽘
j∈D,i≠j

xijvdij

+ 􏽘
v∈V

􏽘
i∈C

ECi tfi( 􏼁 + 􏽘
v∈V

􏽘
i∈N

pui t
v
i( 􏼁.

(1)

Among them,

ECi tfi( 􏼁 �
C2 × tfi, tfi ≤ tci,

C3, tfi > tci,
􏼨 (2)

pui t
′v
i􏼒 􏼓 �

ρ1 ei
′ − t′vi􏼐 􏼑 + ρ2 ei − ei

′( 􏼁, t′vi ≤ ei
′,

ρ2 ei − t′vi􏼐 􏼑,

0,

ρ3 t′vi − li􏼐 􏼑,

ρ3 li′ − li( 􏼁 + ρ4 t′vi − li′􏼐 􏼑,

ei
′ < t′vi ≤ ei,

ei < t′vi ≤ li,

li < t′vi ≤ li′ ,

li < t′vi ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

subject to

􏽘
i∈D,k≠i

xikv � 􏽘
j∈D,k≠j

xkjv, k ∈ D,
(4)

􏽘
v∈V

ynv � 1, n ∈ N, (5)

􏽘
n∈N

ynvqn ≤Q, (6)

􏽘
v∈V

􏽘
i∈D,i≠0

xoiv ≤ |V|, (7)

􏽘
i∈N

􏽘
j∈D,i≠j

xijv ≤ |N|, (8)

t0″ � 0, (9)

tij �
dij

speed
, i, j ∈ D, (10)

tfi � min tci,
P − p1

iv

g
􏼠 􏼡􏼢 􏼣, (11)

t
v
i � t
′v
i + tfi + twi , i ∈ N, (12)

t
′v
i ≥ t

v
i , i ∈ N, v ∈ V, (13)

tj
′ � 􏽘

i∈D
􏽘

j∈D,i≠j
xijv ti
″ + tij􏼐 􏼑, (14)

p
1
iv � p

2
iv , i ∈ N, (15)

p
1
ov � 100, (16)

p
1
jv � p

2
iv − xijv ×

dij

h
, i, j ∈ D, i≠ j, v ∈ V, (17)

p
1
iv ≥ 0 , i ∈ D, v ∈ V, (18)

xijv, xov, yiv ∈ 0, 1{ }, i, j, o ∈ D, v ∈ V. (19)

In the model given above, Constraint (4) ensures that
the vehicle starts from the distribution centre returns to
the distribution centre and focuses on distribution centre.
Constraint (5) ensures that each customer is served only
once by one vehicle. Constraint (6) is a restraint on vehicle
loading. Constraint (7) indicates that the number of EVs
serving the customer is less than or equal to the total
number of vehicles owned by the distribution centre.
Constraint (8) requires that the number of customers
served by each vehicle is less than or equal to the total
number of customers. Constraint (9) requires that when
the electric vehicle starts from the distribution centre, the
time is 0. Constraint (10) indicates that the travel time of
electric vehicles from the point i to the point j is the ratio
of the distance between two points and the travel speed.
Constraint (11) indicates that when the electric vehicle
passes through the charging stations, the charge replen-
ishment time is the minimum of the battery replacement
time and fast charging time. Constraint (12) indicates that
the time the electric vehicle leaves the customer node i is
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the sum of arriving at the customer node, waiting time at
the customer node i, and servicing time. Constraint (13)
shows the relationship between the starting service time
and the arrival time of vehicles at the customer point.
Constraint (14) indicates that the time the electric vehicle
arrives at the node j is the accumulation of the previous
time. Constraint (15) means that neither power con-
sumption nor power replenishment occurs at the cus-
tomer node i. Constraint (16) indicates that when the
electric vehicle starts from the distribution centre, the
state of charge is 100. Constraint (17) indicates that the
remaining power to node j is equal to the remaining power
to leave node i minus the power consumed on the way.
Constraint (18) indicates that the state of charge of electric
vehicles is nonnegative at any position. Constraint (19)
indicates that the decision variable is constrained to 0-1.

In this paper, the ant colony algorithm is used to solve
the approximate optimal solution of the NP hard problem.
*e ant colony algorithm has the characteristics of dis-
tributed computing, positive information feedback, and
heuristic search. In essence, it is a heuristic global opti-
mization algorithm in the evolutionary algorithm. *e
algorithm imitates the social behaviour of ants in order to
find the shortest route from nest to food source. In the ant
colony algorithm, each ant performs four basic activities
in the process of route construction: (1) select the next
customer based on the probable function of the distance
from the current location to the customer and the route
strength on the arc; (2) save the taboo list of the customers
in the current route; (3) update the residual capacity of the
vehicle; and (4) update the track intensity on the access
arc, and use the method of local search to improve the
quality of the solution. Finally, the taboo lists are deleted,
and a new iteration is started. When the ant colony al-
gorithm solves the MILP model, the specific steps are as
follows:

Step 1: importing data and setting basic parameters.

