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LDMOS devices with grounded gate shield structures variations were simulated and tested, aiming to address hot carrier immunity 
and robustness concurrently. Optimal con�guration of grounded gate shield structure was found to reduce local electrical �eld 
strength at gate-to-drain overlap for better hot carrier immunity, and to achieve uniform E-�eld distribution on drain side for 
robustness as well. Design trade o� of hot carrier immunity (HCI) and robustness is analyzed by simulation and silicon data.                                                                

1. Introduction

Research on HCI were forces on improving the silicon oxide 
interface quality and reducing the impact ionization near the 
interface [1]. Recently, LDMOS devices with various con�g-
urations, i.e., drain extension, LOCOS, STI, SOI, super junc-
tion, �oating �eld plate, and body buried layer, have been 
comprehensively reviewed [2]. Field plate or gate shield has 
been a common reduced surface �eld (RESURF) technique, 
were �rst applied to VDMOS device [3], then introduced to 
the LDMOS device [4]. Several papers have illustrated the HCI 
mechanism with �oating �eld plate to push the �owing current 
paths away from the device surface [5, 6].

Robustness is the ability of LDMOS to withstand the 
power from output mismatched or the power from electro-
static discharge. Robustness of LDMOS can be correlated to 
the inherently present parasitic bipolar NPN transistor [7], 
and more body doping to reduce body resistance was sug-
gested. ­e device could fail because of formation of early 
�lament [8, 9], deep implant drain [10], and ESD implant at 
drain side [11] were suggested to address the formation of 
early �lament issue. ­ese techniques modify the electric �eld 
distribution at the channel and dri¤ region, and have e�ect on 
hot carrier injection.

Hot carrier injection reliability and robustness have been 
two most important reliability issues of LDMOS [8, 9, 12–14], 
and were discussed separately before. In this paper, HCI and 

robustness of LDMOS with di�erent grounded gate shield 
structures were analyzed; the mechanism of trade-o� between 
HCI and robustness were revealed.

2. Device Structure and Design Consideration

­e gate shield reduces the electric �eld peaks at the gate side 
of the dri¤ region, more than one shield lay out in staircase 
will result in more ideal constant lateral �eld distribution. 
However, more shields could result in more drain capacitance 
and less drain current. ­e shield structures, such as the num-
ber of shields, the length of shield, the oxide thickness between 
silicon and shield, are designed to obtain constant lateral �eld 
distribution, to trade o� design between robustness, reliability, 
and performance. ­e complexity of the con�guration depends 
on the application of device. In general, two shields structure 
is better for LDMOS working at 28 V; however, for LDMOS 
working at 48 V or more, three shields laid out in staircase 
could be better.

­e structure of the LDMOS device is illustrated in Figure 
1. Double grounded gate shields locate above the dri¤ region, 
connecting to the source by contact via. ­e one closer to the 
gate is the �rst grounded gate shield, the other one with thicker 
oxide is the second grounded gate shield, which enhance the 
RESURF e�ect. ­e name of these two gate shields are abbre-
viated as Gsh1 and Gsh2. ­e original device dimensions are 
illustrated in Figure 1, the length of Gsh1 is 0.8 µm, it is close 
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to the right side of poly gate; the length of Gsh2 is 1.3 µm, it 
is 0.6 µm to the right side of poly gate; the thickness of the 
oxide between Gsh1 and silicon is 0.12 µm, the thickness of 
the oxide between Gsh2 and silicon is 0.26 µm. ­e gate shields 
do not overlay the poly gate, except the bridges, which connect 
the gate shields and metal one with contact; the gate shield 
bridges are the same material as gate shields, the metal one 
connects the substrate through W-sinker [15]. ­e contact 
also connects metal one and source silicide; however, the con-
tact which connects gate shield will not through gate shield to 
the source silicide.

­e resistivity of the substrate is 0.01–0.02 ohm∗cm, the 
thickness of the epitaxial layer on the substrate is 5 µm with
the resistivity of 1–2 ohm∗cm. ­e maximum working volt-
age of the device is 32 V with the poly gate length of 0.4 µm. 

