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We propose a high-temperature-operation (HTOT) SOI MOSFET and show preliminary simulation results of its characteristics.
It is demonstrated that HTOT SOI MOSFET operates safely at 700 K with no thermal instability because of its expanded effective
bandgap. It is shown that its threshold voltage is higher than that of the conventional SOI MOSFET because its local thin Si
regions offer an expanded effective band gap. It is shown that HTOT SOI MOSFET with 1-nm-thick local-thin Si regions is almost
insensitive to temperature for T' < 700 K (427 C). This confirms that HTOT SOI MOSFET is a promising device for future high-

temperature applications.

1. Introduction

The long-term goal in integrated circuits is to lower the di-
mensionality of MOS transistors in order to increase the
function-density and also the speed of extremely large-scale
silicon-integrated circuits [1]. The necessity of the silicon-
on-insulator (SOI) MOSFET is clear, given its merits of
high-speed operation and low-power operation with fewer
short-channel effects [2]. However, its off-leakage current
is significant, even in thin SOI MOSFETs in the sub-100-
nm regime [3]. The author recently proposed the tunneling
barrier junction (TBJ) SOI MOSFET that offers suppressed
off-leakage current [4, 5]. It has been shown that the TBJ
SOI MOSFET suffers from low drive current if used at low
temperatures as intended [6].

It has been demonstrated, however, that the thin SOI
MOSFET is a promising device for applications that work
at 300 C [1]. Its off-leakage current is still a serious problem
and prevents its use at higher temperatures. When analyzing
high-temperature-operation, it is anticipated that we do not
need full quantum-mechanical simulations even for a thin
SOI MOSFET because the influence of various carrier scat-
tering events on the transport in the channel region is crucial;
so-called thermalization is dominant in the Si material.

This paper applies the semiclassical transport model to
assess the feasibility of SOI MOSFET in achieving high-
temperature operation. This paper introduces the High-
Temperature-Operation Tolerant (HTOT) SOI MOSFET
and shows preliminary simulation results of its characteris-
tics. A commercial 2D device simulator [7] is used to sim-
ulate the drain current characteristics throughout the study.

2. Device Structure and Simulations

A schematic of HTOT SOI MOSFET is shown in Figure 1(a).
The device has an #"-Si gate, a thin n-type body, two thin
p-type bodies, and two local-thin Si regions; it is assumed
that the top SOI layer surface has (001) orientation. The
gate oxide layer is 5-nm thick, buried oxide layer is 100-
nm thick, thin n-type Si body and thin p-type Si body are
10-nm thick, and two local-thin Si regions are 1-nm or
2-nm thick; the local-thin Si regions are 2-nm long. n*-
Si source and drain diffusion regions are 10-nm thick and
their doping concentrations are 1 X 10°” cm~3; the junction
is assumed to be abrupt for simplicity. P-type body has a
doping concentration of 3 x 10'7 cm~3 and n-type body has
a doping concentration of 1 X 10" cm~>. Gate length (L)
is 100 nm (or 60 nm) and gate width (W) is 1 ym; n-type Si



region is typically 10 nm long and p-type Si region is typically
40 nm long (20nm long in some cases); this dimension is
selected to suppress the short-channel effect. Since the Si
layer is very thin in the two local-thin regions, the energy
levels in these regions are distinctly quantized. Schematic
band structure at V; = 0V and V, = Vp, is shown in
Figure 1(b), and the effective bandgap energy (E{) of the
local-thin Si regions is larger than the nominal bandgap
energy of bulk Si (Eg); its theoretical expression is given as

(8]
EG = Em — Ep, (1)

where E,; is the ground-state level energy of confined ele-
ctrons in the conduction band and E, is the ground-
state level energy of confined holes in the valence band.
In calculating Ef, the temperature dependence of intrinsic
bandgap energy (Eg(T)) of Si is taken into account [9].