Step 2: calculating the distance between customer
nodes and the cost and time of distance between
customer points.
Step 3: initializing and iterating in order to find the best
route.

Step 4: terminating the algorithm and reporting the best
solution.

Figure 2 shows the traversing process of a single ant in
the iterative search for the best route.

*e meanings of the mathematical symbols involved in
Figure 2 are explained as follows:

Current: the current location of ants.
Allowed(k)􏼈􏼉 : the collection of client nodes that have
not been accessed, initially including all client nodes.
Next[i]􏼈􏼉: the set of optional customer nodes when the
electric vehicle is in i-node.
Pnext[i]􏼈􏼉: the collection of optional customer nodes for
EV charging closest to i-node.

4. Calculation Experiment and Cost Analysis

In order to verify the proposed MILP model, the calculation
experiments are carried out based on the known benchmark
instances, and the ant colony algorithm is used to solve the
model.

4.1. Test Examples. *e experimental data are from Solo-
mon’s VRPTW standard problem set, and the data number
is R101 [29], which is characterized by uniform distribution
of customer points and narrow time windows. In this case, a
vehicle is generally only responsible for the distribution of
several customer points, and the vehicle route cost is greatly
affected by the time windows, so the data selection of the case
is reasonable. In order to draw a clear road map, this paper
only selects the first 26 data, including 1 distribution centre
and 25 customer nodes.1 is the distribution centre, 2–26 is
the customer node, 27–31 is the charging stations node. *e
specific parameters of the example are shown in Table 1, and
the node information is shown in Table 2.

In this paper, according to the actual situation, we made
assumptions about the required data in Table 1, and for this
part of the program design, we reserved a data change area,
which is malleable.

*e MILP model is solved by MATLAB programming.
In order to reduce the influence of random factors as much
as possible, this paper repeatedly tests the example 10 times
to get the total cost optimal solution (C), the number of
vehicles (N), route length (L), and penalty cost (P) when the
optimal solution is reached.

As can be seen from Table 3, the optimal solution of this
example is 7283.08, including the route length when the
optimal solution is reached at 270.61, and Table 4 shows that
the optimal allocation scheme includes 4 routes; the route
map is shown in Figure 3.

4.2. Cost Analysis. Based on the calculation experiment of
the Solomon benchmark example, the sensitivity analysis of
the cost affecting the electric vehicle route planning is carried
out.

4.2.1. Use Cost and Transportation Cost. First, adjust the use
cost from 1000 for each vehicle to 5000 for each vehicle, keep
the other parameters unchanged, repeat the test for 10 times,
and see Table 5 for the results when the optimal solution is
reached.

It can be seen from Table 5 that after adjusting the use
cost of vehicles from 1000 to 5000, after 10 times of oper-
ation, compared with Table 3, the number of vehicles is
reduced from 4 to 2, which is 50%. It can be seen that the
higher the use cost of vehicles is, the smaller the number of
vehicles used is.When the use cost of vehicles is much higher
than other costs, the vehicle route distribution scheme with
the minimum number of vehicles will be preferred. At the
same time, the route length is only increased by 3% com-
pared with the result in Table 3, while the time window
penalty is increased by 52%. *is is understandable, because
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the proportion of vehicle use cost in the objective function
increases, so the algorithm will tend to find the solution with
the minimum vehicle use.

Keep the cost of using vehicles at 5000 per vehicle, and
adjust the unit transportation cost from 2 to 10, while the
penalty factor of time windows remains unchanged. Run the
program 10 times, and see Table 6 for relevant results when
the optimal solution is reached.

It can be seen from Table 6 that after adjusting vehicle
use cost and unit transportation cost at the same time, the
number of vehicles obtained is significantly reduced com-
pared with Table 3. It can be seen that when vehicle
transportation cost and use cost are much higher than other
costs, the route distribution scheme with the least number of
vehicles will be preferred. *e route length in Table 6 is
similar to that in Table 3, but the penalty cost of time
windows is increased by 53%. By increasing the factors of
vehicle use cost and unit freight in the objective function, the
proportion of time window penalty cost is greatly reduced.
*erefore, the length of the route and the number of vehicles
are given priority in the result, so the time window penalty is
greatly increased. *is shows the effectiveness of the algo-
rithm again in this paper.
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Figure 2: Single ant traversal process to find the best route during iterative search.

