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ABSTRACT

The metal binding properties of the human copper chaperone ATOXI and its yeast homologue Atxl have

been characterized. Complexes of these proteins with Cu(I), Ag (1), Cd(II) and Hg(II) were studied by native

gel electrophoresis, chemical cross-linking followed by SDS-PAGE, as well as by size exclusion

chromatography, mutagenesis and UV-visible absorption spectroscopy. Results indicate that binding of

different metals to either ATOXI or Atxl altered conformation of subunit structure and the oligomerization

state of the proteins. Furthermore, it has been demonstrated that freshly reduced apoprotein is capable to

convert Cu(ll) to Cu(l) stoichiometrically to the amount of protein present, while oxidized protein is only

twenty per cent as active. Titration of Cu(ll) with either oxidized or reduced protein resulted in similar

increase in absorbance at 254 nm, implicating Cu-thiolate formation in both forms of the protein, but titration

with Ag(i) caused the increase in absorbance at 254 nm with the reduced protein only. These data indicate

that Cu(1), Ag(1), Hg(ll) and Cd(ll) are all capable of binding to ATOXI and Atxl, but the characteristics of

the binding to these copper chaperones differ for different metals.

Abbreviations: BCA, bicinchoninic acid; BCS, bathocuproinedisulfonic acid; BSA, bovine serum albumin;

DTT, dithiothreitol; EDTA, ethylene diamine tetra-acetic acid; GST, glutathione S-transferase; HEPES, N-

(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid, IPTG; isopropyl--D-thiogalactopyranoside; MES, 2-
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(N-morpholino)ethanesulfonic acid; PAR, 4-(2-pyridylazo)resorcinol; PMSF, phenylmethylsu|fonyl fluoride;

SDS-PAGE, SDS polyacrylamide gel electrophoresis; Tris, tris(hydroxymethyl)amminomethane.

INTRODUCTION

Copper is an essential trace element in all living organisms. It plays a crucial role in cellular respiration,

antioxidant defense and iron metabolism in eukaryotes/1/. Since free intracellular copper can be toxic even

at low concentrations, specialized systems for transport and homeostatic mechanisms are required to maintain

safe intracellular concentrations of this metal inside the cells. Insight into the mechanism of copper

trafficking has followed the characterization of genes involved in the inherited copper disorders, Wilson and

Menkes diseases/2-5/. Despite strikingly different clinical phenotypes, each disease results from absence or

dysfunction of homologous copper transporting ATPases located in the trans-Golgi network of cells for

transporting copper to the secretory pathway and cellular export/6-10/. In Wilson disease, toxic amounts of

copper accumulate in liver and brain, resulting in hepatic cirrhosis and neuronal degeneration. Menkes

syndrome is characterized by a profound copper deficiency state which results in the failure to incorporate

copper into essential copper containing enzymes/11/. Studies on a similar ATPase, Ccc2p in Saccharomyces

cerevisiae have revealed a remarkable conservation ofmechanisms of copper metabolism/12/.

A series of genetic studies in Saccharomyces cerevisiae has revealed that the delivery of copper to

specific cellular pathways is mediated by a group of proteins called copper chaperones. One of these

chaperones in yeast is Atxl /13/, a small molecular weight protein which contains a single repeat of the

MXCXXC copper-binding motif present in the Wilson and Menkes proteins (each of which contains six

repeats of this motif/14/) and functions to deliver copper to the secretory pathway for biosynthesis of Fet3p,

a multicopper oxidase homologous to ceruloplasmin, required for high-affinity iron uptake in yeast/15/. This

MXCXXC motif is also found in the copper chaperone (CCS) for superoxide dismutase (SOD l) /16/,

bacterial copper chaperone CopZ/17/, and in a variety of bacterial metal-transport proteins, including ZntA

/18/, CopA/19/, the Hg(II)-resistance protein MerP and other proteins involved in resistance to Cd(II) and

Pb(II) /14,20/. Atxl interacts specifically with the yeast homologue of the Menkes and Wilson disease

proteins, Ccc2p, and transfers copper to the N-terminal cytosolic domain of Ccc2p, which contains two

repeats of metal binding motif/21,22/.

