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An optimization based method which uses bisection search algorithm has been proposed to evaluate the accurate value of Data
Retention Voltage (DRV) of a 6T Static Random Access Memory (SRAM) cell using 45 nm technology in the presence of process
parameter variations. Further, we incorporate an Artificial Neural Network (ANN) block in our proposedmethodology to optimize
the simulation run time. The highest values obtained from these two methods are declared as the DRV. We noted an increase in
DRV with temperature (𝑇) and process variations (PVs). The main advantage of the proposed technique is to reduce the DRV
evaluation time and for our case, we observe improvement in evaluation time of DRV by ≈ 46, ≈ 27, and ≈ 8 times at 25∘C for 3 𝜎,
4 𝜎, and 5 𝜎 variations, respectively, using ANN block to without using ANN block.

1. Introduction

Memory structures are now present not just as stand-alone
memory chips but also an integral part of complex VLSI
systems [1]. SRAMplays a major role in random access mem-
ory design, but its leakage currents reduction has become a
major concern in past decade. Various architectures of SRAM
cell have been also proposed in this regard [2, 3]. The most
straightforward and easier approach for reducing the leakage
power is to reduce the supply voltage (𝑉𝑑𝑑) of the SRAM
cell. Moreover, reducing it below a certain limit may result
in the detrition of the stored data due to T and PVs. In
SRAM cell, the critical 𝑉𝑑𝑑 above which a data-bit is retained
reliably is called the DRV of the cell. Figure 1 shows the
reduction of leakage current with the 𝑉𝑑𝑑. Hence, operating
the SRAM cell with the voltage higher than its DRV helps
in reducing leakage current in standby mode [4]. However,
some of the circuit mismatches result in the variation of the𝑉𝑡 of transistors, which causes shifts in theDRV value. Hence,
accurate estimation of DRV is amajor challenge in low power
SRAM design [5, 6].

Qin et al. developed an analytical model for DRV to get a
substantial reduction in leakage current by suppressing the

𝑉𝑑𝑑 to DRV [7]. The most straightforward method being
used to obtain the DRV is by running Monte-Carlo (MC)
simulations until a desired failure probability level is reached
[8]. However, this method has many disadvantages.

Since obtaining the failure point is a rare event which
makes MC simulation time-consuming [9]. Another issue
is the time to find a large number of samples to get the
accurate value of the tail of the DRV distribution as shown in
Figure 2(a). Importance sampling (mixture importance and
sequential importance) methods are developed to improve
the speed of simulation. These methods have been proved to
be more effective than MC samples in obtaining the failure
point [10–12]. Wang et al. proposed two methods to evaluate
DRV [13]. In the firstmethod, they propose a statisticalmodel
forDRV evaluationwhich uses the relationship betweenDRV
and SNM. Mean and variance of the SNM distribution have
been obtainedusingMCsimulations, andDRV is evaluated as
the value of the𝑉𝑑𝑑 at which SNM reaches zero. In the second
method, a generic tail model from recursive statistical block-
age has been proposed. Postfabrication methods are also
developed which uses canary replica cells [14, 15] and built-
in self-test [16, 17] to obtain DRV. However, the optimization
based method proposed by G. Huang et al. [18] has been
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Figure 1: Graph showing leakage current versus 𝑉𝑑𝑑 [1, 4].

claimed to be the fastest evaluationmethod to obtainDRV.He
formulated DRV as a time domain worst performance bound
problem and then multistart point (MSP) optimization strat-
egy is developed to evaluate the failure bound.