Table 1: Temperature and wildlife count in the three areas covered
by the test examples.

Name Parameter
Maximum loading capacity of vehicles 80 pieces
Use cost of vehicles 1000 RMB/vehicle
Unit transportation cost 2 RMB/km
Speed of vehicles 40 km/h
Full charge at the charging stations 60 kWh
Power consumption per unit distance 1 kWh
Cost per battery replacement 30 RMB
Battery replacement time once 31min
Service time per customer 10min
Penalty coefficient of time windows (1, 0.5, 1.5, 2)
*e customer tolerance level 0.5
Maximum number of iterations 200
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4.2.2. Time Window Penalty Cost. Adjust the penalty co-
efficient of the time windows from ρ1 � 1, ρ2 � 0.5, ρ3 �

1.5, and ρ4 � 2 to ρ1 � 5, ρ2 � 2.5, ρ3 � 7.5, and ρ4 � 10,
keep other parameters unchanged, repeat the test 10 times,
and see Table 7 for the results when the optimal solution is
reached.

After the penalty cost coefficient increases 5 times, the
calculation results are shown in Table 7. *e route length is
reduced by 0.3% compared with the result in Table 3, but the
number of optimal vehicles has increased from 4 to 7,

Table 2: Node information.

Number X-
coordinate

Y-
coordinate Demand Ready

time
Due
date

1 35 35 0 0 230
2 41 49 10 161 171
3 35 17 7 50 60
4 55 45 13 116 126
5 55 20 19 149 159
6 15 30 26 34 44
7 25 30 3 99 109
8 20 50 5 81 91
9 10 43 9 95 105
10 55 60 16 97 107
11 30 60 16 124 134
12 20 65 12 67 77
13 50 35 19 63 73
14 30 25 23 159 169
15 15 10 20 32 42
16 30 5 8 16 71
17 10 20 19 75 85
18 5 30 2 157 167
19 20 40 12 87 97
20 15 60 17 76 86
21 45 65 9 126 136
22 45 20 11 62 72
23 45 10 18 97 107
24 55 5 29 68 78
25 65 35 3 153 163
26 65 20 6 172 182
27 10 32 0 0 230
28 27 47 0 0 230
29 40 30 0 0 230
30 50 50 0 0 230
31 60 10 0 0 230

Table 3: Related results of the test examples.

Operation times C N L P

1 7404.18 4 272.08 2372.11
2 7613.71 4 278.04 2544.15
3 7764.36 3 262.93 3814.29
4 7586.94 4 280.75 2669.48
5 7283.08 4 270.61 2238.96
6 7567.74 3 258.58 3629.46
7 7590.47 3 269.97 3617.05
8 7491.76 4 269.34 2314.07
9 7603.67 3 271.03 3724.88
10 7466.96 3 263.06 3578.25
Average 7537.29 3.5 269.64 3050.27

Table 4: Sequence of routes when the test examples reaches the
optimal solution.

Vehicle Route number
1 1–14–22–23–24–27–9–1
2 1–7–6–18–17–15–16–28–19–20–1
3 1–3–5–26–25–4–13–28–8–1
4 1–2–21–10–11–12–1
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Figure 3: Corresponding route trajectory when the example
reaches the optimal solution.

Table 5: Impact of adjusting use cost on results.

Operation times N L P

1 2 281.25 6036.13
2 2 275.01 6646.81
3 2 268.50 6809.43
4 2 281.49 6021.61
5 2 280.76 6722.07
6 2 268.62 6450.82
7 2 272.84 6257.53
8 2 274.15 5855.41
9 2 285.66 6344.63
10 2 280.63 6025.55
Average 2 276.89 6317.00

Table 6: Impact of adjusting use cost and unit transportation cost
on results.

Operation times N L P

1 2 281.25 6524.18
2 2 275.01 6646.81
3 2 272.41 6992.54
4 2 281.49 6021.61
5 2 281.23 6679.20
6 2 268.62 6593.43
7 2 272.84 6257.53
8 2 274.15 6323.09
9 2 285.38 6344.63
10 2 280.63 6025.55
Average 2 277.30 6440.86
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indicated an increase of 75%, and we can see that the
number of vehicles has increased significantly. *is is
understandable, for the change of the penalty cost coeffi-
cient increases the penalty cost in the objective function, so
the algorithm will tend to find more solutions for vehicles
to serve customers. *e increase in the number of vehicles
will inevitably lead to a decrease in the average driving
route length, which proves the effectiveness of the algo-
rithm again. *erefore, the higher the cost of fines is, the
more vehicles are required. *is has led logistics companies
to prepare more vehicles under strict time window con-
ditions, making the customer’s total demand unchanged or
even increased.

