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In this work, the analytical expressions of memristances, related parameters, and time domain behavioral analysis of the fractional
order memristor have been proposed. Both DC with arbitrary delay and many AC waveforms including arbitrary phase sinusoidal
and cosinusoidal waveform along with arbitrary periodic waveform have been taken into account. Unlike the previous works, the
formerly ignored dimensional consistency has been taken into account and the analytical modelling of the boundary effect has
been performed. Moreover, both transient and asymptotic behaviors of the fractional order memristor excited by AC waveform
have been distinguished and analyzed. The effect of phase of AC waveform has also been studied. The influence of the fractional
order to the areas of voltage-current hysteresis loop and memristance-current lissajous curve has also been clearly discussed and
the usage of fractional order memristor in the memristor based circuit has also been demonstrated.

1. Introduction

Recently, a state-of-the-art electrical circuit element, namely,
fractional ordermemristor, is often cited.This circuit element
can be obtained from the generalization of the 4th electrical
circuit element, namely, memristor, that has been theoreti-
cally found by Leon Chua since 1971 [1], by using the concept
of fractional calculus which have been adopted in various
disciplines, e.g., biomedical engineering [2, 3], control system
[4–6], and electronic engineering [7–9]. For decades after
Chua proposed his original work, the memristor has been
practically realized by a research group in Hewlett Packard
(HP) labs [10] in 2008. As a result, the mathematical mod-
elling and analysis attempts of the memristor have been
proposed (e.g., [11–15]).

For the fractional order memristor on the other hand,
there also exists such modelling and analysis attempts [16–
21]. Some of them generalize the memristor by applying
concept of the fractional calculus to the voltage-current
relationship [16, 17] and termed such generalized memristor
as the fracmemristor [17]. On the other hand, others do
so by applying the fractional calculus to the memristor’s
state equation where the often cited HP memristor has been
adopted as the basis [18–21]. However, only the analytical

expression of the area of voltage-current hysteresis loop
has been proposed in [20] and those of the memristances
proposed in [18, 19, 21] are in terms of the input voltage
despite the fact that fractional order memristor of interested
is the generalization of the HP memristor which is actually
of a charge/current controlled type. Moreover, these previous
works also neglected the dimensional consistency [22, 23]
related issues and the boundary effect, which is an important
characteristic of the HP memristor [10], has not been analyt-
ically modelled.

By this motivation, we generalize the HP memristor in
the fractional order domain by also concerning the formerly
ignored dimensional consistency and formulate the analytical
expression ofmemristance in term of the input current where
boundary effect has also been modelled. We also derive
the expressions of those related parameters of the fractional
memristor excited by various exciting waveforms including
DC with arbitrary delay and sinusoidal and cosinusoidal
with arbitrary phase and arbitrary periodic which are the
AC waveforms. With these expressions, parameters, and
numerical simulations with MATHEMATICA, the behaviors
of the fractional order memristor have been thoroughly
explored. Unlike [18–21], both transient and asymptotic
behaviors of the fractional order memristor excited by AC

Hindawi
Active and Passive Electronic Components
Volume 2018, Article ID 3408480, 14 pages
https://doi.org/10.1155/2018/3408480

http://orcid.org/0000-0003-4392-8493
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/3408480


2 Active and Passive Electronic Components

waveform have been distinguished and analyzed. The effect
of phase of AC waveform has also been studied. Moreover,
the influence of the fractional order to the areas of voltage-
current hysteresis loop and memristance-current lissajous
curve has been clearly discussed and the usage of fractional
ordermemristor in the memristor based circuit has also been
demonstrated.

In the following section, the overview of memristor will
be briefly given followed by the memristor’s generalization
and derivation of our expressions in Section 3 where the
behavioral analysis of the fractional ordermemristor will also
be given. The DC waveform will be firstly treated followed by
the AC waveforms where the sinusoidal waveform has been
emphasized as it is the most fundamental. This is because
the memristances and parameters of the memristor excited
by the cosinusoidal and arbitrary periodic waveform can be
obtained by using those due to the sinusoidal waveform as
the basis as will be shown in Section 3 as well. The usage of
fractional order memristor in the memristor based circuit
will be presented in Section 4 and the conclusion will be
finally drawn in Section 5.

2. The Overview of Memristor

Memristor is a nonlinear electrical circuit element. This
circuit element relates the instantaneous flux, 𝜙(𝑡), and
charge, 𝑞(𝑡), through the following relationship:

𝑀(𝑡) = 𝑑𝜙 (𝑡)𝑑𝑞 (𝑡) (1)

where𝑀(𝑡) denotes the memristance.
According to [10], 𝑀(𝑡) of the HP memristor can be

given in terms of the minimum andmaximum values ofM(t)
denoted by𝑀𝑜𝑛 and𝑀𝑜𝑓𝑓 and the state variable, 𝑥(𝑡), as𝑀(𝑡) = 𝑀𝑜𝑛𝑥 (𝑡) + (1 − 𝑥 (𝑡))𝑀𝑜𝑓𝑓 (2)

where 𝑥(𝑡), which is dimensionless, can be given in terms
of the memristor’s current, 𝑖(𝑡), by𝑑𝑥𝑑𝑡 = 𝑘𝑖 (𝑡) (3)

Note that 𝑘 = 𝜇𝑀𝑜𝑛/𝐷2, where 𝜇 and 𝐷, respectively,
stand for the ion mobility and semiconductor film of thick-
ness. Therefore, the dimension of 𝑘 is (Asec)−1.

As can be seen from (3) and also according to [10], 𝑥(𝑡)
can be simply given as follows:𝑥 (𝑡) = 𝑘𝑞 (𝑡) (4)

Therefore, it can be seen that the HP memristor is charge
controlled. Since 𝑞(𝑡) is a time integration of 𝑖(𝑡), it can be
stated that the HP memristor is of a current controlled type.
Note also that 0 ≤ 𝑥(𝑡) ≤ 1; thus, 𝑀𝑜𝑛 ≤ 𝑀(𝑡) ≤ 𝑀𝑜𝑓𝑓

as long as the memristor is unsaturated. Otherwise, 𝑥(𝑡) will
be bounded at either 0 or 1 so 𝑀(𝑡) will be equal to either𝑀𝑜𝑛 or𝑀𝑜𝑓𝑓 according to the boundary effect of the device.
Traditionally, such boundary effect can be mathematically
modelled by multiplying the RHS of (3) with the window
function [24].

3. The Fractional Order Domain
Generalization of the Memristor and the
Memristances, Related Parameters, and
Analysis of the Fractional Order Memristor

By generalizing the memristor in the fractional order domain
with the fractional calculus, the fractional order memristor
can be obtained. Similarly to [18–21], we perform such
generalization by applying the fractional calculus to the
memristor’s state equation, i.e., (3). In these previous works,𝑑𝛼𝑥/𝑑𝑡𝛼 = 𝑘𝑖(𝑡), where𝛼 stands for the order of the fractional
order memristor which can be arbitrary real value and has
been obtained from such generalization. However, as 𝑥(𝑡) is
dimensionless; the dimension of the LHS of this previous
generalized equation is given by sec−𝛼 where that of the RHS
is sec−1 which means that a dimensional inconsistency has
always existed.

Therefore, the fractional time component [22], 𝜎, which
has the dimension of sec, has been introduced for handling
this issue. As a result, unlike [18–21], the following general-
ized state equation has been used instead.