We use MATLAB tool (version 2015b) to evaluate DRV
using optimization based method. A MATLAB code is
written for the node voltage equations (Q, QB) of MOSFET
operating in the subthreshold region [19, 20]. Further, we
use bisection search algorithm [21] to search the optimum𝑉𝑑𝑑, and SNM is evaluated using rotation algorithm [22]. PVs
are incorporated by generating 5000 quasirandom samples
for the Gaussian distribution of 𝑉𝑡. To reduce the time
taken for evaluation, an ANN block is incorporated which
predicts the value of SNM for a particular sample point.
A set of DRV values are evaluated, and the corresponding
histogram is plotted. The highest value of DRV obtained or
the tail point of the histogram is considered as the DRV.
The procedure used by us has not been claimed so far as
per our knowledge. A basic 6T SRAM cell consists of two
cross-coupled inverters and two access transistors (M5 and
M6) are shown in Figure 2(b). M1 and M3 PMOS transistors
are pull-up transistors while M2 and M4 NMOS transistors
are known as pull-down transistors. During read or write
operation word line (WL) is raised high (transistors M5 and
M6 become on) while in hold mode (or retention mode) WL
ismade low (transistorsM5 andM6 turn off) and SRAMstore
the data present in Q and QB nodes.The ability of the SRAM
cell to hold the data in retention mode is determined by the
SNMof the SRAM cell.The value of SNM is determined from
the butterfly curve of the cell in hold mode. Butterfly curve
is a plot of voltages (Q versus QB and QB versus Q), where
Q and QB are the node voltages of SRAM cell as shown in
Figure 3(a). SNM is evaluated as the length of the diagonal of
themaximum square that can be incorporated in the butterfly
curve. Figure 3(a) shows the butterfly curve plotted at 𝑉𝑑𝑑
= 1V and Figure 3(b) shows the butterfly curve drawn by
varying 𝑉𝑑𝑑. It can be observed from Figure 3(b) that the
butterfly curve shrinks as the 𝑉𝑑𝑑 is reduced and the SNM
of the cell reduces to zero at 𝑉𝑑𝑑 = 0.048 V.

2. Proposed Method

The block diagram used for DRV evaluation has been shown
in Figure 4 with different colors. The evaluation procedure
has four major blocks.

(1) Bisection search algorithm is used for optimizing the
value of 𝑉𝑑𝑑 (blue color in Figure 4).

(2) Quasi MC sample generation block is used to incor-
porate process parameter variation or variation of the
threshold voltage (𝑉𝑡) (red color in Figure 4).

(3) Seevinck’s rotation algorithm is used for SNM evalu-
ation (green color in Figure 4).

(4) ANN block is used to optimize simulation time
(yellow color in Figure 4).

2.1. Bisection Search Algorithm [21]. This algorithm helps
to evaluate the accurate value of the DRV by searching an
optimum solution of 𝑉𝑑𝑑 at which the SRAM cell fails. First,
we define a rough range of 𝑉𝑑𝑑 from 0 to 1 V based on the
initial guess of the DRV. Suppose, if the range is defined
as 𝑉𝑑𝑑1 and 𝑉𝑑𝑑2, the average between these two points is
evaluated as𝑉𝑑𝑑𝑚 and this value is used in the analysis phase
to evaluate the SNM of the SRAM cell. If the SNM point is
evaluated as zero under PVs, it means that the failure has
occurred, which implies that the DRV is situated above𝑉𝑑𝑑𝑚
and the point𝑉𝑑𝑑1 is replaced with𝑉𝑑𝑑𝑚. On the other hand,
if the failure has not occurred, theDRV is located below𝑉𝑑𝑑𝑚
and 𝑉𝑑𝑑2 is replaced with 𝑉𝑑𝑑𝑚. The process is repeated as
the 𝑉𝑑𝑑1 and 𝑉𝑑𝑑2 values get updated. It is continued until
the difference Δ = 𝑉𝑑𝑑2 - 𝑉𝑑𝑑1 evaluates to be less than a
defined tolerance (Tol = 0.001). Once this condition ismet the
process ends and the final value of 𝑉𝑑𝑑2 (or 𝑉𝑑𝑑1) is declared
as theDRV. If theDRV is not locatedwithin the defined range,
the process repeats for a new range. Table 1 represents the
MOSFET constants assumed during the evaluation of SNM
which is taken from the 45 nm Predictive Technology Model
(PTM) [24].