ATOXI (or HAHI) has been identified as a human homologue of Atxl/23/. This protein has been shown

to complement functionally atxlA mutant strains in yeast, suggesting that ATOXI plays a role in copper

homeostasis in mammalian cells. Recently, similar proteins have been identified in rats/24/, dogs/25/, sheep

/26/as well as in mice/27/. Both the Menkes and Wilson disease proteins are thought to acquire copper via

ATOX1 /23,28/. It has been shown that ATOXI interacts with Menkes and Wilson proteins in a copper

dependent fashion /29,30/; however, the molecular events involved in copper transfer remain poorly

understood.
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X-ray absorption spectroscopic studies indicate that Menkes and Wilson proteins bind Cu (I) as two-

coordinate via two Cys residues in the MXCXXC motif/31,32/, whereas a third ligand, probably an

exogenous thiol, is observed in Atxl /21/. A high resolution X-ray structure of Hg(ll)-Atxl reveals that the

mercury is coordinated in a bidentate fashion from two cysteine sulfurs with a S-Hg bond angle of 167/33/.

The NMR structures of apo- and copper bound Atxl have also been reported/34/. In both cases, the metal

bound Atxl exists as monomer. The Atxl metallochaperone/33/, the fourth metal binding domain of Menkes

protein/35/, the bacterial copper binding protein CopZ in E. hirae/36/, and B. subtilis/37/, as well as the

bacterial periplasmic protein MerP /3 8/ al adopt a 13c1313e13 structural fold and exhibit one metal bound per

molecule of protein. X-ray crystal strucfures of Hg(ll), Cd(ll) and Cu(1)-bound form of ATOXI also exhibit

13c1313c13 fold but, unlike the aforementioned proteins, two adjacent molecules of ATOXI are linked by a

metal ion/39/. In Cd(II)-ATOX1, the Cd(ll) ion is coordinated in a tetrahedral fashion by four Cys residues,

similar to those observed in the structure of Cd(ll)5Zn(ll)2 form of rat metallothionein. In Cu(I)-ATOX and

Hg(II)-ATOXI, the metal binding site exhibits distorted tetrahedral geometry. Structural studies of ATOXI

suggest the molecular concept of how metal ion transfer between MXCXXC containing domains takes place.

The two MXCXXC motifs can dock with one another in a manner that supports the direct metal transfer

mechanism proposed by Pufahl et al./21/.

Despite the similarity between Atxl and ATOX1, to date there have been no studies examining the

dimerized state of metal-bound Atxl. This report presents evidence that both Atxl and ATOXI exist as a

mixture of monomers, and dimers, and that different metals or redox states confer different conformations

and oligomerization of both proteins.

MATERIALS AND METHODS

Cloning of ATOX1 and Atxl

Both ATOXI and Atxl were expressed as fusion proteins with GST (glutathione-S-transferase) at the N-

terminal portion of the molecule, using expression vector pGEX-6P-2 (Amersham-Pharmacia Biotech),

according to standard protocols of molecular biology. The vector contains a "Prescission" protease (human
rhinovirus 3C protease) cleavage site, enabling the removal of GST moiety from the cloned proteins at the

final step of purification.

Site directed mutageneses of ATOX1

Mutageneses on the construct of ATOX1 in pGEX-6P-2 vector were performed by using a USE

Mutageneses Kit (Amersham Pharmacia Biotech) as per protocol. Five mutants of ATOX1 with Cys residues

mutated to Ser in various combination were generated, namely, C41S-ATOXI (where C4, which is not part

of metal binding motif was mutated to S), CC/SS-ATOXI (both conserved Cys residues, C 2 and C 5 were

mutated to S ), 3C/3S-ATOXI(all 3 Cys in ATOXI were mutated), CC/SC-ATOXI (only C - was mutated)

and CC/CS-ATOXI (only C5 was mutated). The fidelity of the constructs was verified by automated DNA

107



Vol. 2, Nos. 1-2, 2004 Comparative Analysis ofMetal Binding Characteristics ofCopper
Chaperone Proteins, Atxl andATOX1

sequencing (DNA Sequencing Facility, Center for Applied Genomics, Hospital for Sick Children, Toronto,

Canada).

Expression and purification of Atxl, ATOXI and its mutants

All of the constructs generated as described above were used to transform E. coli BL21 (DE3) cells for

protein expression. The fusion proteins were present mainly in soluble forms. The purification of GST-fusion

proteins, and subsequent removal of GST, were essentially as described pre.viously/3 !/, but without urea in

the buffers. The final yield of purified ATOX1 (or its mutants, as well as Atxl) was between 50-80 mg per 5

L of E. coli culture. Protein concentration was determined by BCA method (Pierce) using BSA as standard.

The final protein products contained no bound metal.