𝜎𝛼−1𝑑𝛼𝑥𝑑𝑡𝛼 = 𝑘𝑖 (𝑡) (5)

Similarly to that of the RHS, the dimension of the LHS
of (5) is sec−1; thus the dimensional inconsistency issue has
been resolved. Note also that (5) is reduced to (3) when 𝛼 = 1
despite the presence of 𝜎 as 𝜎𝛼−1 become 1 with such value of𝛼.

Unlike [18, 19, 21], we derive 𝑀(𝑡) of the fractional
order memristor as a function 𝑖(𝑡) as it has been assumed
that the of fractional order memristor is a generalization of
the HP memristor which is of a current controlled type as
aforementioned. Therefore we directly determine 𝑥(𝑡) from
(5) by using the Riemann-Liouville fractional order integral
[25] as follows:

𝑥 (𝑡) = 𝑥 (0) + 𝑘𝜎1−𝛼Γ (𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑖 (𝜏) 𝑑𝜏 (6)

where 𝑥(0) and D() denote the initial value of 𝑥(𝑡) and the
Gamma function [26], respectively.

Since it can be seen from (2) that

𝑀(𝑡) = 𝑀𝑜𝑓𝑓 −𝑀𝑑𝑥 (𝑡) (7)

where𝑀𝑑 = 𝑀𝑜𝑓𝑓 − 𝑀𝑜𝑛, the initial memristance value, i.e.,𝑀(0), can be immediately given by

𝑀(0) = 𝑀𝑜𝑓𝑓 −𝑀𝑑𝑥 (0) (8)

Thus by substituting (6) into (7) and keeping (8) in mind,𝑀(𝑡) of the fractional order memristor can be obtained as
follows:

𝑀(𝑡) = 𝑀(0) − 𝑘𝜎1−𝛼𝑀𝑑Γ (𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑖 (𝜏) 𝑑𝜏 (9)

which shows that𝑀(𝑡) is current-controlled.
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If we let 𝛼 = 1, (9) will be reduced to

𝑀(𝑡) = 𝑀 (0) − 𝑘𝑀𝑑 ∫𝑡

0
𝑖 (𝜏) 𝑑𝜏 (10)

Since the integer order integration of 𝑖(𝑡) gives 𝑞(𝑡), we
obtain

𝑀(𝑡) = 𝑀 (0) − 𝑘𝑀𝑑𝑞 (𝑡) (11)

By using (8), (11) can be simplified under the assumption
that 𝑥(0) = 0 and𝑀𝑜𝑓𝑓 ≫ 𝑀𝑜𝑛 as follows:𝑀(𝑡) = 𝑀𝑜𝑓𝑓 (1 − 𝑘𝑞 (𝑡)) (12)

which is similar to the original simplified model of the
HPmemristor [10]. Such correspondence cannot be found in
[18, 19, 21] as the integer order integration of the memristor’s
voltage, V(𝑡), yields 𝜙(𝑡).

For traditionally including the boundary effect, the win-
dow function must be introduced to the state equation as
mentioned above. In [18], the linear window function given
by𝑓(𝑥(𝑡)) = 1 has been adopted for simplicity as the usage of
more accurate yet more complicated window function; e.g.,
those Joglekar, Biolek, and Prodomakis [24] can be math-
ematically cumbersome. Unfortunately, using such linear
window function ismathematically equivalent tomultiplying
theRHSof the state equation by 1. As a result, nomodification
has beenmade on the state equation; thus the boundary effect
modelling has not been performed. Moreover, neither the
usage of window function nor alternative boundary effect
analytical modelling has been made in both [19] and [21].

In order to model the boundary effect in a simplified
manner, we apply twomathematical operators, i.e., max[𝑥, 𝑦]
and min[𝑥, 𝑦], which, respectively, selects the maximum
value and minimum value among 𝑥 and 𝑦, to (9). As a result,
our expression of 𝑀(𝑡) due to arbitrary exciting waveform
can be finally given as follows:

𝑀(𝑡)
= min [max [𝑀(0) − 𝐾𝑀𝑑Γ (𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑖 (𝜏) 𝑑𝜏,𝑀𝑜𝑛] ,

𝑀𝑜𝑓𝑓]
(13)

where𝐾 = 𝑘𝜎1−𝛼; thus the dimension of 𝐾 is A−1sec−𝛼.
Since the dimension of fractional integral of 𝑖(𝑡) is Asec𝛼,

that of (𝐾𝑀𝑑/Γ(𝛼)) ∫𝑡0 (𝑡 − 𝜏)𝛼−1𝑖(𝜏)𝑑𝜏 is given by Ω which
is physically measurable, similarly to those of𝑀𝑑 and𝑀(0).
Therefore, 𝑀(0) and (𝐾𝑀𝑑/Γ(𝛼)) ∫𝑡0 (𝑡 − 𝜏)𝛼−1𝑖(𝜏)𝑑𝜏, which
are at the RHS of (13), can be physically combined as they
have the same dimensions and the dimension of𝑀(𝑡), which
is the LHS of such equation, has also been found to be
such physically measurable Ω; thus it can be seen that our
expression of 𝑀(𝑡) has dimensional consistency. Moreover,
due to the operation of nested max[𝑥, 𝑦] and min[𝑥, 𝑦],𝑀(𝑡)
will be equal to 𝑀(0) − (𝐾𝑀𝑑/Γ(𝛼)) ∫𝑡0 (𝑡 − 𝜏)𝛼−1𝑖(𝜏)𝑑𝜏 if
and only if𝑀(0) − (𝐾𝑀𝑑/Γ(𝛼)) ∫𝑡0 (𝑡 − 𝜏)𝛼−1𝑖(𝜏)𝑑𝜏 lies within
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Figure 1:𝑀(𝑡) of the fractional order memristor excited by a 110 𝜇A
DC waveform: 𝛼 = 0.75 (red), 𝛼 = 1 (green), 𝛼 = 1.25 (blue), and
HP memristor (black dots).

[𝑀𝑜𝑛,𝑀𝑜𝑓𝑓]whichmeans that the fractional ordermemristor
remains unsaturated. Otherwise,𝑀(𝑡) will be equal to either𝑀𝑜𝑛 or 𝑀𝑜𝑓𝑓 if 𝑀(0) − (𝐾𝑀𝑑/Γ(𝛼)) ∫𝑡0 (𝑡 − 𝜏)𝛼−1𝑖(𝜏)𝑑𝜏 is
lower than 𝑀𝑜𝑛 or higher than 𝑀𝑜𝑓𝑓 which in turn means
that the device become saturated at either its on-state or
off-state. Therefore it can be seen that the boundary effect
has been modelled without any necessity to use the window
function and (13) along with its related results is valid to
the saturated fractional order memristor. In the following
subsections,𝑀(𝑡)’s due to due to various exciting waveforms
and the behavioral analysis of fractional order memristor will
be presented.