2.2. Quasi MC Sample Generation. The value of DRV largely
depends on 𝑉𝑡 of the transistors, T, and channel length (L).
Variation of these parameters affects the value of SNM and
hence the DRV.We do the DRV evaluation only by varying𝑉𝑡
of transistors M1, M2, M3, and M4 as shown in Figure 2(b).
These values are defined in a Gaussian range with particular
mean and variance, and their samples are combined with the
Quasi MC samples to obtain the seed points. We take 5000
Quasi MC samples for evaluation to get the better accuracy.
The SNM is evaluated for each of these seed points generated
by Sobol sequence, and failure analysis is done accordingly.
The variance of the Gaussian distribution is calculated by
Pelgrom model [25, 26],

𝜎 = 1.8mV ∗ 𝜇m
√𝑊.𝐿 (1)

where 𝑊 is the width of MOSFET and 𝐿 can be used from
Table 1. Since during hold mode only transistors M1, M2, M3,
and M4 are active, we have employed the variation only for
these transistors, which is calculated in Table 2.
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Table 1: MOSFET parameters used in MATLAB tool for SNM evaluation.

Parameter (unit) NMOS value PMOS value
𝜇0, Mobility (A/𝑉2) 𝜇0𝑛 = 0.04398 𝜇0𝑝 = 0.0044
𝑡𝑜𝑥, Thickness of oxide (nm) 𝑡𝑜𝑥𝑛 = 1.75 𝑡𝑜𝑥𝑝 = 1.85
𝜀𝑟, Relative permittivity 3.9 3.9
𝑛, Subthreshold slope factor 𝑛𝑛 = 1.042 𝑛𝑝 = 1.042
𝑊, Channel width (𝜇m) 𝑊𝑛 = 0.12 𝑊𝑝 = 0.14
𝐿, Channel length (nm) 45 45
Mean of 𝑉𝑡 variation (V) 𝑉𝑡𝑛 = 0.466 𝑉𝑡𝑝 = -0.4118V
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Figure 2: (a) DRV distribution obtained by statistical methods using 90 nm technology node for 10K-b SRAM [13]. (b) Schematic of
conventional 6T SRAM cell [4].

Table 2: The variance of Vt variation (𝜎) is calculated using (1).

Transistors Variance of 𝑉𝑡 variation (𝜎)
NMOS 0.02449 V
PMOS 0.0226 V

2.3. SNM Evaluation. We use theoretical equations devel-
oped for node voltages (Q, QB) to calculate the SNM
using butterfly curve. These equations have been derived
by Calhoun et al. which evaluate the node voltages by
considering the characteristics of MOSFETS operating in the
subthreshold region. The equation for QB is given by [19]

𝑄𝐵 = 𝑉𝑡ℎ 𝑛𝑛𝑛𝑝𝑛𝑛 + 𝑛𝑝 (ln(
𝐼𝑠𝑝𝐼𝑠𝑛)

+ ln(1 − exp ((−𝑉𝑑𝑑 + 𝑄) /𝑉𝑡ℎ)1 − exp (−𝑄/𝑉𝑡ℎ) )) + 𝑛𝑛.𝑉𝑑𝑑𝑛𝑛 + 𝑛𝑝
+ 𝑛𝑛.𝑛𝑝𝑛𝑛 + 𝑛𝑝 (

𝑉𝑡𝑛𝑛𝑛 −
𝑉𝑡𝑝𝑛𝑝 )

(2)

where 𝐼𝑠𝑛and 𝐼𝑠𝑝 are given by [27]

𝐼𝑠𝑛 = 𝜇0𝑛.𝐶𝑜𝑥𝑛.𝑉𝑡ℎ2. (𝑊𝑛𝐿 ) . (𝑛𝑛 − 1) , (3)