­e length of dri¤ region is 2.8 µm, it is formed with two 
step doping, the �rst step starts from poly with phosphorus 
concentration of 2E12 cm2, and the second step doping starts 
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Figure 1: Structure of LDMOS device.
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0.6 µm from poly with phosphorus concentration of 
1E12 cm2.

Under strong local electric �eld, some lucky carriers with 
enough kinetic energy hit the silicon oxide interface, leaving 
new interface trapped charges or new ionic bonds. Leading to 
degradation of on resistance, threshold voltage and saturation 
current, this is a common understanding of HCI. As illustrated 
in Figure 2, the dri¤ region under the Gsh1 and Gsh2 is 
depleted, hence the current under the Gsh1 and Gsh2 is 
pushed away from the interface, and gathered to the interface 
near the gate and Gsh1, where horizontal and vertical electric 

�elds are both stronger, which could result in worse HCI. 
Hence, impact ionization and electric �eld distribution at the 
dri¤ region near the gate of di�erent shield structures are sim-
ulated to evaluate the HCI reliability.

­e electrical equivalent circuit corresponding to the 
robustness is given in Figure 3, by TCAD simulation, the drain 
to base capacitance Cdb is 1.2 fF/mm at 28 V drain voltage, the 
base resistance Rb is 1.9 ohm∗mm. Power from output mis-
match will re�ect to the LDMOS drain, resultings in high drain 
voltage and strong electric �eld at the dri¤ region. ­en elec-
tron-hole pairs will be generated and the hole current may 
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illustrated in Figure 4. To reveal the relationship between 
robustness and electric �eld distribution, device is biased with 
gate grounded and Vds equal 65 V, and simulated, as illustrated 
in Figure 5.

It is observed that, peak electric �eld located near the gate 
and the gate shield at HCI stress condition, compared with the 
current path in �gure, dri¤ region near the gate can be the 
region where hot carrier injected. ­e peak electric �eld 
located near the drain when device biased with gate grounded 
and Vds equal 65 V, the peak electric �eld should be low enough 
to ensure the robustness. To reveal more information, devices 
with di�erent shield structures are simulated.

­e peak electric �eld and impact ionization of devices 
with di�erent gate shield length are summarized in Figure 6. 
­e electric �eld and impact ionization near gate of HCI stress 
condition decrease as the length of gate shield increase, while 
the electric �eld near drain of 65 V condition increase as the 
length of gate shield increase. Indicating device with longer 
gate shield has better hot carrier immunity, but worse robust-
ness and less breakdown voltage, as illustrated in Figure 6 and 
Table 1. For electric �eld near the drain, the length of gate 

trigger parasitic NPN transistor, causing the formation of early 
�lament [8, 9], and failure of device. During this power dis-
charging process, the highest electric �eld happens at the dri¤ 
region near the drain because of kirk e�ect [16]. To improve 
the robustness and HCI reliability, the electric �eld of dri¤ 
region near the drain and near the gate has to be designed 
carefully. For a device with given breakdown voltage, better 
electric �eld distribution near the drain means worse near the 
gate and vice versa. ­is leads to a trade-o� design in HCI 
reliability and robustness of LDMOS. ­e next part will be 
TCAD simulation and observation of di�erent con�guration 
of gate shield.

3. TCAD Simulation and Observation

For the HCI stress condition in this paper, the drain is biased 
at 32 V and the gate is biased at the voltage where the drain 
current is 8 mA/mm. ­is stress condition is used because the 
maximum working voltage is 32 V and the static drain current 
is 8 mA/mm. ­e electric �eld distribution and impact ioni-
zation at HCI stress condition are simulated with TCAD, as 
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Figure 6: ­e relationship between peak electric �eld, impact ionization and the length of gate shield.



5Active and Passive Electronic Components

which may resultings in better hot carrier immunity, but 
higher electric �eld distribution near the drain may results in 
worse robustness. ­is can be explained as the electric �eld 
distribution changed by the longer part of shield. Since the 
shield is grounded, more electric �eld lines are terminated to 
the shield near the drain and less to the dri¤ region near the 
gate with longer shield. More importantly, current path is 

shield 2 is more signi�cant than gate shield 1. For electric �eld 
near the gate, the length of gate shield 1 is more signi�cant 
than gate shield 2. Similar observation can be obtained with 
decreasing the thickness of the gate shield oxide, as illustrated 
in Figure 7 and Table 1.