3.1. DC Waveform. Mathematically, the DC waveform with
arbitrary delay (𝑡𝑑), which is more generic than the undelay
waveform assumed in the previous works [18, 19], can be
defined as 𝑖(𝑡) = 𝐼𝐷𝐶𝑢(𝑡 − 𝑡𝑑), where 𝐼𝐷𝐶 and 𝑢(𝑡) denote the
magnitude of thewaveform and the unit step function.There-
fore, the resulting𝑀(𝑡) can be straightforwardly obtained by
using (13) as

𝑀(𝑡)
= min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝐷𝐶 (𝑡 − 𝑡𝑑)𝛼Γ (𝛼 + 1) ,𝑀𝑜𝑛] ,
𝑀𝑜𝑓𝑓]

(14)

By using (14) with 𝑡𝑑 =0 sec,𝐾= 100000A−1sec−𝛼,𝑀𝑜𝑛 = 1
kΩ,𝑀𝑜𝑓𝑓 = 100 kΩ, and𝑀(0)=80 kΩ,𝑀(𝑡)’s of the fractional
ordermemristor with various𝛼’s excited by theDCwaveform
can be numerically simulated as depicted in Figures 1 and 2
where 𝐼𝐷𝐶 = 110 𝜇A and 𝐼𝐷𝐶 = -110 𝜇Ahave been, respectively,
assumed and𝑀(𝑡)’s of the HPmemristor simulated by using
its SPICE model [27] have also been included.

From these figures, the strong agreements between our𝑀(𝑡)’s obtained by using (14) with 𝛼 = 1 and those of the
HPmemristor can be observed. Since the HPmemristor is of
order 1 in the context of fractional order domain, such strong
agreements verify our expression. These figures also show
that𝑀(𝑡) of the fractional order memristor can be either the
increasing or decreasing function of 𝑡 with the final value of
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Figure 2:𝑀(𝑡) of the fractional order memristor excited by a -110𝜇A DC waveform: 𝛼 = 0.75 (red), 𝛼 = 1 (green), 𝛼 = 1.25 (blue),
and HP memristor (black dots).

𝑀𝑜𝑛 or 𝑀𝑜𝑓𝑓 when the fractional order memristor become
saturated if we let 𝐼𝐷𝐶 > 0 or 𝐼𝐷𝐶 < 0. Moreover, the rate of
change of𝑀(𝑡) has been found to be inversely proportional
to 𝛼.

Since it can be seen that the fractional order memristor
become saturated at a certain time given by 𝑡𝑠𝑎𝑡, by using (14),
we have

𝑀(0) − 𝐾𝑀𝑑𝐼𝐷𝐶 (𝑡𝑠𝑎𝑡 − 𝑡𝑑)𝛼Γ (𝛼 + 1) = {{{
𝑀𝑜𝑛 𝐼𝐷𝐶 > 0𝑀𝑜𝑓𝑓 𝐼𝐷𝐶 < 0 (15)

As a result, 𝑡𝑠𝑎𝑡 can be immediately given as follows:

𝑡𝑠𝑎𝑡
= {{{{{{{{{{{

𝑡𝑑 + [Γ (𝛼 + 1) (𝑀 (0) − 𝑀𝑜𝑛)𝑘𝑀𝑑𝐼𝐷𝐶

]1/𝛼 𝐼𝐷𝐶 > 0
𝑡𝑑 + [Γ (𝛼 + 1) (𝑀 (0) −𝑀𝑜𝑓𝑓)𝑘𝑀𝑑𝐼𝐷𝐶

]1/𝛼 𝐼𝐷𝐶 < 0
(16)

which shows that 𝑡𝑠𝑎𝑡 is directly proportional to the size of
the difference between𝑀(0) and𝑀𝑜𝑛(𝑀𝑜𝑓𝑓). So, 𝑡𝑠𝑎𝑡 reaches

its maximum value, i.e., 𝑡𝑠𝑎𝑡(𝑀𝐴𝑋), if and only if𝑀(0) reaches
its possible peak value given by either𝑀𝑜𝑓𝑓 when 𝐼𝐷𝐶 > 0 or𝑀𝑜𝑛 when 𝐼𝐷𝐶 < 0. Thus 𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) can be found as

𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) = {{{{{{{{{
𝑡𝑑 + [Γ (𝛼 + 1)𝐾𝐼𝐷𝐶

]1/𝛼 𝐼𝐷𝐶 > 0
𝑡𝑑 + [ Γ (𝛼 + 1)𝐾 (−𝐼𝐷𝐶)]

1/𝛼 𝐼𝐷𝐶 < 0 (17)

which can be immediately given in a more compact
manner as follows:

𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) = 𝑡𝑑 + [Γ (𝛼 + 1)𝐾 󵄨󵄨󵄨󵄨𝐼𝐷𝐶
󵄨󵄨󵄨󵄨 ]

1/𝛼

(18)

For confirming the aforesaid observation on the relation-
ship between the rate of change of𝑀(𝑡) and𝛼, 𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) ’s have
been simulated by using (18) under the similar assumptions to
those of the simulation of𝑀(𝑡)’s shown in Figures 1 and 2 but
with varying 𝐼𝐷𝐶, as depicted in Figure 3 which shows that𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) is directly proportional to 𝛼. Due to the definition
of t𝑠𝑎𝑡(𝑀𝐴𝑋), this confirms such observation. Moreover, it
can also be seen from Figure 3 that 𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) is inversely
proportional to |𝐼𝐷𝐶|.
3.2. ACWaveforms. Among various ACwaveforms, the sinu-
soidal waveform has been emphasized as it is the foundation
of the others. Unlike those previous works, the sinusoidal
waveform with arbitrary phase (𝜃) has been chosen due to
its generality. Mathematically, such waveform can be given by𝑖(𝑡) = 𝐼𝑚 sin(𝜔𝑡 + 𝜃), where 𝐼𝑚 and 𝜔, respectively, denote the
peak value and angular frequency of 𝑖(𝑡). By using (13),𝑀(𝑡)
of the fractional order memristor under the arbitrary phase
sinusoidal input can be given by

𝑀(𝑡)
= min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝑡𝛼Γ (𝛼 + 1) [sin (𝜃) 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝜔𝑡)2) + 𝜔𝑡 cos (𝜃)𝛼 + 1 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝜔𝑡)2)] ,𝑀𝑜𝑛] ,
𝑀𝑜𝑓𝑓]

(19)

where 1F2( ; , ; ) denotes a generalized hypergeometric func-
tion with 𝑝 = 1 and 𝑞 = 2 [28].

By letting𝐾 = 100000A−1sec−𝛼,𝑀𝑜𝑛 = 1 kΩ,𝑀𝑜𝑓𝑓 = 100
kΩ, and𝑀(0) = 80 kΩ similarly to the previous subsection,𝑀(𝑡)’s of the fractional order memristor with various 𝛼’s
excited by the sinusoidal input can be simulated as depicted
in Figures 4 and 5, where 𝐼𝑚 = 110𝜇A and 𝐼𝑚 = -110 𝜇A have
been, respectively, assumed and𝑀(𝑡)’s of the HP memristor
simulated by using its SPICE model have also been included.
Moreover, we also let 𝜔 = 1 rad/sec and 𝜃 = 0 rad. Again,

the strong agreements between our expression based 𝑀(𝑡)’s
with 𝛼 = 1 and those of the HP memristor which verify
our expression can be observed. It can be seen that 𝑀(𝑡)
of the fractional order memristor with 𝛼 ≤ 1 is periodic
with clipped peaks at 𝑀𝑜𝑛 and 𝑀𝑜𝑓𝑓 due to the temporary
saturation of the fractional order memristor as the unclipped
peaks of 𝑀(𝑡) lie outside [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓]. On the other hand,𝑀(𝑡) of the device with 𝛼 > 1 is not periodic but time
independently equal to either 𝑀𝑜𝑛 or 𝑀𝑜𝑓𝑓 when 𝑡 ≥ 𝑇𝑠𝑎𝑡
up to the sign of 𝐼𝑚. This is because the device becomes
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Figure 3: 𝑡𝑠𝑎𝑡(𝑀𝐴𝑋) of the current-controlled fractional order mem-
ristor against |𝐼𝐷𝐶|: 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25
(blue).
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Figure 4: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 = 110 𝜇A: 𝛼 = 0.75 (red), 𝛼 = 1 (green),𝛼 = 1.25 (blue), and HP memristor (black dots).
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Figure 5: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 = -110 𝜇A: 𝛼 = 0.75 (red), 𝛼 = 1 (green),𝛼 = 1.25 (blue), and HP memristor (black dots).