𝐼𝑠𝑝 = 𝜇0𝑝.𝐶𝑜𝑥𝑝.𝑉𝑡ℎ2. (𝑊𝑝𝐿 ) . (𝑛𝑝 − 1) , (4)

where 𝑉𝑡ℎ = kT/q, thermal voltage, 𝑛𝑛, 𝑛𝑝 are subthreshold
slope factor for NMOS and PMOS transistors, respectively,𝐼𝑠𝑛, 𝐼𝑠𝑝are drain current (when VGS = Vt) for NMOS and
PMOS transistors, respectively, 𝑉𝑑𝑑 is supply voltage, 𝑉𝑡𝑛,𝑉𝑡𝑝 are threshold voltage of NMOS and PMOS transistors,
respectively, 𝜇0𝑛, 𝜇0𝑝 are mobility of NMOS and PMOS
transistors, respectively, 𝐶𝑜𝑥𝑛, 𝐶𝑜𝑥𝑝are oxide capacitance of
NMOS and PMOS transistors, respectively,𝑊𝑛,𝑊𝑝 are width
of polysilicon for NMOS and PMOS transistors, respectively,
and L is length of polysilicon.

The subthreshold slope factor n is evaluated using (5) by
evaluating subthreshold slope (S) [27],

𝑆 = 𝑛.𝑉𝑡ℎ. ln (10) (5)

The value of S is found to be 60mV/decade at room T =
25∘C. Its value for typical bulk CMOS can range from 70 to
120mV/decade [28].The value of n is evaluated as 1.042 using
(5) at room T. The voltage at which node value Q equals
QB is known as tripping voltage (𝑉𝑚). It is the point where
curves (Q versus QB and QB versus Q) intersect, as shown
in Figure 3(a). Here, we assume the identical cross-coupled
inverters to evaluate 𝑉𝑚. The relation of 𝑉𝑚 for an inverter is
given by (6) (by ignoring theDrain Induced Barrier Lowering
(DIBL) effects) as follows [29]:
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Figure 3: Butterfly curve to obtain the SNM of 6T SRAM cell in hold mode (a) at 𝑉𝑑𝑑 = 1V (b) by varying 𝑉𝑑𝑑.

𝑉𝑚 = 𝑉𝑑𝑑.𝑛𝑛(𝑛𝑛 + 𝑛𝑝) +
𝑛𝑝.𝑉𝑡𝑛 − 𝑛𝑛𝑉𝑡𝑝
(𝑛𝑛 + 𝑛𝑝) + 𝑛𝑛.𝑛𝑝.𝑉𝑡ℎ. ln (((𝑊𝑝/𝐿) .𝐼𝑠𝑝) / ((𝑊𝑛/𝐿) .𝐼𝑠𝑛))(𝑛𝑛 + 𝑛𝑝)

+ 𝑛𝑛𝑛𝑝.𝑉𝑡ℎ. ln ((1 − exp ((−𝑉𝑑𝑑 + 𝑉𝑚) /𝑉𝑡ℎ)) / (1 − exp (−𝑉𝑚/𝑉𝑡ℎ)))
(𝑛𝑛 + 𝑛𝑝)

(6)

All the notations used for (6) are same as mentioned for (2),
(3), (4), and (5).

We use the graphical technique proposed by Seevinck
[22] to calculate the SNM value as shown in Figure 5. The
steps involved in this techniques are as follows:

(1) Obtain Q and QB samples using (2). Figure 6 shows
the butterfly curve which is plotted using Q and QB
samples for 𝑉𝑑𝑑 = 0.5V.