It can be summarized that devices with longer shield have 
less impact ionization and lower electric �eld near the gate, 

Table 1: DC data from simulation.

Shield structure O� state breakdown voltage (V) Vth (V) Rdson (ohm∗mm) Idsat (A/mm)
Base line 72.05 1.361 13.083 0.184
Length of Gsh1 −0.2 µm 72.43 1.361 13.056 0.189
Length of Gsh1 +0.2 µm 70.97 1.361 13.106 0.18
Length of Gsh2 −0.2 µm 74.08 1.361 13.065 0.189
Length of Gsh2 +0.2 µm 67.49 1.361 13.099 0.18
Oxide thickness of Gsh1 −0.02 µm 70.37 1.361 13.295 0.172
Oxide thickness of Gsh1 +0.02 µm 72.53 1.361 12.943 0.193
Oxide thickness of Gsh2 −0.02 µm 69.84 1.361 13.092 0.182
Oxide thickness of Gsh2 +0.02 µm 72.39 1.361 13.077 0.185
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Figure 7: ­e relationship between peak electric �eld, impact ionization and the thickness of gate shield oxide.
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4. Measurement and Discussion

Figures 8 and 9 illustrate on resistance and drain current deg-
radation of di�erent gate shield structures at the HCI stress 
condition versus time. ­e initial drain current was 8 mA/mm 
under drain voltage of 32 V, and on resistance was tested at Vgs 
equals 5 V and Vds equals 0.1 V.

It can be observed that the tested data match with TCAD 
simulation, the stronger the electric �eld near the gate, the 
worse the resistance and drain current degradation. It is 
observed that the device with the worst on resistance degra-
dation is accompanied by positive drain current degradation, 
while the other is with negative drain current degradation. 
­is can be explained by the strongest impact ionization near 
the gate, causing hot carrier injection happening at the silicon 
oxide interface under the gate and the dri¤ region. ­e electric 
�eld peak concentrated in the gate oxide near dri¤ region, may 
reduce the reliability problem such as tunneling or gate oxide 
breakdown. ­e tunneling e�ect can be detected by gate leak-
age current, while gate oxide reliability can be veri�ed by high 
temperature gate biased test (HTGB).

Figure 10 illustrates the TLP result of devices with di�erent 
gate shield structures. It is observed that device with 0.2 µm 
shorter Gsh1 and Gsh2, 0.02 µm thicker Gsh1 oxide and 
0.02 µm thicker Gsh2 oxide can withstand higher drain voltage 
when generating the same current than other structures, indi-
cating more power can be discharged with better robustness. 
Looking back to the simulation, electric �eld distribution near 
drain of devices with shorter shield and thicker oxide is more 
uniform, and the peak electric �eld is lower, this is the reason 
that they have better robustness.

DC data of devices are listed in Table 2, all the devices have 
an approximate breakdown voltage except for conditions E 
and H, the reason is that electric �eld distribution of these two 
devices are less uniform. ­e length and oxide thickness of 
second gate shield are a signi�cant factor to breakdown volt-
age. ­e on resistance is tested at very low drain voltage, almost 

pushed deeper into silicon by the gate shield, results in better 
hot carrier immunity but less saturation current as illustrated 
in Table 1. Similar explanation can be applied to the thickness 
of oxide between gate shield and silicon. To verify the simu-
lation, devices with di�erent grounded gate shield structure 
are implanted and tested. Both longer gate shield and thinner 
oxide enhance the depletion of silicon by gate shield, resulting 
in more ionized charge; according to the electric charge and 
electric �eld relationship of Maxwell’s equations, this will 
reduce local electric �eld peak; however, the electric �eld peak 
near drain will increase under the same drain voltage.
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5. Conclusion

In this paper, trade off design of HCI and ESD robustness in 
LDMOS was analyzed. Uniform distribution of electric field 
near the drain results in better robustness and breakdown 
voltage, while better HCI reliability can be obtained by uni-
form distribution of electric field near the gate. �e best HCI 
and robustness trade off can be obtained by carefully selection 
of grounded gate structure. At the same time, kirk effect should 
be released with more uniform electric field distribution at the 
dri� region, hence device will saturate at higher voltage with 
better linearity.
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