When the confinement is along the z-axis (normal to
(001) surface), the ground-state energy level of 2-fold X-
valleys (E,) in the local-thin Si body is given by
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where m. 14 s the effective mass of electrons for the 2-fold
X-valley (= mymy = 0.92my) and fsmin is the thickness of
local-thin Si region (= 2 or 1 nm). E,; — Ec is about 0.1 eV
(~1200K) when the local-thin Si region is 2-nm thick and
about 0.2 eV when the local-thin Si region is 1-nm thick
[10]; this suggests that the following consideration based on
quantum mechanics is well acceptable because the maximal
operation temperature assumed is 700 K.

Since it is assumed that the device works at high temper-
ature, it is expected that semiclassical analysis can be used
in the simulations, where we basically assume semiclassical
hydrodynamic transport in both thin and thick bodies, and
the thermionic emission model [11] is introduced to calcu-
late the transport through the local-thin Si regions using the
conventional heterojunction model. This approximation is
valid except for the degenerate semiconductor. Therefore, it
is expected that, at high temperatures with V; = 1V, the
effective energy barrier of the 2-nm-long local-thin Si re-
gion enhances thermionic conduction rather than electron
tunneling. Accordingly, we apply the thermionic emission
model in the present simulations. Mobility models for carrier
transport comply with the following physics; Massetit model
for doping dependent mobility [12], Lombardi model for
mobility degradation at the Si/SiO; interface [13] and Canali
model for mobility degradation due to velocity saturation
[14]. In the present consideration, the subthreshold charac-
teristics are focused on because the increase in the off-current
is crucial for such devices at high temperature. The mobility
models primarily rule the on-current, not the off-current.
Therefore, it is anticipated that the mobility models assumed
here do not influence significantly the present consideration.

In addition, since n-type and p-type Si regions are 10-
nm thick, discreteness of electronic states is not so crucial
for the semiclassical analysis. Thus, to develop an overall
consideration of the transport characteristics of the HTOT
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SOI MOSEFET, it can be concluded that the semiclassical
analysis is sufficiently verifiable. In the simulation, therefore,
we replace the default parameters for the ultrathin Si region
with a new set of physical parameters, where the bandgap
energy and the effective electron affinity are revised following
(1) and (2). When (011) confinement is applied to the HTOT
SOI MOSFET, a 3.5-nm-thick local-thin Si region yields
a 0.1-eV-high (about) barrier to the conduction electrons;
(111) confinement yields an identical result.

Possible fabrication process of the HTOT SOI MOSFET
is introduced in Figure 2. The major processing steps are
given below.

(a) Shallow and narrow trenches are formed on the n-
type SOI layer by the focused ion beam etching tech-
nique.

(b) Surface is oxidized in a furnace tube, resulting in
separation of the central n-type body.

(c) Surface oxide layer is removed.

(d) A thin crystalline Si layer is deposited epitaxially and
surface oxide layer is formed as the gate insulator.

(e) After the n-type body region is covered by resist, p-
type body regions are formed by Boron ion implanta-
tion and the substrate is annealed.

(f) Gate poly-Si is deposited and the gate electrode pat-
tern is formed. As ion implantation is performed to
form n* source and drain regions.

The fabrication process mentioned above requests chal-
lenging techniques and simulations to predict device charac-
teristics that must also cover atomic-scale physics. The local-
thin Si layer has countable atomic layers. Regarding such a
thin Si layer, several articles consider the impact of Si-layer
thickness on transport properties [15-20]. These articles pre-
dict the following

(i) 4 atomic Si layers can roughly hold a bulk band stru-
cture [15, 16];

(ii) Effective mass values of conduction band electrons
increase as the Si layer is thinned [17-20].

The second point [17-20] suggests that the effective bar-
rier height of the local-thin Si layer may be overestimated. In
that case, as suggested later, we should take a longer local-
thin Si region to have better characteristics at high tem-
perature.

3. Results and Discussion

3.1. Room Temperature Characteristics. In the HTOT SOI
MOSEFET, most carriers cannot tunnel through the insulators
but can pass through the local-thin Si regions between
gate oxide and barrier insulators; the barrier insulator acts
as a hard barrier. Since the local-thin Si region is very
narrow along the surface channel region, distinct energy
quantization should be assumed in the local-thin Si region
even at high temperatures because kg T < E,;; —Ec. Therefore,
the bandgap of the Si region between the gate oxide layer
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F1GURE 2: Possible fabrication process for HTOT SOI MOSFET.