(2) Combine Q and QB set into a matrix, X.
(3) Multiply Xwith rotationmatrix, i.e., [U V󸀠] = Rot∗[Q

QB], where ∗ indicates matrix multiplication and Rot
is the rotational matrix,

Rot = [[
[
cos(𝜋4 ) − sin(𝜋4 )
sin(𝜋4 ) cos(𝜋4 )

]]
]

(7)

New axis for the rotated curve is (U, V󸀠). V1 is the
matrix corresponding to V󸀠.

(4) Evaluate V2 as V2 = -V1 + (2.√2.𝑉𝑚), where 𝑉𝑚 is
obtained using (6). (U, V1) is the rotated version of
(Q, QB) and (U, V2) is the rotated version of (QB, Q).
Figure 7(a) shows the rotated version of Figure 6.

(5) Take the difference between V2 and V1 samples, i.e.,
Z = V2 - V1.

(6) Plot (U, Z) as shown in Figure 7(b), and obtain S1 =
-min (Z), S2 = max (Z), and S3 = min (S1, S2).

(7) Finally, SNM is evaluated as SNM = S3/√2.
For a particular value of 𝑉𝑑𝑑 and each and every sample of
Quasi MC seed, the SNM is evaluated.

2.4. ANN Block. Artificial neural networks (ANNs) are a
family of learning models that are used to estimate func-
tions that depend on a large number of inputs. ANN is
generally presented as system of interconnected “neurons”
which exchange messages between each other.This functions
approximately as a brain. It consists of three layers input
variables, hidden nodes, and outputs. Inputs can be of any
number and are provided in the initial learning phase.
Outputs are the ones which are obtained after the analysis.
During the process, many intermediate hidden nodes are
created that are essential for optimizing. However, the user
does not have any control over them. The optimization
process includes two important stages [23]:

(i) Training or learning phase. This phase uses all the
different input signals to predict the possible out-
comes of outputs using cautious learning of previous
experiments. These can be accomplished either by
conducting a large number of experiments or by
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６ＮＪ1

６ＮＪ2

６ＮＪ3

６ＮＪ4

６＞＞

Figure 8: General block diagram of ANN block.

using values of the previously conducted experi-
ments. These values will be stored and is used for the
upcoming analysis phase.

(ii) Analysis phase. After learning all the calculation
procedure from the previous phase, the network is

now ready for successfully providing outputs for any
inputs provided.

For a 5000-sample space as mentioned in Section 2.2, the
process of SNM evaluation is time-consuming. Hence, an
ANN block which has been trained to evaluate the SNM is
used. This block evaluates the SNM for all the samples and
then separates the samples having low SNM (SNM < 0.02V).
Only these samples are now sent to the actual analysis block
where the accurate value of SNM is evaluated using rotation
algorithm.

If the SNM = 0, the sample is declared as the failure
sample. Input data set consists of𝑉𝑡 variations ofM1,M2,M3,
and M4 transistors and the 𝑉𝑑𝑑. SNM is the output vector as
shown in Figure 8. Fifty data sets are generated using SNM
evaluation algorithm, and the network is trained using Radial
Basis Function (RBF) network, which is explained in next
subsection.

2.4.1. RBF Network [23]. An RBF network uses nonlinear
functions to map inputs to the outputs into a high dimen-
sional feature space. A general RBF network consists of three
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layers as shown in Figure 9. The input layer with inputs x𝑖
(𝑖 = 1, 2,. . .m) where 𝑚 is a number of input parameters.
The hidden layer is generated by one-to-one correspondence
between the training input data 𝑥𝑖 and the kernel function
K(x, 𝑥𝑖) for 𝑖 = 1, 2, . . .N, where 𝑁 is the number of training
samples [23]. In the third layer, the output is evaluated as
the linear weighted sum of the kernel functions generated
in the hidden layer. The following equations are used by the
network:

(i) To evaluate kernel function𝐾 (𝑥𝑖, 𝑥𝑗),
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒|𝑥𝑖−𝑥𝑗|/2𝜎󸀠2 (8)

where 𝑥𝑖, 𝑥𝑗 represent input vectors with 𝑖, j = 1, 2, . . .m. Here,
𝜎󸀠denotes the Gaussian bandwidth.