permanently saturated after 𝑇𝑠𝑎𝑡 as 𝑀(𝑡) contains the time
proportional term which starts to lie outside [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓] at𝑡 = 𝑇𝑠𝑎𝑡 when 𝛼 > 1. In order to show that the permanent
saturation of the fractional order memristor with 𝛼 > 1
excited by sinusoidal input is possible, we simulate 𝑀(𝑡) of
the device with 𝛼 = 1.25 once again by using (20) which
is (19) without the boundary effect. The simulation results
have been depicted in Figures 6 and 7 which show that𝑀(𝑡)’s
eventually lie outside [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓] permanently. This yields
the saturation when such effect has been included.

𝑀(𝑡) = 𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝑡𝛼Γ (𝛼 + 1) [sin (𝜃)
⋅ 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝜔𝑡)2) + 𝜔𝑡 cos (𝜃)𝛼 + 1
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Figure 6:𝑀(𝑡) of the boundary effect free fractional order memris-
tor under the sinusoidal input with 𝐼𝑚 = 110 𝜇A and 𝛼 = 1.25.
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Figure 7:𝑀(𝑡) of the boundary effect free fractional order memris-
tor under the sinusoidal input with 𝐼𝑚 = -110 𝜇A and 𝛼 = 1.25.

⋅ 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝜔𝑡)2)]
(20)

However, it should be mentioned here that both tempo-
rary and permanent saturation do not always occur. Instead,
their occurrences are dependent on the conditions on param-
eters, whichmakes either the peaks or time proportional term
of 𝑀(𝑡) be outside [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓] such as those of Figures 4
and 5. Moreover the determination of such time proportional
term and 𝑇𝑠𝑎𝑡 will be presented later in this subsection.

Similarly to the memristor, the voltage-current lissajous
curve is of interest for the fractional order memristor.
Therefore, those curves of the fractional ordermemristor will
be simulated by using (19) as the basis for further studying
the behavior of this device under the AC input. Now, we
let 0 sec < 𝑡 ≤ 19 sec, 𝜔 = 1 rad/sec, and 𝜃 = 0 rad;
the lissajous curves of the fractional order memristor with
various𝛼’s can be simulated as depicted in Figures 8–13where𝐼𝑚 = 110 𝜇A, K = 10000 A−1sec−𝛼,𝑀𝑜𝑛 = 100Ω,M𝑜𝑓𝑓 = 16 kΩ,
and M(0) = 11 kΩ have been assumed in Figures 8–10. On
the other hand, 𝐼𝑚 = -150 𝜇A, 𝐾 = 10000 A−1sec−𝛼, 𝑀𝑜𝑛 =
100Ω,𝑀𝑜𝑓𝑓 = 38 kΩ, andM(0) = 11.2 kΩ have been adopted
in Figures 11–13. Based on its SPICE model, the lissajous
curves of the HP memristor have also been simulated and
compared to those of the fractional order memristor with𝛼 = 1 as depicted in Figures 9 and 12 where the strong
agreements between the fractional order memristor and HP
memristor based curveswhich are both time invariant shaped
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Figure 8: V(𝑡)-𝑖(𝑡) of the fractional order memristor: 𝛼 = 0.75 and𝐼𝑚 > 0.

−10 −5 5 10

−10

−5

5

10

1

10
(t)(V)

i(t)(A)

100 000

Figure 9: V(𝑡)-𝑖(𝑡) of the fractional order memristor (green) andHP
memristor (black dots): 𝛼 = 1 and 𝐼𝑚 > 0.
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Figure 10: V(𝑡)-𝑖(𝑡) of the fractional order memristor: 𝛼 = 1.25 and𝐼𝑚 > 0.
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Figure 11: V(𝑡)-𝑖(𝑡) of the fractional order memristor: 𝛼 = 0.75 and𝐼𝑚 < 0.
symmetric pinched hysteresis loops can be observed. Again,
this verifies the accuracy of our expression.

From other figures, it can be seen that the lissajous curve
of the fractional order memristor with 𝛼 ̸= 1 also takes
the pinched hysteresis loop shape with pinching point at
the origin despite the asymmetricities which means that
the fractional order memristor preserves the memristive
characteristic [30]. This is unlike those fracmemristor based
results previously proposed in [17] which do not display the
pinched hysteresis loop at all; therefore such fracmemristor
does not employ the memristive characteristic according to
[30]. Unlike those of the fractional order memristor with𝛼 = 1 and HP memristor, the shape of the lissajous curve of
the fractional order memristor with 𝛼 ̸= 1 keeps changing.
This is because 𝑀(𝑡) of such fractional order memristor
contains the time proportional term. This can be clearly seen
from Figures 14–17 which display 𝑀(𝑡)’s of the fractional
order memristor with 𝛼 ̸= 1. Unlike the previous ones
depicted in Figures 4 and 5, the peaks of these 𝑀(𝑡)’s with𝛼 < 1 are unclipped as can be seen from Figures 14 and
16. This is because fractional order memristor is always
unsaturated as such peaks lie within [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓]. Moreover,
the fractional order memristor with 𝛼 > 1 never becomes
saturated and can be seen from Figures 15 and 17. This is
because the time proportional terms of its𝑀(𝑡)’s are always
be within [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓]. At this point, it can be seen that both
temporary and permanent saturation of the fractional order
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Figure 12: V(𝑡)-𝑖(𝑡) of the fractional order memristor (green) and
HP memristor (black dots): 𝛼 = 1 and 𝐼𝑚 < 0.

memristor under sinusoidal excitation do not always occur
but depend on the conditions on parameters and input as
aforementioned.

At asymptotic state, it can be seen that such time pro-
portional term of 𝑀(𝑡) becomes time independent instead.
Therefore, the shape of its lissajous curves of the fractional
order memristor with 𝛼 ̸= 1 is asymptotically unchanged as
can be seen from Figures 18 and 19 which depict the lissajous
curves of the fractional order memristor with various 𝛼’s
simulated by assuming that 100 sec < 𝑡 ≤ 119 sec. Apart
from being asymmetric when 𝛼 ̸= 1, we have found that
the lobe area of the lissajous curve of the fractional order
memristor is affected by 𝛼 similarly to those proposed in
[20, 21]. In particular, we have found that the fractional
order memristor with lower 𝛼 yields the lissajous curve with
wider lobe area which refers to more memory effect and less
linearity. Besides the voltage-current curve, thememristance-
current lissajous curve has been found to be also interesting.
Therefore, such curves of the fractional ordermemristor with
various 𝛼’s have also been simulated as depicted in Figures
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Figure 13: V(𝑡)-𝑖(𝑡) of the fractional order memristor: 𝛼 = 1.25 and𝐼𝑚 < 0.
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Figure 14: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 > 0: 𝛼 = 0.75.
20 and 21 where the parameters setting similar to those
of the voltage-current curve have been assumed. Moreover,
we also assume that 100 sec < 𝑡 ≤ 119 sec. These figures
show that the resulting lissajous curves take the elliptical
closed loop shape which are unchanged as 𝑀(𝑡) enters the
asymptotic state at the assumed time interval. The elliptical
shaped lissajous curve means that𝑀(𝑡) is periodic as well as
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Figure 15: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 > 0: 𝛼 = 1.25.