Drain current, I (A/um)

10-12 1 1 1 1 1 1 1
-0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Gate voltage, V, (V)

- Vy=05V
= V4=03V

A Vg=01V

FIGURE 3: I4- V), characteristics of HTOT SOI MOSFET at 300 K for
various drain voltage conditions. The device has a 40-nm long p-
type region (L,); L, = 100nm. The device has 1-nm-thick local-
thin Si regions at both sides of n-type Si body.
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F1GURE 4: I;- V,; characteristics of HTOT SOI MOSFET for various
gate voltage conditions at 300 K. The device has a 40-nm long p-type
region (L,); Ly = 100 nm. The device has 1-nm-thick local-thin Si
regions at both sides of n-type Si body.
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FIGURE 5: Schematic band diagram of HTOT SOI MOSFET from
source to drain at V; > 0 V.
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FIGURE 6: I;-V, characteristics of the conventional SOl MOSFET at
Vi = 0.1V for various temperature conditions. The device has a
10-nm thick SOI body.

and the barrier insulator is effectively widened which reduces
the total drain current. In high-temperature environments
the thermal energy of some carriers can exceed the ground-
state level (E,; — Ec or Ey — Ej) in the channel. Thus, it
can be expected that both the drive current and off-current
of an HTOT SOI MOSFET operating at high temperatures
will be larger than those of a TB] MOSFET [4, 5], while its
subthreshold swing at high temperatures is superior to that
of the conventional SOI MOSFET.

Figure 3 shows I4-V, characteristics of a HTOT SOI
MOSFET with a 40-nm long p-type region (L) at 300 K for
various V values; it is assumed that the HTOT SOI MOSFET
has 1-nm-thick local-thin Si regions on both sides of the n-
type Si body. It is seen that the HTOT SOI MOSFET has a
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FIGURE 7: I;-V, characteristics of HTOT SOI MOSFET at V; =
0.1V for various temperature conditions. The device has a 40-nm
long p-type region (L,). The device has 1-nm-thick local-thin Si re-
gions at both sides of n-type Si body.
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FIGURE 8: I4-V, characteristics of HTOT SOI MOSFET with 2-nm-
thick and 10-nm-long local-thin Si regions at V; = 0.1V for various
temperature conditions; L, = 20 nm and L; = 60 nm. It is assumed
that the ground-state level of the conduction band of the local-thin
Siregion is higher by 0.1 ¢V than the conduction band bottom.

subthreshold swing value of ~70 mV/dec. and ON current of
about 350 yA/uym at Vg = 1V.

1;-V, characteristics of the HTOT SOI MOSFET at 300 K
for various V, conditions are shown in Figure 4 for L, =
40 nm. It is also assumed that the HTOT SOI MOSFET has
1-nm-thick local-thin Si regions on both sides of the n-
type Si body. In order to consider conduction mechanisms,
the schematic band diagram of the HTOT SOI MOSFET is
shown in Figure 5 for V; > 0V; arrows indicate carrier-flow
paths in the energy space. Two characteristic behaviors are
considered; (i) the super-linear increase in the drain current
stems from the nonohmic conduction through the local-thin
Siregions at the source side, (ii) the negative differential con-
ductance at V, = Vi, stems from the high impedance created
by the local-thin Si regions at the drain side.

With regard to the I;-V, characteristics of the TBJ
MOSEFET [4, 5] under the assumption of full tunneling and
ballistic transport, the drain current curve shows a kink at
around the threshold voltage (Vi) and the drain current
is almost constant for V, > Vi,. In Figure 4, however, the
drain current of the HTOT SOI MOSFET smoothly increases
around V, = Vy, and it increases monotonously for V, >
V. This means that the drain current of the HTOT SOI
MOSFET is ruled by the semiclassical mechanism.