(i) Weight vector 𝑤 is calculated by

(𝐾 + 𝜆𝐼)𝑤 = 𝑦
𝑑

(9)

Here 𝐾 is the kernel matrix, 𝐼 is the identity matrix of order𝑁, 𝜆 is called the regularization parameter, and 𝑦
𝑑
is the

desired response vector.
(ii) To evaluate output of the network 𝑦,

𝑦 = 𝑁∑
𝑖=1

𝑤𝑖𝐾(𝑥, 𝑥𝑖) (10)

𝑤𝑖 is the 𝑖th (𝑖 = 1, 2,. . ..N) element of the weight vector𝑤 and𝐾(𝑥, 𝑥𝑖) is the kernel function.
Kernel used for the control technique is an Exponential

Radial Basis Function (ERBF). By considering this ANN
block, a considerable reduction in the evaluation time is
observed. Four different ANN blocks are generated to evalu-
ate the DRV for 𝑇 = 15∘C, 25∘C, 50∘C, and 100∘C, respectively.

3. Result and Future Work

In this section, we present the results of an optimization
based method which evaluates the DRV of a 6T SRAM cell
incorporating the process parameter variation by considering
the variation of 𝑉𝑡 of four transistors.

DRV varies within a range and changes with each run
of the experiment. It depends on the samples generated by

Quasi MC simulation. To obtain the actual DRV, we conduct
the experiment for 25 runs and the highest value obtained is
considered as the DRV. After getting the DRV value from 25
experiments the corresponding histogram is plotted for two
cases, (i) by considering the ANN block and (ii) by ignoring
the ANN block. Table 3 indicates the 𝑉𝑡 variation range for
PMOS and NMOS transistors for 3𝜎, 4𝜎, and 5𝜎 variation.

Table 4 represents the DRV obtained at 3𝜎, 4𝜎, and 5𝜎
variation for T = 15∘C, 25∘C, 50∘C, and 100∘C, respectively,
using the parameter specifications shown in Table 1 and
the methodology followed in Section 2. From Table 4 we
can observe that DRV increases with T slightly, while it
increases significantly with the variation of 𝑉𝑡. To compare
the time taken for DRV evaluation using with and without
ANN block we run the MATLAB code at 25∘C for 3 𝜎,
4 𝜎, and 5 𝜎 variations and note the corresponding time
taken for the highest value of DRV for 25 runs as shown in
Table 5. Figure 10 represents the corresponding bar chart.The
histogram to obtain the DRV at T = 15∘C, 25∘C, 50∘C, and
100∘C for 3 𝜎, 4 𝜎, and 5 𝜎 variation follows the distribution
shown in Figure 2(a) and has been presented in Appendix.

However, the time taken for evaluation depends on the
version ofMATLAB tool, the machine on which the program
is executing and how fast the failure sample is obtained out of
the 5000 Quasi MC samples generated. From Table 5, we can
observe that ANN block helps in reducing the time taken for
DRV evaluation. Since the evaluation, time varies randomly
for each run so the comparison of evaluation time cannot be
generalized. The method can be extended to evaluate DRV
for a memory chip with complex circuit structure. The mod-
ification can be made in the algorithm, to obtain the more
accurate DRV results with better simulation time. Instead of
obtaining the node voltage values using theoretical equations,
practical SPICE-level simulation can be used to evaluate the
SNM for a given 𝑉𝑑𝑑 and 𝑉𝑡. Optimization algorithms can be
implemented for the node voltages generated by the circuit.
The procedure can be extended for other technology nodes
by considering other process parameter variations like 𝑇 and
geometry variations in𝑊 and 𝐿 for other cell topologies.
Appendix

See Figure 11.
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Table 3: Vt variation range used for PMOS and NMOS.

