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This paper presents a millimeter-wave, 60GHz frequency band planar diplexer based on substrate integrated waveguide (SIW)
technology. Diplexer consists of a pair of 5th-order SIW bandpass channel filters with center frequencies at 59.8GHz and 62.2GHz
providing 1.67% and 1.6% relative bandwidths, respectively. SIW-to-microstrip transitions at diplexer ports enable integration in
a millimeter-wave transceiver front end. Measurements are in good agreement with electromagnetic simulation, reporting very
good channel isolation, small return losses, and moderate insertion losses in the passbands. The proposed SIW planar diplexer
is integrated into a millimeter-wave transceiver front end for 60GHz point-to-point multigigabit wireless backhaul applications,
providing high isolation between transmit and receive channels.

1. Introduction

The deployment of millimeter-wave integration technologies
is critical for the wireless systems evolution. A variety of
applications have been recently proposed in the frequency
range between 60GHz and 94GHz including wireless net-
works [1], automotive radars [2], imaging sensors [3], and
biomedical devices [4]. These systems require cost-effective
technologies suitable for mass production and high density
integration techniques, combined with a low-cost fabrication
process. Substrate Integrated Waveguide (SIW) technology
[5–8] is a promising candidate for providing compact, flex-
ible, and cost-effective millimeter-wave circuits and systems
which preserve most of the advantages of the conventional
metallic waveguides, namely, complete shielding, low loss,
high-quality factor, and high power handling capability [9].
Most of the classical passive components have been imple-
mented in SIW technology. This solution usually permits
to obtain components with a substantial reduction in size;
moreover, the losses are lower than in the corresponding
microstrip devices especially in the millimeter-wave fre-
quency range, and there are no radiation and packaging prob-
lems. In the literature, SIW filters have received a particular

attention. Focusing on the 60GHz frequency band, in [10]
a four-pole 60GHz SIW bandpass filter has been modeled,
while in [11] a 60GHz SIW quasi-elliptic filter has been
designed and fabricated.

The diplexer is one of the key components in a transceiver
front end and greatly affects system’s performance acting as
channel separator. This becomes evident in the frequency
division duplex systems where frequency separation between
transmit and receive chains needs to be provided. Diplexer
design is usually based on waveguide technology with excel-
lent performance in terms of insertion loss and channel-
to-channel isolation [12–14]. However, the design suffers
from disadvantages such as being bulky, costly, and difficult
to fabricate. Moreover, it cannot be integrated with the
rest of the millimeter-wave planar integrated circuits that
the transceiver front end consists of. On the other hand,
diplexer implementation in SIW provides a compact, cost-
effective solution preserving most of the advantages of the
conventional metallic waveguides, while in parallel it enables
the diplexer integration with the rest of the millimeter-
wave transceiver front-end components. In the literature,
SIW planar diplexers operating at 5GHz and 25GHz have
been proposed in [15, 16], respectively, while the generalized
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Figure 1: The SIW general structure.

1 GHz frequency band chebyshev SIW diplexer has been
described in [17]. In [18] a 5GHz frequency band SIW
diplexer loaded by complementary split-ring resonators has
also been proposed.

This paper is focused on a 60GHz frequency band
SIW planar diplexer that is integrated in a millimeter-wave
transceiver front end operating in frequency division duplex-
ing mode for point-to-point wireless backhaul applications.
The proposed diplexer is composed by 5th-order SIW band-
pass channel filters providing high channel-to-channel iso-
lation. SIW-to-microstrip transitions provide diplexer inte-
gration with the transceiver front end. In [19], authors pre-
sented the design and modeling procedures of the 5th-order
SIW bandpass filters with center frequencies at 59.8GHz
and 62.2GHz, providing 1GHz bandwidth. Electromagnetic
simulation results reported very good performance in terms
of passband insertion loss and return loss, as well as in terms
of out-of-band rejection. Based on these results, authors in
[20] provided an initial approach of a 60GHz SIW planar
diplexer providing preliminary designs and electromagnetic
simulation results. Diplexer design was further optimized
and fabricated, and in this paper measurement results are
provided and compared with simulation ones.