5 10 15 20
t(sec)

5000
10 000
15 000
20 000
25 000
30 000
35 000

M(t)(ohm)

Figure 16: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 < 0: 𝛼 = 0.75.
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Figure 17: 𝑀(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 < 0: 𝛼 = 1.25.
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Figure 18: V(𝑡)-𝑖(𝑡) of the fractional order memristor at asymptotic
state (𝐼𝑚 > 0): 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25 (blue).
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Figure 19: V(𝑡)-𝑖(𝑡) of the fractional order memristor at asymptotic
state (𝐼𝑚 < 0): 𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25 (blue).
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Figure 20: 𝑀(𝑡)-𝑖(𝑡) of the fractional order memristor (𝐼𝑚 > 0):𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25 (blue).

𝑖(𝑡). Similarly to the voltage-current curve, the loop area of
the memristance-current lissajous curve is also affected by𝛼. In particular, the fractional order memristor with lower𝛼 yields the memristance-current lissajous curve with wider
loop area.

At this point, we will analytically show that both upper
and lower lobes of the voltage-current lissajous curve have
equal sizes of areas which means that the fractional order
memristor does not store the energy, and such areas are
independent of 𝜃. Here, we let the area of the upper and lower
lobes of the lissajous curve be denoted, respectively, by 𝐴𝑈
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Figure 21: 𝑀(𝑡)-𝑖(𝑡) of the fractional order memristor (𝐼𝑚 < 0):𝛼 = 0.75 (red), 𝛼 = 1 (green), and 𝛼 = 1.25 (blue).

and 𝐴𝐿. Since V(𝑡) = 𝑀𝑎(𝑡)𝑖(𝑡) at asymptotic state where𝑀𝑎(𝑡) denotes the asymptotic approximation of 𝑀(𝑡), 𝐴𝑈

and 𝐴𝐿 can be given by

𝐴𝑈 = ∫(𝜋−𝜃)/𝜔

−𝜃/𝜔
𝑀𝑎 (𝑡) 𝑖 (𝑡) 𝑑𝑖 (𝑡) (21)

𝐴𝐿 = ∫(2𝜋−𝜃)/𝜔

(𝜋−𝜃)/𝜔
𝑀𝑎 (𝑡) 𝑖 (𝑡) 𝑑𝑖 (𝑡) (22)

With (13) and the asymptotic approximation of the
fractional order integration of sinusoidal function [20],𝑀𝑎(𝑡)
can be found as

𝑀𝑎 (𝑡) = min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝜔𝛼
[cos (𝜃 + 1 − 𝛼2 𝜋) − cos(𝜔𝑡 + 𝜃 + 1 − 𝛼2 𝜋)] ,𝑀𝑜𝑛] ,𝑀𝑜𝑓𝑓] (23)

As 𝑖(𝑡) = 𝐼𝑚 sin(𝜔𝑡+𝜃) and the fractional ordermemristor
is unsaturated for the entire simulation period as can be seen
from Figures 18 and 19,𝐴𝑈 and 𝐴𝐿 can be finally obtained as
follows:

𝐴𝑈 = 23 𝐾𝑀𝑑𝐼3𝑚𝜔𝛼
sin (𝛼𝜋2 ) (24)

𝐴𝐿 = −23 𝐾𝑀𝑑𝐼3𝑚𝜔𝛼
sin (𝛼𝜋2 ) (25)

which show that the upper and lower lobes of the
lissajous curve employ equal sizes of areas and such areas
are independent of 𝜃. Unlike [20] which considered only 𝐴𝑈,𝐴𝐿 has also been formulated in this work. Moreover, our𝐴𝑈 which has been derived by using a different approach
from that used in [20] totally agrees with the previous result
that 𝜃 = 0 rad has been assumed. This emphasizes the
independency from 𝜃 of the lobe areas. Moreover, (24) and
(25) also show that the fractional order memristor does not
store the energy as the summation of 𝐴𝑈 and 𝐴𝐿 which,
respectively, referred to the intake and dissipated energy, is
equal to 0.

Besides𝐴𝑈 and𝐴𝐿, the area within the closed loop of the
memristance-current lissajous curve (𝐴𝑀) can be obtained
by also using (23) and

𝐴𝑀 = ∫(2𝜋−𝜃)/𝜔

−𝜃/𝜔
𝑀𝑎 (𝑡) 𝑑𝑖 (𝑡) (26)

Since it can be seen from Figures 20 and 21 that the device
is unsaturated for the whole simulation period and 𝑖(𝑡) =𝐼𝑚 sin(𝜔𝑡 + 𝜃), we have

𝐴𝑀 = 𝐾𝑀𝑑𝐼2𝑚𝜋𝜔𝛼
sin (𝛼𝜋2 ) (27)

which shows that 𝐴𝑀 is affected by 𝛼 but independent of𝜃 as well as 𝐴𝑈 and 𝐴𝐿.

Despite the aforementioned independencies, 𝜃 does affect
the behavior of the fractional order memristor. For illustra-
tion, M𝑎(t)’s due to various 𝜃’s have been simulated by using
(20) as depicted in Figures 22 and 23 where 𝛼 = 1 and 𝜔 = 1
rad/sec has been assumed. It should be mentioned here that
I𝑚 = 110 𝜇A, K = 10000 A−1sec−𝛼, M𝑜𝑛 = 100 Ω, M𝑜𝑓𝑓 = 16
kΩ, andM(0) = 11 kΩ have been adopted in Figure 20 where
I𝑚 = -150 𝜇A, K = 10000 A−1sec−𝛼, M𝑜𝑛 = 100 Ω, M𝑜𝑓𝑓 =
38 kΩ, and M(0) = 11.2 kΩ have been assumed in Figure 21.
Moreover, 𝜃 = 𝜋/4 rad, 𝜃 = 3𝜋/4 rad, 𝜃 = -3𝜋/4 rad, and 𝜃 =
-𝜋/4 rad have been chosen as they are good representatives
of those 𝜃’s which their coordinates on the Euclidian plane,
i.e., (cos(𝜃), sin(𝜃)), are located on the portion of unit circle’s
arc in quadrants 1, 2, 3, and 4 of such plane, respectively. This
is because (cos(𝜃), sin(𝜃))’s of these chosen 𝜃’s are exactly
located at the middle points of the portion of unit circle’s arc.
For example, (cos(𝜃), sin(𝜃)) of 𝜃 = 𝜋/4 rad is located at the
middle point of the portion of unit circle’s arc in quadrant 1,
etc.