Variation Range for PMOS Range for NMOS
3 𝜎 -0.4796V to -0.344V 0.39253V to 0.53947V
4 𝜎 -0.5022V to -0.3214V 0.36804V to 0.56396V
5 𝜎 -0.5248V to -0.2988V 0.34355V to 0.58845V

Table 4: DRV values with 3 𝜎, 4 𝜎, and 5 𝜎 variation of Vt for T = 15∘C, 25∘C, 50∘C, and 100∘C.

Temperature (∘C) DRVWithout ANN (V) DRVWith ANN (V)
3 𝜎 4 𝜎 5 𝜎 3 𝜎 4 𝜎 5 𝜎

15 0.325 0.416 0.4951 0.325 0.4141 0.4961
25 0.331 0.4189 0.5 0.333 0.4189 0.5
50 0.352 0.4229 0.5069 0.352 0.4229 0.5078
100 0.36 0.4443 0.5146 0.36 0.4443 0.5107

Table 5: Time elapsed for DRV evaluation at 25∘C for 3 𝜎, 4 𝜎, and 5 𝜎 variations.
Temperature (25∘C) DRVWithout ANN (V) DRVWith ANN (V)

3 𝜎 4 𝜎 5 𝜎 3 𝜎 4 𝜎 5 𝜎
DRV 0.331 0.4189 0.5 0.333 0.4189 0.5
Time (s) 459 649 783 10 24 103
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cations,”AEÜ - International Journal of Electronics and Commu-
nications, vol. 83, pp. 366–375, 2018.

[4] H. E. Weste Neil and D. M. Harris, CMOS VLSI Design-A Cir-
cuits and Systems Perspective, Addison-Wesley, 4th edition, 2010.

[5] Ruchi and S. Dasgupta, “Sensitivity analysis of DRV for various
configurations of SRAM,” in Proceedings of the 2015 19th
International Symposium on VLSI Design and Test (VDAT), pp.
1–5, Ahmedabad, India, June 2015.

[6] Ruchi and S. Dasgupta, “6T SRAM cell analysis for DRV and
read stability,” Journal of Semiconductors, vol. 38, no. 2, pp. 1–7,
2017.

[7] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey,
“SRAM leakage suppression by minimizing standby supply
voltage,” in Proceedings of the 5th International Symposium on
Quality Electronic Design, pp. 55–60, San Jose, Calif, USA, 2004.

[8] N. Edri, S. Fraiman, A. Teman, and A. Fish, “Data retention
voltage detection for minimizing the standby power of SRAM
arrays,” in Proceedings of the 2012 IEEE 27th Convention of
Electrical and Electronics Engineers in Israel, IEEEI ’12, pp. 1–5,
Eilat, Israel, November 2012.

[9] A. Nourivand, A. J. Al-Khalili, and Y. Savaria, “Postsilicon tun-
ing of standby supply voltage in srams to reduce yield losses
due to parametric data-retention failures,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp.
29–41, 2012.

[10] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking
the simulation barrier: SRAM evaluation through norm mini-
mization,” in Proceedings of the 2008 International Conference
on Computer-Aided Design, ICCAD ’08, pp. 322–329, USA,
November 2008.

[11] R. Kanj, R. Joshi, and S. Nassif, “Mixture Importance Sampling
and its Application to the Analysis of SRAM Designs in the
Presence of Rare Failure Events,” in Proceedings of the Design
Automation Conference, pp. 69–72, San Francisco, Calif, USA,
July 2006.

[12] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, and T. Sato,
“Sequential importance sampling for low-probability and high-
dimensional SRAM yield analysis,” in Proceedings of the 2010
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 703–708, San Jose, Calif, USA, November 2010.

[13] J. Wang, A. Singhee, R. A. Rutenbar, and B. H. Calhoun, “Two
fast methods for estimating the minimum standby supply volt-
age for large SRAMs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 12, pp.
1908–1920, 2010.