3.2. High-Temperature Characteristics. This section discusses
in detail the I-V characteristics of the HTOT MOSFET at
temperatures ranging from 300 K to 700 K. The temperature
dependencies of the I4-V, characteristics of the conventional
SOI MOSFET with a 10-nm-thick p-type body and the
HTOT SOI MOSFET with 1-nm-thick local-thin Si regions
at the edges of 10-nm-thick n-type body at T = 300, 500,
and 700K are shown in Figures 6 and 7, respectively. Sub-
threshold swing at each temperature is also indicated in the
figures. Little difference in subthreshold swing between the
conventional SOI MOSFET and the HTOT SOI MOSEET is
seen at T'= 300 K in Figures 6 and 7. At 700 K, however, the
difference in subthreshold swing is 40 mV/dec; the advantage
of subthreshold swing of the HTOT SOI MOSFET is about
5%. The HTOT SOI MOSFET operates safely at 700 K with
no thermal instability because of its expanded effective band-
gap [8]. Thus the HTOT MOSFET is somewhat superior to
the conventional SOI MOSFET in high-temperature opera-
tion. When the threshold voltage (Vy,) is set to 0.3V at the
drain voltage (V) of 0.1V at 700 K, the drain current of the
HTOT SOI MOSFET has an on/off-dynamic range of about
1.7.

Next, device operations are discussed for the case wherein
the energy levels in the 1-nm-thick local-thin Si region are
quantized. When energy levels are quantized in the local-
thin Si region, the effective conduction band bottom rises to
the ground state energy level; consequently, the bandgap is
effectively widened. When the local-thin Si region is 1-nm
wide, the ground state energy level is higher by 0.26 eV
than the conduction band bottom. In the following, I4-V,
characteristics are simulated for two cases; the ground state
energy level is higher by 0.1 or 0.2 eV than the conduction
band bottom. In addition, the thickness of the “hard barrier”
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FIGURE 9: I4-V, characteristics of HTOT SOI MOSFET with 1-nm-
thick and 10-nm-long local-thin Si regions at V,; = 0.1V for various
temperature conditions; L, = 20 nm and L, = 60 nm. It is assumed
that the ground-state level of the conduction band of the local-thin
Si region is higher by 0.2 ¢V than the conduction band bottom.

insulator adjacent to the local-thin Si regions is changed to
10nm in order to clarify the influence of long and narrow
conduction paths on overall carrier transport. In this case,
L,=10nmand L, = 20 nm.

I4- Vg characteristics depending on temperature (300 K ~
700 K) for the HTOT SOI MOSFET at V4 = 0.1V are shown
in Figures 8 and 9 for L, = 20 nm; in Figure 8, it is assumed
that the ground state energy level of the local-thin Si region
is higher by 0.1 eV than the conduction band bottom, and in
Figure 9, it is assumed to be higher by 0.2 eV. The following
points are found in Figures 8 and 9. (i) Subthreshold swing
values are insensitive to the width of the local-thin-Si regions
because subthreshold conduction is inherently similar to the
thermionic process. (ii) Drain current at Vy = 1V is sensitive
to the width of the local-thin Si regions as expected because
the long and narrow conduction path reduces channel con-
ductivity. When energy levels of the conduction band in the
local-thin Si region are discretely quantized, the ground state
level in the local-thin Si regions should be higher than the
conduction band bottom of the surface-inverted p-type re-
gion. (iii) The leakage current at V, = —0.6V is sensitive to
the width of the local-thin Si regions because the electron
density in the conduction band strongly depends on the
“effective bandgap energy” (Eg*).

Since the bandgap energy of the local-thin Si regions is
larger than that of bulk Si, the intrinsic carrier density value
of the local-thin Si regions (n;*) should be lower than that of
the bulk Si (n;) as expected by the following [8]:
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where Dosy and Do, are the density of states of two-dimen-
sional conduction-band electrons and the density of states of
two-dimensional valence band holes, respectively. The den-
sity of states is a function of the effective mass; for simplicity,
it is assumed the effective mass is independent of temper-
ature. On the other hand, it is assumed that Debye length
(Lp) and the intrinsic bandgap energy (Eg) is a function
of temperature [9]. Equation (3) is quite valid for high
temperatures because it was derived on the basis of high-
temperature approximations. The conduction band of Si pre-
sents the electrons with an effective barrier height of (E& —
E)/2 and the thermionic emission current is controlled by
the barrier of (E& — E)/2. This barrier suppresses the sub-
treshold leakage current at high temperatures. Therefore, the
thickness and length of the local-thin Si regions is a design
issue and depends on the implementation demands.