From both figures, it can be seen that these 𝑀𝑎(𝑡)’s
contain time independent terms which are formerly the time
proportional term of𝑀(𝑡) that become time independent at
asymptotic state as aforementioned. Since these time inde-
pendent terms lie within [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓],𝑀𝑎(𝑡) takes the shape
of sinusoidal waveform. However, the minimum peaks of𝑀𝑎(𝑡)’s due to the input with 𝐼𝑚 < 0 and (cos(𝜃), sin(𝜃))
located on the portion of unit circle’s arc in quadrants 2 and
3 of the Euclidian plane have been clipped as can be seen
from Figure 23 due to the saturation of the fractional order
memristor as these peaks are lower than𝑀𝑜𝑛 . FromFigure 22,
it can be seen that the input with 𝐼𝑚 > 0 and 𝜃 with(cos(𝜃), sin(𝜃)) located on the portion of unit circle’s arc in
quadrants 2 and 3 yields𝑀(𝑡)with higher time average. If we
have assumed that 𝑀𝑜𝑛 ≤ 𝑀𝑎(𝑡) ≤ 𝑀𝑜𝑓𝑓 is always satisfied,
it can be seen from Figure 23 that M(t) with higher time
average can be obtained by using the input with 𝐼𝑚 < 0 and(cos(𝜃), sin(𝜃)) located on such portion in quadrants 1 and 4.
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Figure 22: 𝑀𝑎(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 > 0: 𝜃 = 45∘ (red), 𝜃 = 135∘ (green),𝜃 = 225∘ (blue), and 𝜃 = 315∘ (magenta).
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Figure 23: 𝑀𝑎(𝑡) of the fractional order memristor under the
sinusoidal input with 𝐼𝑚 < 0: 𝜃 = 45∘ (red), 𝜃 = 135∘ (green),𝜃 = 225∘ (blue), and 𝜃 = 315∘ (magenta).

Now, we will derive the analytical expression of time
independent termof𝑀𝑎(𝑡). Let such termbe denoted by𝑀𝑇𝐼 ;
it can be given by carefully observing (23) as follows:

𝑀𝑇𝐼

= min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝜔𝛼
[cos(𝜃 + 1 − 𝛼2 𝜋)] ,𝑀𝑜𝑛] ,

𝑀𝑜𝑓𝑓]
(28)

When 𝛼 = 1 as assumed in our simulations of𝑀𝑎(𝑡),𝑀𝑇𝐼

can be reduced to

𝑀𝑇𝐼 = min [max [𝑀 (0) + Δ𝑀𝑇𝐼,𝑀𝑜𝑛] ,𝑀𝑜𝑓𝑓] (29)

where

Δ𝑀𝑇𝐼 = −𝐾𝜔−1𝑀𝑑𝐼𝑚 cos (𝜃) (30)

Therefore, it can be seen that when 𝐼𝑚 > 0 (𝐼𝑚 < 0), if(cos(𝜃), sin(𝜃)) is located on the portion of unit circle’s arc in
either quadrant 2 or 3 where cos(𝜃) < 0, Δ𝑀𝑇𝐼 > 0 (Δ𝑀𝑇𝐼 <0) thus 𝑀(0) has been increased (decreased). On the other
hand, if (cos(𝜃), sin(𝜃)) is on the portion of unit circle’s arc
in either quadrant 1 or 4 where cos(𝜃) > 0, Δ𝑀𝑇𝐼 < 0
(Δ𝑀𝑇𝐼 > 0) as 𝐼𝑚 > 0 (𝐼𝑚 < 0) thus𝑀(0) has been decreased
(increased). As a result, the sinusoidal input with 𝐼𝑚 > 0
(𝐼𝑚 < 0) and (cos(𝜃), sin(𝜃)) located on the portion of unit
circle’s arc in either quadrant 2 or 3 (1 or 4) of the Euclidian
plane yields higher𝑀𝑇𝐼 as graphically observed.

At this point, the influence of 𝛼 to𝑀𝑇𝐼 will be explored.
By using (28) with 𝜃 = 0 rad and 𝜔 = 1 rad/sec, we can
simulate𝑀𝑇𝐼 as shown inTables 1 and 2. InTable 1, we assume
that 𝐼𝑚 = 110 𝜇A, 𝐾 = 10000 A−1sec−𝛼,𝑀𝑜𝑛 = 100 Ω,𝑀𝑜𝑓𝑓 =
16 kΩ, and 𝑀(0) = 11 kΩ, where 𝐼𝑚 = -150 𝜇A, 𝐾 = 10000
A−1sec−𝛼,𝑀𝑜𝑛 = 100 Ω,𝑀𝑜𝑓𝑓 = 38 kΩ, and 𝑀(0) = 11.2 kΩ
have been adopted in Table 2. It can be seen from these tables
that 𝑀𝑇𝐼 is proportional to 𝛼 when 𝐼𝑚 > 0 and vice versa
when 𝐼𝑚 < 0.

By subtracting𝑀𝑇𝐼 from𝑀𝑎(𝑡), we obtain the following
purely periodic term of𝑀(𝑡),𝑀𝑃(𝑡)𝑀𝑃 (𝑡)

= min [max [𝐾𝑀𝑑𝐼𝑚𝜔𝛼
cos (𝜔𝑡 + 𝜃 + 1 − 𝛼2 𝜋) ,𝑀𝑜𝑛] ,

𝑀𝑜𝑓𝑓]
(31)

which existed in both initial state and asymptotic state.
Therefore, the time proportional term of 𝑀(𝑡), 𝑀𝑇𝑃(𝑡)

can be formulated by subtracting𝑀𝑃(𝑡) from𝑀(𝑡) as
𝑀𝑇𝑃 (𝑡)
= min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝑡𝛼Γ (𝛼 + 1) [sin (𝜃) 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝜔𝑡)2) + 𝜔𝑡 cos (𝜃)𝛼 + 1 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝜔𝑡)2)] − 𝑘𝑀𝑑𝐼𝑚𝜔𝛼

cos (𝜔𝑡 + 𝜃 + 1 − 𝛼2 𝜋) ,𝑀𝑜𝑛] ,
𝑀𝑜𝑓𝑓]

(32)

As a result, the aforementioned 𝑇𝑠𝑎𝑡 can be determined by
solving the following equation:

𝑀𝑜𝑛 𝐼𝑚 > 0𝑀𝑜𝑓𝑓 𝐼𝑚 < 0 } = 𝑀(0) − 𝐾𝑀𝑑𝐼𝑚𝑇𝛼
𝑠𝑎𝑡Γ (𝛼 + 1) [sin (𝜃)

⋅ 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝜔𝑇𝑠𝑎𝑡)2)

+ 𝜔𝑇𝑠𝑎𝑡 cos (𝜃)𝛼 + 1
⋅ 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝜔𝑇𝑠𝑎𝑡)2)]
− 𝑘𝑀𝑑𝐼𝑚𝜔𝛼

cos (𝜔𝑇𝑠𝑎𝑡 + 𝜃 + 1 − 𝛼2 𝜋)
(33)
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Table 1:𝑀𝑇𝐼 due to 𝐼𝑀 > 0.𝛼 𝑀𝑇𝐼 (kΩ)
0.75 6.9296
1.00 8.2175
1.25 9.7365

Table 2:𝑀𝑇𝐼 due to 𝐼𝑀 < 0.𝛼 𝑀𝑇𝐼 (kΩ)
0.75 24.4306
1.00 20.2443
1.25 16.4772

At this point, we will derive the expressions of 𝑀(𝑡)’s
due to other AC waveforms by using that due to the
sinusoidal waveform, i.e., (19), as the basis. For example,
the expression of 𝑀(𝑡) due to arbitrary phase cosinusoidal
waveform, i.e., 𝑖(𝑡) = 𝐼𝑚 cos(𝜔𝑡 + 𝜃), can be formu-
lated by using (19) and the relationship between the sinu-
soidal and cosinusoidal functions is given by cos(𝑢) =
sin((𝜋/2)−𝑢)where 𝑢 denotes arbitrary angle. As a result, we
have