[14] J. Wang and B. H. Calhoun, “Canary replica feedback for near-
DRV standby VDD scaling in a 90nm SRAM,” in Proceedings of
the 2007 IEEE Custom Integrated Circuits Conference, CICC, pp.
29–32, San Jose, Calif, USA, September 2007.

[15] J.Wang andB.H.Calhoun, “Techniques to extend canary-based
standby VDD scaling for SRAMs to 45 nm and beyond,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2514–2523,
2008.

[16] F. B. Yahya, M. Mansour, A. Kayssi, and H. Hajj, “Using BIST
circuitry to measure DRV of large SRAM arrays,” in Proceedings
of the 2010 International Conference on EnergyAware Computing
(ICEAC), pp. 1–4, Cairo, Egypt, December 2010.

[17] J. Wang, A. Hoefler, and B. H. Calhoun, “An enhanced canary-
based system with BIST for SRAM standby power reduction,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 5, pp. 909–914, 2011.

[18] G.Huang, L.Qian, S. Saibua,D. Zhou, andX. Zeng, “An efficient
optimization basedmethod to evaluate theDRVof SRAMcells,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
60, no. 6, pp. 1511–1520, 2013.

[19] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise
margin for sub-threshold SRAM in 65 nm CMOS,” in Pro-
ceedings of the 31st European Solid-State Circuits Conference
(ESSCIRC ’05), pp. 363–366, September 2005.

[20] A. Makosiej, O. Thomas, A. Vladimirescu et al., “Stability and
Yield-Oriented Ultra-Low-Power Embedded 6T SRAM Cell
Design Optimization,” in Proceedings of the Design Automation
Test in Europe Conference & Exhibition, pp. 93–98, Dresden,
Germany, March 2012.

[21] M. Bartholomew-Biggs, Nonlinear Optimization with Engineer-
ing Applications, Springer, 2008.

[22] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin
analysis of MOS SRAM cells,” IEEE Journal of Solid-State
Circuits, vol. 22, no. 5, pp. 748–754, 1987.

[23] S. Haykin, Neural Networks, A Comprehensive Foundation,
Prentice hall, 2nd edition, 2004.

[24] “PTMmodel for 45nm technology,” http://ptm.asu.edu/model-
card/2006/45nm bulk.pm, assessed February 2016.

[25] M.Qazi,M. Tikekar, and L.Dolecek, “Loop Flattening Spherical
Sampling: Highly efficient model reduction techniques for
SRAM yield Analysis,” in Proceedings of the Automation &
Test in Europe Conference & Exhibition, pp. 801–806, Dresden,
Germany, March 2010.

[26] K. J. Kuhn, “Reducing variation in advanced logic technologies:
approaches to process and design for manufacturability of
nanoscale CMOS,” in Proceedings of the IEEE International
Electron Devices Meeting (IEDM ’07), pp. 471–474, Washington,
DC, USA, December 2007.

[27] A. Wang, B. Calhon, and A. P. Chandrashekharan, Sub-Thre-
shold Design for Ultra-low Power Systems, Springer, 2006.

http://ptm.asu.edu/modelcard/2006/45nm_bulk.pm
http://ptm.asu.edu/modelcard/2006/45nm_bulk.pm


12 Active and Passive Electronic Components

[28] K. Roy, S.Mukhopadhyay, andH.Mahmoodi-Meimand, “Leak-
age current mechanisms and leakage reduction techniques in
deep-submicrometer CMOS circuits,” Proceedings of the IEEE,
vol. 91, no. 2, pp. 305–327, 2003.

[29] J. F. Ryan, J.Wang, and B.H. Calhoun, “Analyzing andmodeling
process balance for sub-threshold circuit design,” in Proceedings
of the 17th Great Lakes Symposium on VLSI, GLSVLSI’07, pp.
275–280, Italy, March 2007.



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