2. The 60 GHz SIW General Structure

SIW structure is fabricated by using two periodic rows of
metallic vias connecting the top and bottom ground planes of
a dielectric substrate. The top side of a general SIW structure
is depicted in Figure 1.

SIW width, 𝛼SIW, is calculated based on the correspond-
ing rectangular waveguide width, 𝛼, as follow:

𝛼SIW =
𝛼

√𝜀𝑟

, (1)

where 𝜀
𝑟
is the substrate dielectric constant. The replacement

of conductive walls by metallic vias leads to the variation of
SIW structure width. The equivalent width is called effective
width and depends on design parameters. According to [7],
the SIW effective width, 𝛼eff, is given by

𝛼eff = 𝛼SIW − 1.08 ⋅
𝑑
2

𝑣

𝑝
𝑣

+ 0.1 ⋅

𝑑
2

𝑣

𝛼SIW
. (2)

Via diameter 𝑑
𝑣
and pitch via 𝑝

𝑣
should be appropriately set

in order to ensure that there is no radiation leakage between
metallic vias due to diffraction. In [21], the following design
rules are given in order to avoid such effects:

𝑑
𝑣
=

𝜆
𝑔

5

, 𝑝
𝑣
≤ 2 ⋅ 𝑑

𝑣
. (3)

In this paper, dielectric substrateRogers RT/duroid 5880 (𝜀
𝑟
=

2.2; tan 𝛿 = 0.0009; dielectric thickness ℎ = 0.508mm) is
used. Taking into account that the 60GHz frequency band
rectangular waveguide (WR-15) width is 𝛼 = 3.759mm and
applying (1)–(3), the SIW basic parameters for the 60GHz
band are calculated and summarized in Table 1.

3. The 60 GHz SIW Planar Diplexer

3.1. SIW Channel Filter Modeling. The diplexer consists of
two bandpass channel filters with center frequencies at
59.8GHz (receive chain) and 62.2GHz (transmit chain),
respectively. Channel filter bandwidth requirement is 1 GHz,
and filter order is 5. Figure 2 depicts the 5th-order SIW
bandpass filter model.

Filter modeling was presented by authors in [19], and it is
based on the 𝑛-order IRIS waveguide bandpass filter analysis
suggested in [22]. According to that, the equivalent circuit
of an IRIS which is placed parallel to the electrical field is a
shunt inductor. Waveguide cavity length 𝑙

𝑖
, (𝑖 = 1, . . . , 𝑛) and

IRIS aperture width 𝑑
𝑖
(𝑖 = 1, . . . , 𝑛 + 1) are calculated based

upon filter specifications.The suggested analysis was suitably
adjusted in [19], in order to calculate the corresponding 𝑙

𝑖
and

𝑑
𝑖
for the SIW bandpass channel filters. Given that the guided

wavelength in the rectangular waveguide is

𝜆
𝑔WG =

𝜆
0

√1 − (𝜆
0
/2𝛼)
2

, (4)

where 𝜆
0
is the free space wavelength, 𝛼 is the rectangular

waveguide width, and the guided wavelength in the SIW
structure is given by

𝜆
𝑔SIW =

𝜆diel

√1 − (𝜆diel/2𝛼eff)
2

, (5)

where 𝛼eff is the SIW effective width and 𝜆diel is given by

𝜆diel =
𝜆
0

√𝜇0
𝜀
𝑟

. (6)

Based on given filters’ specifications and using (4)–(6), 𝑙
𝑖

and 𝑑
𝑖
were calculated. Design was performed using Ansoft

HFSS v.12, while an optimization procedure was followed in
order to meet the desired specifications. Simulation results
reported that, for the transmit channel, filter center frequency
was at 62.2GHz providing 1GHz bandwidth. Insertion loss
was 1.5 dB, while return loss was varying below 20 dB in the
passband. Filter rejection at transmit channel, filter center
frequency (59.8GHz) was 90 dB. Concerning the receive
channel filter, center frequency was at 59.8GHz with 1 GHz
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Figure 2: The 5th-order SIW bandpass channel filter model.
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Figure 3: The SIW planar diplexer design model.

bandwidth. Insertion loss was about 2 dB, while return loss
was varying below 20 dB in the passband. Filter rejection at
receive channel filter center frequency (62.2GHz) was 66 dB.