𝑀(𝑡)
= min [max [𝑀 (0) − 𝐾𝑀𝑑𝐼𝑚𝑡𝛼Γ (𝛼 + 1) [sin (𝜃) 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝜋2 − 𝜔𝑡 − 2𝜃)2) + (𝜋/2 − 𝜔𝑡 − 2𝜃) cos (𝜃)𝛼 + 1 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝜋2 − 𝜔𝑡 − 2𝜃)2)] ,𝑀𝑜𝑛] ,
𝑀𝑜𝑓𝑓]

(34)

For arbitrary periodic waveform which has never been
considered in those previous works, the resulting expression
can also be determined based on (19). This is because such
waveform can be given as a series of sinusoidal functions, i.e.,𝑖(𝑡) = ∑∞

𝑛=0[𝐼𝑚𝑛 sin(𝑛𝜔𝑡+𝜃𝑛)], where 𝐼𝑚𝑛 and 𝜃𝑛, respectively,
stand for peak value and phase of arbitrary nth term of the
series, according to the Fourier theorem. As a result, the
expression of 𝑀(𝑡) due to arbitrary periodic waveform can
be given as follows:

𝑀(𝑡)
= min [max [𝑀 (0) − 𝐾𝑀𝑑𝑡𝛼Γ (𝛼 + 1) ∞∑

𝑛=0

[𝐼𝑚𝑛 [sin (𝜃𝑛) 1F2 (1; 𝛼2 + 12 , 𝛼2 + 1; −14 (𝑛𝜔𝑡)2) + 𝑛𝜔𝑡 cos (𝜃𝑛)𝛼 + 1 1F2 (1; 𝛼2 + 1, 𝛼2 + 32 ; −14 (𝑛𝜔𝑡)2)]] ,𝑀𝑜𝑛] ,
𝑀𝑜𝑓𝑓]

(35)

4. The Usage of Fractional Order Memristor in
the Memristor Based Circuit

In this research, the HP memristor based type A Wien oscil-
lator [29] has been chosen as the candidate memristor based
circuit. The unique characteristic of such circuit, which is
either 𝑅1 or 𝑅2 replaced by the memristive device as depicted
in Figure 22, is the fluctuated frequency of oscillation. The
smaller range of fluctuation refers to the better chance that
the system has sustained oscillation which can be obtained
if and only if all poles of the system are fixed in the s-plane
[29]. For studying the usage of fractional order memristor,
we replace 𝑅1 of the circuit by such fractional order device
instead of the HP memristor as traditionally did [29] and
analyze the effect of 𝛼 to the fluctuation in frequency of
oscillation which determines the chance that the system has
sustained oscillation, as mentioned above. Let the range of
suchfluctuation be denoted byΔ𝑓𝑜𝑠𝑐 ; it can bemathematically
defined as given by (36) where 𝑓𝑢𝑝 and 𝑓𝑙𝑜𝑤 stand for the
upper bound and lower boundary.

Δ𝑓𝑜𝑠𝑐 = 𝑓𝑢𝑝 − 𝑓𝑙𝑜𝑤 (36)

According to [29], these boundaries can be obtained
by solving (37) and (38) which have been formulated by
assuming that 𝐶1 = 𝐶2 = 𝐶, the memristor is unsatu-
rated, and the frequency of oscillation has been found to
lie within the range that the sustained oscillation can be
assured. Note also that 𝐼𝑚𝑒𝑚 = 𝑉𝑚𝑒𝑚/𝑀(0), where 𝑉𝑚𝑒𝑚

denotes the peak value of the voltage dropped across the
memristor which can be determined from the oscillator
output voltage, 𝑉𝑜𝑢𝑡(𝑡), and also depends on the initial
voltages of 𝐶1 and 𝐶2 [29]. Moreover, 𝑉𝑜𝑢𝑡(𝑡) can be obtained
from the state space representation and output equation of
the fractional memristor based Wien oscillator which are,
respectively, given by (39) and (40) where 𝑉𝐶1(𝑡) and 𝑉𝐶2(𝑡)
denote the voltage dropped across 𝐶1 and 𝐶2 and 𝑀(𝑡)
stands for the memristance of the conventional HP memris-
tor.

𝑓𝑢𝑝
= √ 416𝜋2𝐶2

− (𝑘𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 /2𝜋𝑓𝑢𝑝)216𝜋2𝐶2 (𝑀 (0) − 𝑘𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 /2𝜋𝑓𝑢𝑝)𝑅2

(37)
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𝑓𝑙𝑜𝑤
= √ 416𝜋2𝐶2

− (𝑘𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 /2𝜋𝑓𝑙𝑜𝑤)216𝜋2𝐶2 (𝑀 (0) + 𝑘𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 /2𝜋𝑓𝑙𝑜𝑤) 𝑅2

(38)

[[[[[[

𝑑𝑑𝑡𝑉𝐶1
(𝑡)

𝑑𝑑𝑡𝑉𝐶2
(𝑡)
]]]]]]

= [[[[
− 1𝑀 (𝑡) 𝐶1

𝑅3𝑅4𝑀(𝑡) 𝐶1− 1𝑀 (𝑡) 𝐶2

𝑅3𝑅4𝑀(𝑡) 𝐶2

− 1𝑅2𝐶2

]]]]
[𝑉𝐶1

(𝑡)𝑉𝐶2
(𝑡)]

(39)

𝑉𝑜𝑢𝑡 (𝑡) = (𝑅3𝑅4

+ 1)𝑉𝐶2
(𝑡) (40)

However, this is not the case when the fractional order
memristor has been used as 𝑀(𝑡) of such device must be
adopted. Therefore 𝑉𝑜𝑢𝑡(𝑡)must be determined based on our
derived 𝑀(𝑡) instead where 𝑓𝑢𝑝 and 𝑓𝑙𝑜𝑤 must be evaluated
from (41) and (42). As a result, the corresponding Δ𝑓𝑜𝑠𝑐 will
be different from that of the original conventional memristor
based circuit and the different chance of obtaining sustained
oscillation can be expected.

𝑓𝑢𝑝
= √ 416𝜋2𝐶2

− (𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑢𝑝)𝛼)216𝜋2𝐶2 (𝑀 (0) − 𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑢𝑝)𝛼)𝑅2

(41)

𝑓𝑙𝑜𝑤
= √ 416𝜋2𝐶2

− (𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑙𝑜𝑤)𝛼)216𝜋2𝐶2 (𝑀 (0) + 𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑙𝑜𝑤)𝛼)𝑅2

(42)

Moreover, the condition for ensuring the occurrence of
sustained oscillation can be given by () where 𝑓𝑎V𝑟 which
stands for the average oscillating frequency is given by ().

