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The electrical conductivity of metal films is markedly
influenced by the grain structure of the material
used.! =7

In the present paper, an electron grain-boundary
scattering function similar to the one obtained by
Mayadas and Shatzkes”’8 is derived in terms of
Cottey’s electron mean free path model and
method.’

The grain are assumed to have equal diameters D
separated by grain boundaries g which are assumed to
be perpendicular to the film planes and markedly
contribute to electron scattering (Figure 1). If an
electric field is applied, the electrons approach the
grain boundaries at angle ¢ = (7/2)— 6 (where
0 < 6 < ). The coefficient of electron transmission
through the grain boundary is7,and 0 <r < 1. If no
electrons are passing through the grain boundary,
then r = 0. If all electrons cross the grain boundary,
then 7 = 1. The probability of electrons travelling
through » grain boundaries is P and decreases as the
number of grain boundaries increases.

Hence

P=r", (1)

It is assumed (after Cottey) that P varies propor-

tionally to the travelling distance /

P
—dP=—14dl
0

(2

FIGURE 1

Model of the grain structure.
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where Ap is the mean free path associated with the
influence of the conduction electrons on the grain
boundaries.

After integration of Eq. (2) and considering that
P, =1 we obtain

P=exp(—i/\p) 3)
where / = nD/sinf. Combining Eq. (3) and Eq. (1)
gives

Ap(6) = )

sinf1n(1/r)

If grain boundary scattering and background scatter-
ing are assumed independent, then the mean free path
for the resultant scattering becomes

1 1 1
—= s)
AB) N Ap(9)
where Ao is the background mean free path.
The current density is given by®
J=e[Vif1(8:D)d’p (6)

where e is the electron charge, Vy denotes the x-

component of electron velocity, f; stands for the
deviation from the equilibrium function of Fermi
distribution.

Thus the formula for the electrical conductivity of
the film becomes®

™
J 2ne’Pg?
E n

o= sin®0 \(0)d6 @)
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where pr is the Fermi momentum of the electron,
and 7 is Planck’s constant.
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Combining Eq. (5) and Eq. (7) and considering
Eq. (4) we obtain
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The integration of Eq. (8) gives
3
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The grain boundary resistivity pg, i.e. the resist-
ivity of an infinitely thick polycrystalline film, is
given by

Pg 1
L (12)
po F()

F(V)‘
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FIGURE 2 F(v) versus b curves (plotted using Eq. (9) and
Eq. (10)).
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FIGURE 3  pg/p, versus D/\, curves (plotted using Eq.
9), Eq. (10) and Eq. (11) for = 0.1, 0.2 and 0.5 and
Eq. (13) for R = 0.1, 0.3 and 0.5.

where p, is the bulk resistivity, and F(v) denotes the
function expressed in Eq. (8). From Figure 2 it is
evident that if v - oo then F(¥) > 1, and if » > O, then
F(v) - 0. Considering Eqgs. (12), (9), (10) and (11),
the pg/po versus D/Ao curves were plotted (Figure 3)
for r=0.1, 0.2 and 0.5. It follows that:

1) Resistivity pg is significantly higher than po
when D <\,.

2) If D> X, then pg approaches po.

3) Resistivity pg depends on the coefficient 7, and
decreases as r increases.

Functions F; (v) and F, () are similar to the
function G(a)"*®

3 1
G(a)=1—5a+3a2—3a3ln(1+&) (13)

where a = \gR/D(1—R) (R is the grain boundary
electron reflection coefficient). If R = 0 then pg = po;
if R~ 1, then pg > °.

Comparing Egs. (9), (10) and (13) gives two
alternative expressions: v = 0.62/a or R/(1—-R) =
0.62In(1/r). If, for example, » = 0.2, then R = 0.5, and
if r = 0.5, then R = 0.3. This is evident in Figure 3
(either of the full lines represents both our results and
the Mayadas—Shatzkes functions).

Eq. (12) is true for polycrystalline thick films
alone because the resistivity of thin films is addi-
tionally influenced by the external size effect.’**>'°
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The grain diameter dependence of resistivity for Al
films was studied experimentally, and the results
obtained are reported by Dobierzewska-Mozrzymas

. P. Wissmann, Thin Solid Films, 5,329 (1970).
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Films, 43, 267 (1977).

S w

. 5. P. G. Wassilev, Bulg. J. Phys., 3, 68 (1976).
and Warkusz. 6. R. A. Brown, J. Phys. F.: Metal Phys., 7, 1477 (1977).
7. A.F.Mayadas and M. Shatzkes, Phys. Rev. B, 1, 1382
REFERENCES (1970).
1. P. V. Andrews, M. B. West and C. R. Robeson, Phil. Mag., 8. A.F. Mayadas, M. Shatzkes and J. F. Janak, Appl. Phys.
19, 887 (1969). 9 ﬁetf{' éﬁii‘is ;}3: .99351141 Films, 1,297 (1967)
2. 3'91;2’)‘.“”“‘ and V. P. Duggal, Thin Solid Films, 9, 313 10. F. Warkusz, Electrocom. Sci, and Tech. (1978), in press.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