3.2. Diplexer Integration. In Figure 3, the SIWplanar diplexer
model is presented.

Design parameters for channel filters (𝑙
𝑖
, 𝑖 = 1, . . . , 𝑛, and

𝑑
𝑖
, 𝑖 = 1, . . . , 𝑛 + 1) were calculated in [19]. Parameter 𝑋

0

represents the space length at the SIW channel filter ports
before the edge cavities, and as it was observed during design
procedure, it is a critical parameter for filter impendence
matching. As it was shown in [20], authors initially set 𝑋

0
to

be equal to 𝜆
𝑔SIW/2. The optimization procedure proved that

optimumperformance in terms of input return loss was given
when𝑋

0
was precisely equal to 𝜆

𝑔SIW.
A SIW T-junction was designed in order to integrate the

channel filters within diplexer and to ensure the minimum
coupling between them. As it was presented in [20], the key
for the T-junction design is to ensure TE10mode propagation
as well as incident electromagnetic waves at channel filters
to be equal amplitude and in phase. Figure 4 shows the
SIW T-junction as well as the HFSS simulation electric field
distribution within the structure.

The transition from common port towards filter chains is
based onmitering technique in order to reduce the reflections
from transmit and receive ports. The first center via is placed
at a distance 𝐿

0
from the diplexer common port. According

to [20], distance 𝐿
0
is critical for common port performance

in terms of input return loss. 𝐿
0
was initially set equal to

SIW wavelength 𝜆
𝑔SIW, and based on tuning, the optimum

value for 𝐿
0
was found. Parameters𝑋

𝑇
and𝑋

𝑅
represent the

distance between the T-junction and the first cavity of the
transmit and receive channel filters, respectively, and they
were initially set equal to 2𝜆

𝑔SIW. Optimization procedure
provided values that corresponded to lower reflections in
diplexer ports.

50OhmSIW-to-microstrip transitions were predicted for
diplexer ports in order for the diplexer to be connected with
test equipment during performance verification. As it can be
seen in Figure 5, SIW-to-microstrip transition consists of one
transmission line with dimensions 𝑎

1
and𝑤

1
and one tapered

line with dimensions 𝑎
2
and 𝑤

2
.

The suitable SIW-to-microstrip transition design enables
TE10 mode to be propagated into the SIW structure. The
microstrip width, 𝑤

𝑖
(𝑖 = 1, 2), is calculated based upon the

following equation:

𝑤
𝑖
=

𝑍
𝑘
⋅ ℎ

√𝑒ffZ0
, (7)

where 𝑍
𝑘
is the free space impedance (𝑍

𝑘
= 376.8Ohm), ℎ is

dielectric substrate thickness provided in Table 1, and 𝑒ff that
is effective permittivity of the dielectric substrate for𝑤 > ℎ is
given by

eff = 𝜀𝑟. (8)

A diplexer model without transitions was designed and
simulated using HFSS in order to calculate SIW structure
input impedance 𝑍

0
. Simulation gave 𝑍

0
= 48 Ohm for all

diplexer ports, and using (7),𝑤
2
was computed.𝑍

0
= 50Ohm

was considered for the SMA connector, and using (7),𝑤
1
was

computed.
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Figure 4: The electric field distribution within SIW T-junction.

Table 1: Summary of SIW design parameters at 60GHz frequency band.

Parameter Symbol Value Unit
Dielectric substrate RT/duroid 5880 (𝜀

𝑟
= 2.2; tan 𝛿 = 0.0009; ℎ = 0.508)

Pitch via 𝑝
𝑣

0.35 mm
Via diameter 𝑑

𝑣
0.2 mm

SIW width 𝛼SIW 2.8 mm
SIW effective width 𝛼eff 2.678 mm

𝑎1 𝑎2

𝑤1 𝑤2

Figure 5: The SIW-to-microstrip transition model.