4.2.3. Electricity Replenishment Cost. *e battery capacity is
60 kWh, the charging time needs 60min, and the power
change time is 31min. *e shortest power supply mode is
selected. *erefore, when the supplementary power is not
more than half, quick charging is preferred. Otherwise,
choose the battery replacement strategy. *e charging cost
per unit time is 1 RMB/min, and the cost of single battery
replacement is 30 RMB. Now, the cost of power supply is
increasing. *e charging cost per unit time is 50 RMB/min,
and the cost of single battery replacement is 1500 RMB. *e
results are shown in Table 8, and the vehicle route, when the
optimal solution is reached, is shown in Figure 4.

It can be seen from Table 8 that after the unit charge cost
is adjusted from 1 to 50 and the single battery change cost is
adjusted from 30 to 1500, after ten runs, compared with
Table 3, the number of vehicles increased from 4 to 5 ve-
hicles, indicated an increase of 25%. At the same time, it can
be seen that the number of charging stations passed in
Figure 3 is 3; however, the number of charging stations
passed in Figure 4 is 2. Increased costs have drived com-
panies to choose more vehicles to avoid charging. In ad-
dition, compared with Table 3, the route length is reduced by
0.6%, together with the penalty cost is reduced by 10.3%.
And the increase in the number of vehicles serving cus-
tomers leads to a reduction in the possibility of reducing
time, penalties, and costs. *is proves the effectiveness of the
algorithm. *erefore, when the charging facilities are not
perfect, together with the power replenishment cost is high,
the logistics companies tend to use more vehicles to avoid
charging as much as possible.

5. Conclusions

At present, most of the literature studies use a charging
strategy, and the customer tolerance is not considered while
studying the customer time windows. In this paper, the
charging strategy of combining two charging ways is
adopted, the broken line soft time windows is used con-
sidering the customer tolerance, and the MILP model of the
EVRPTW is finally established. And through the calculation
experiment of the Solomon benchmark example, the cost of
affecting the route optimization of electric vehicle is ana-
lysed, the availability as well as effectiveness of data and
algorithm are proved, and the management opinions on the
practical application of MILP model are put forward.

(1) *e higher the use cost and freight of vehicles are, the
less the number of vehicles used. When the use cost
and freight of vehicles are much higher than other
costs, the vehicle route distribution scheme with the
least number of vehicles is preferred.

(2) *e higher the penalty cost of time windows is, the
higher the number of vehicles used for vehicle dis-
tribution is. In the case of strict time windows, lo-
gistics companies need to prepare more vehicles than
the total demand of customers.

Table 7: Impact of adjusting time window penalty costs on results.

Operation times N L
1 8 279.77
2 7 234.70
3 7 291.22
4 7 245.15
5 6 284.25
6 6 271.80
7 8 265.79
8 6 259.40
9 7 289.76
10 7 267.66
Average 6.9 268.95

Table 8: Impact of adjusted electricity supplement costs on results.

Operation times N L P

1 4 284.15 3492.10
2 5 273.77 2099.19
3 5 272.84 2372.20
4 5 268.24 2601.64
5 5 244.32 2244.60
6 5 251.66 2644.77
7 4 271.03 3498.75
8 5 266.05 2281.85
9 4 281.59 3563.48
10 5 265.55 2552.16
Average 4.7 267.92 2735.07
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Figure 4: Vehicle route at high electricity replenishment cost.
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(3) Logistics companies tend to use more EVs to avoid
charging as much as possible when charging facilities
are not perfect and the cost of power supply is high.

*e model can help the logistics enterprises provide
some suggestions for the route optimization, help to pro-
mote the application of EVs in the field of logistics, and
improve energy efficiency, energy conservation, and emis-
sion reduction. *e proposed MILP model is helpful to
reduce the logistics cost. However, the traditional short-
comings of VRP still exist in the EVRPTW model. For
example, it is still a NP-hard, and it is difficult to solve large-
scale problems. *e focus of future research may be to
developing more effective heuristic algorithm to solve large-
scale problems, consider the real-time changes of traffic
conditions, and expand the direction of the dynamic vehicle
route.
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