Simulated threshold voltage (Vi) and subthreshold sw-
ing (S) at drain voltage of 0.1 V are summarized in Figure 10.
It is assumed that the SOI layer has a (001) Si surface. The
HTOT SOI MOSFET is compared to the conventional SOI
MOSFET with a 10-nm-thick SOI layer. It is assumed in
Figure 10(a) that the local-thin Si regions are 2-nm thick and
2-nm long. At room temperature, both devices show almost
identical characteristics; only the threshold voltage is slightly
different. However, the HTOT SOI MOSEET exhibits much
lower performance degradation than the conventional SOI
MOSFET; dVy/dT = —0.6 mV/K and dS/dT = 0.3 mV/dec/K
for the HTOT SOI MOSFET. When threshold voltage is set
to 0.3V at 700K, the present HTOT SOI MOSFET has
superior off-leakage, by a factor of 3, to the conventional SOI
MOSEET. The threshold voltage of the HTOT SOI MOSFET
is higher than that of the SOI MOSFET by about 0.2V;
this is slightly larger than (E,; — Ec)/q be-cause electrons
contributing to the threshold current should have the averag-
ed energy slightly larger than (E,; — Ec) at the threshold [21].

In Figure 10(b), simulated threshold voltage (Vi) and
subthreshold swing (S) are shown at the drain voltage of
0.1V for 1-nm-thick local-thin Si regions; the HTOT SOI
MOSFET is compared to the conventional SOI MOSFET
with a 10-nm-thick SOI layer. The results demonstrate that
the HTOT SOI MOSFET has outstanding performance:
dVy/dT = 0.0mV/K and dS/dT = 0.25 mV/dec/K. Subthre-
shold swing of the HTOT SOI MOSFET is about 178 mv/dec
at 700K (427 C). It should be noted that the HTOT SOI
MOSEFET with 1-nm-thick local-thin Si regions is almost in-
sensitive to temperature for T' < 700 K (427 C). The mecha-
nism is the same as that described previously.

Finally, Ion versus Iopr characteristics of the HTOT SOI
MOSEFET are shown in Figure 11 at V; = 0.1 V. Slopes of cur-
ves range from —5 to —8. The reduction in on-current values
at high temperatures is due to mobility degradation, and the
drastic increase in off-current at high temperatures is due to
the thermionic emission process. It is seen that the difference
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in local thin Si region thickness primarily impacts the on-
current value (Ion), and that the off-current value (Iogr) is
not so sensitive to the local-thin Si region thickness; these
are important aspects of the HTOT SOI MOSFET from the

view-point of device design.

4. Conclusion

This paper proposed the High-Temperature-Operation Tol-
erant (HTOT) SOI MOSFET and demonstrated preliminary
device simulation results of its characteristics.

The HTOT SOI MOSFET has local-thin Si regions and
operates safely at 700 K with no thermal instability because of
its expanded effective band gap. A HTOT SOI MOSFET with
2-nm-thick local-thin body regions exhibits much lower per-
formance degradation than the conventional SOI MOSFET;
dVa/dT = —0.6mV/K and dS/dT = 0.3 mV/dec/K for the
HTOT SOI MOSEFET. Subthreshold swing of the HTOT SOI
MOSFET is about 180 mv/dec at 700K (427 C). Threshold
voltage of the HTOT SOI MOSFET is higher than that of SOI
MOSFET by about 0.2V because the local-thin Si regions
offer an expanded effective band gap.

An HTOT SOI MOSFET with 1-nm-thick local-thin Si re-
gions shows outstanding performance: dVy,/dT =0.0 mV/K
and d$/dT = 0.25mV/dec/K. Subthreshold swing of the
HTOT SOI MOSFET is about 178 mv/dec at 700 K (427 C).
Therefore, the HTOT SOI MOSFET is a promising device for
future high-temperature applications when its device para-
meters are appropriately optimized.
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