The total microstrip transition length (𝑎
1
+ 𝑎
2
) is equal to

one microstrip wavelength 𝜆
𝑔
, where

𝜆
𝑔
=

𝜆
0

√𝜀r
. (9)

Optimization given for 𝑎
1
and 𝑎
2
is as follows:

𝛼
1
=

𝜆
𝑔

4

, 𝛼
2
= 3 ⋅

𝜆
𝑔

4

. (10)

In Table 2, all design parameters for SIW diplexer are sum-
marized.

4. Results

The 60GHz SIW planar diplexer is depicted in Figure 6.

Figure 6: The 60GHz SIW planar diplexer.

Figure 7 shows diplexer performance in terms of com-
mon port return loss (𝑆

11
) as well as in terms of channel-

to-channel isolation (𝑆
23
). Bothmeasurement and simulation

results are provided, and as it can be seen, they are in good
agreement. Common port return loss varies below 10 dB
in the passbands, while channel-to-channel isolation varies
below 60 dB in the whole frequency range.

Figure 8 shows transmit and receive ports’ insertion loss
(𝑆
12

and 𝑆
13
, resp.). As it can be seen, there is a shift in the

predefined center frequencies of the passbands, while the
achieved relative bandwidths are 1.67% and 1.6%, respectively.
The observed frequency down shift, which is approximately
300MHz, is caused by fabrication accuracy and tolerances
of manufacture, parameters that introduce such effects espe-
cially in the millimeter-wave frequency band. Insertion loss
is about 4 dB for both transmit and receive passbands. The
transmit channel out-of-band rejection is 55 dB at 62.2GHz,
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Table 2: Summary of the 60GHz SIW planar diplexer design parameters.

𝑋
0
𝑙
1
𝑙
2
𝑙
3
𝑙
4
𝑙
5
𝑑
1
𝑑
2
𝑑
3
𝑑
4
𝑑
5
𝑑
6

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
Channel
filters

Receiver filter (62.2GHz) 4.70 2.07 2.24 2.26 2.24 2.07 1.09 0.61 0.54 0.54 0.61 1.09
Transmitter filter (59.8GHz) 4.70 2.07 2.24 2.26 2.11 2.07 1.06 0.59 0.52 0.52 0.59 1.06

𝑤
1
(mm) 𝑤

2
(mm) 𝑎

1
(mm) 𝑎

2
(mm)

Receive port 1.57 1.92 0.8 2.4
SIW-to-microstrip
transitions Transmit port 1.57 1.92 0.8 2.4

Common port 1.57 1.92 0.8 2.4
𝐿
0
(mm) 𝑋

𝑇
(mm) 𝑋

𝑅
(mm)

T-junction 3.55 9.8 10.07
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Figure 7: Diplexer performance in terms of common port return
loss and channel-to-channel isolation.

while the receive channel out-of-band rejection is 58 dB at
59.8GHz.

Finally, Figure 9 shows diplexer performance in terms of
transmit and receive ports’ return loss (𝑆

22
and 𝑆
33
, resp.). As

it can be seen, 𝑆
22

and 𝑆
33

vary below 10 dB in transmit and
receive passbands, respectively.

5. Conclusion

The design, development, and fabrication of a 60GHz,
millimeter-wave planar diplexer based on the substrate inte-
grated waveguide technology are presented in this paper.
Measurement results report very good performance in terms
of insertion loss in the channel filters passbands and return
loss in all diplexer ports’ bands. The high channel filter
bandwidth in combination with the achieved high out-of-
band rejection and high channel-to-channel isolation enables
the usage of the proposed diplexer as channel separator in
high bandwidth millimeter wave transceiver front ends.
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Figure 8: Diplexer performance in terms of receive and transmit
ports’ insertion loss.
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Figure 9: Diplexer performance in terms of receive and transmit
ports’ return loss.
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