𝑅3𝑅4

= 1 + 1𝑅2

[𝑀 (0) − 𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨(2𝜋𝑓𝑎V𝑟)𝛼 ] (43)

𝑓𝑎V𝑟
= √ 416𝜋2𝐶2

− (𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑎V𝑟)𝛼)216𝜋2𝐶2 (𝑀 (0) − 𝐾𝑀𝑑
󵄨󵄨󵄨󵄨𝐼𝑚𝑒𝑚

󵄨󵄨󵄨󵄨 / (2𝜋𝑓𝑎V𝑟)𝛼) 𝑅2

(44)

By assuming 0.1 V and -0.95 V as the approximate initial
voltages of𝐶1 and 𝐶2 and also assuming that 𝑅2 = 5 kΩ, 𝐶1 =𝐶2 = 3.2𝜇F, 𝐾 = 100000 A−1sec−𝛼, 𝑀𝑜𝑛 = 100 Ω, and 𝑀𝑜𝑓𝑓

= 16 kΩ, Δ𝑓𝑜𝑠𝑐 of the fractional order memristor based Wien
oscillator with 𝛼 < 1 and 𝛼 > 1 can be obtained for various𝑀(0)’s by numerically solving (41) and (42). as tabulated
in Table 3 where Δ𝑓𝑜𝑠𝑐 of the original HP memristor based
circuit which is equivalent to the fractional order memristor
with 𝛼 = 1 in the context of this work, determined by solving
(37) and (38), has also been included.

Table 3: Δ𝑓𝑜𝑠𝑐 (Hz) for various𝑀(0)’s.𝑀(0) (kΩ) 𝛼 = 0.75 HP (𝛼 = 1) 𝛼 = 1.25
4.1 9.16 3.32 1.49
4.4 7.64 2.88 1.32
4.7 6.44 2.52 1.19
5.0 5.49 2.23 1.07
5.3 4.73 1.98 0.97
5.6 4.11 1.78 0.89
5.9 3.59 1.60 0.81

Case : RM
Case 2: RM
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Figure 24: The memristor based Wien oscillator [29].

It has been found that Δ𝑓𝑜𝑠𝑐 is inversely proportional
to 𝑀(0) which is in agreement with [29]. Since 4.1 kΩ ≤𝑀(0) ≤ 5.9 kΩ [29] and the probability of obtaining
sustained oscillation is inversely proportional to Δ𝑓𝑜𝑠𝑐,𝑀(0)
= 5.9 kΩ is recommended as it minimizes Δ𝑓𝑜𝑠𝑐 and thus
maximizes such probability. It can also be seen that Δ𝑓𝑜𝑠𝑐 is
inversely proportional to 𝛼 which means that the probability
of obtaining sustained oscillation is directly proportional to𝛼. Therefore, the fractional order memristor with larger 𝛼 is
recommended and the fractional ordermemristor with 𝛼 > 1
should be adopted as it can increase such probability from
that of the original circuit which its memristive device has𝛼 = 1. On the other hand, the fractional order memristor
with 𝛼 < 1 should be avoided as it decreases such probability.

Finally, by further assuming that𝑀(0) = 5 kΩ, 𝑅3 = 20.2
kΩ, and 𝑅4 = 10 kΩ, we can simulate 𝑉𝑜𝑢𝑡(𝑡) at asymptotic
state and the lissajous patterns of𝑉𝑜𝑢𝑡(𝑡) and𝑀(𝑡) for various𝛼’s as depicted in Figures 23–28 where the units of 100𝑉𝑜𝑢𝑡(𝑡),𝑡, and 𝑀(t) are V, sec, and Ω, respectively. The comparison
of the results with 𝛼 = 1 to the SPICE HP memristor
model based counterparts has been made for verification
where a strong agreement can be observed. We have found
that there exists neither temporary nor permanent saturation
of the fractional order memristor. This is because 𝑀(𝑡)
is always within [𝑀𝑜𝑛,𝑀𝑜𝑓𝑓] in this scenario due to the
assumed conditions on parameters and input, as can be seen
from the simulated lissajous patterns. Such conditions have
been adopted for ensuring the unsaturation which yields the
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Figure 25: 𝑉𝑜𝑢𝑡(𝑡) at asymptotic state of Type A Wien oscillator:
fractional memristor with 𝛼 = 0.75 (blue), fractional memristor
with 𝛼 = 1 (green), fractional memristor with 𝛼 = 1.25 (red), and
HP memristor (black dots).
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Figure 26: 𝑉𝑜𝑢𝑡(𝑡) versus𝑀(𝑡) of Type AWien oscillator: fractional
memristor with 𝛼 = 0.75.
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Figure 27:𝑉𝑜𝑢𝑡(𝑡) versus𝑀(𝑡) of Type AWien oscillator: fractional
memristor with 𝛼 = 1 (green line) and HP memristor (orange
dashed).
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Figure 28: 𝑉𝑜𝑢𝑡(𝑡) versus𝑀(𝑡) of Type AWien oscillator: fractional
memristor with 𝛼 = 1.25.

proper operation of the oscillator [29]. From these lissajous
patterns, we have also found that 𝑉𝑜𝑢𝑡(𝑡) is of the same
frequency as𝑀(𝑡) and the phase difference between 𝑉𝑜𝑢𝑡(𝑡)
and𝑀(𝑡), which is less than 90∘, is inversely proportional to𝛼.
5. Conclusion

In thiswork, theHPmemristor has been generalized in a frac-
tional order domain by applying the fractional calculus to its
state equation. Unlike [18–21], the dimensional consistency
has been taken into account. Moreover, the boundary effect
has also been modelled. Therefore the analytical expression
of 𝑀(𝑡) which has been derived as a function of 𝑖(𝑡) and
its related results are dimensional consistent and valid to
such generalized device in its saturation states. By using such
expression,𝑀(𝑡)’s due to various waveforms and the related
parameters have been formulated. With the simulations by
using these 𝑀(𝑡)’s and parameters, the behaviors of the
fractional order memristor have been thoroughly explored.
Therefore this research gives a precise understanding on the
characteristics of such up to date nonlinear electrical circuit
element which has been recently applied as the basis of the
net grid type fracmemristor [31].
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Córdova-Fraga, and R. Guzmán-Cabrera, “Fractionalmechani-
cal oscillators,” Revista Mexicana de Fı́sica, vol. 58, pp. 348–352,
2012.

[23] R. Banchuin, “Novel expressions for time domain responses of
fractance device,” Cogent Engineering, vol. 4, no. 1, 2017.

[24] A. G. Radwan and E. Mohammed, “Memristor: models, types,
and applications,” in On the Mathematical Modeling of Mem-
ristor, Memcapacitor, and Meminductor, pp. 13–49, Springer,
Cham, Switzerland, 2015.

[25] J. Sabatier, O. P. Agrawal, and J. A. Machado, Advance in Frac-
tional Calculus: Theoretical Developments and Applications in
Physics and Engineering, Springer, Dordrecht,The Netherlands,
2007.

[26] W. H. Beyer, CRC Handbook of Mathematical Sciences, CRC
Press, Boca Raton, Fla, USA, 1987.

[27] Z. Biolek, D. Biolek, and V. Biolková, “SPICE model of memris-
tor with nonlinear dopant drift,” Radioengineering, vol. 18, no.
2, pp. 210–214, 2009.

[28] B. Dwork, Generalized Hypergeometric Functions, Clarendon
Press, Oxford, UK, 1990.

[29] A. Talukdar, A. G. Radwan, and K. N. Salama, “Generalized
model for Memristor-basedWien family oscillators,”Microelec-
tronics Journal, vol. 42, no. 9, pp. 1032–1038, 2011.

[30] L. Chua, “If it’s pinched it’s a memristor,” Semiconductor Science
and Technology, vol. 29, no. 10, Article ID 104001, 2014.

[31] L. Xu, G. Huang, and Y. Pu, “Numerical Simulation Research
of Fracmemristor Circuit Based on HP Memristor,” Journal
of Circuits, Systems and Computers, vol. 27, no. 14, Article ID
1850227, 2018.



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