Size exclusion chromatography of the metal-protein complexes

The metal protein complexes of ATOX1 or Atxl were prepared by incubating purified protein (0.1

mM) in 0.5 ml of 20 mM MES pH 6.0, containing one molar equivalent of metal (Cu (ll),or Ag(1), or Cd(il)),

and 3 molar equivalent of DTT, at room temperature for 30 min. The excess metal and reducing agent were

removed by gel filtration on Bio-Gel P-10 (Bio-Rad) column (separation range 20 kD-I kD), with the column

dimension of 1.5 x 60 cm. One-ml fractions were collected. The molecular sizes of the eluted metal-protein

complexes were assessed by comparison with elution profiles of molecular weight standard proteins, applied

to the same column.

Determination of Free Thiols (Ellman’s Assay)

The free thiol group was determined in the presence and absence of 6 M guanidine.HCI in 0,1 M

phosphate buffer pH 8.0, with addition of 0.1 mM DTNB (dithio-l,4-nitrobenzoic acid). The change in

absorbance at 412 nm was monitored at 25C and the total sulfhydryl content was calculated according to the

method described by Creighton/40/.

Determination of metal content in metal protein complexes

The extent of copper, or cadmium incorporation was determined by spectrophotometry, using the

metallochromic indicator 4-(2 pyridylazo)-resorcinol (PAR) to determine the amount of metal released after

treatment of metal-protein complexes with sodium hypochlorite (NaOCI), as described by Casadevall and

Sarkar/41/ with some modifications. Copper(1) content in copper bound protein was also determined by

BCA reaction described by Brenner and Harris /42/. Alternatively, the Cu(l) content in the mixture was

measured by the BCS competition reaction. This reagent was also used to determine Cu(l) in the presence of

Cu(ll) directly in titration experiments described in the following section. The appearance of a Cu(BCS)2
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complex was measured by monitoring the absorbance at 483 nm, with a molar extinction coefficient of 12250

/43/.

UV-visible spectra of metal-protein complexes

All UV-visible spectra were recorded on a Hitachi U-3210 Spectrophotometer. Spectra of metal-protein

complexes were generated by direct titration of aliquots of Cu(ll) or Ag(1) solution with freshly reduced

proteins (prepared by incubation of the proteins with DTT followed by gel filtration to remove excess DTT),
or oxidized proteins (proteins that had been stored at 4 C for at least 2 weeks). The spectra between

wavelengths of 240-360 nm were recorded; the metal-complex formations were followed by measuring

increases in absorbance at 254 nm.

Chemical Cross-Linking

Cross-linking reactions were carried out in the absence and presence of metal ions, according to the

manufacturer’s protocol. The cross-linking agents used were DMS (dimethylsuberimidate (Pierce), spacer

arm 11 A) and EGS (ethylene glycobis(suifosuccunimidylsuccinate (Pierce), spacer arm 16.1 A). Both are

reactive toward amino acid containing primary amine groups such as Lys residues. The cross-linked products

were analysed on SDS-PAGE. Control reactions, without cross-linkers, were performed in parallel.

RESULTS AND DISCUSSION

Gel mobility patterns of different metal bound forms of ATOXI on native and SDS gel
electrophoresis.

Figure A shows mobility patterns on native-PAGE of apo (untreated), reduced, and metal-bound

ATOXI in the presence of mild reducing condition (reducing agent was used at equimolar concentration of

Cys-residues in the protein). The untreated apo-ATOXl remained close to the top of the gel. In the presence
of DTT, the apoprotein migrated faster toward anode and seemed to consist of more than one species. The

Cu-complex of ATOXI only moved slightly faster than untreated apo, followed by Ag(1)-, Hg(ll)- and

Cd(ll)-ATOXI which migrated the farthest. Mobility of proteins on a native gel electrophoresis depends on

various factors, including conformation, size and overall charge of the proteins. Thus the different migration

patterns displayed by these metaI-ATOXl complexes suggest that these metals affect the conformation or

subunit structure of the protein differently.

An attempt to identi the effects of these metals on subunit structure of ATOXI by using SDS-PAGE did

not provide any conclusive information, as shown in Figures B and C. When these complexes were

separated on an SDS gel in the absence of reducing agent in gel sample buffer, the untreated apoprotein

showed the presence of some dimer as well as trimer. All of the metal complexes also had the similar degree

of dimerization; however, the Cu(I)-ATOXI showed a band smearing upward from monomer toward the

dimer position (Figure B). This band was reversible since it disappeared when SDS gel was performed
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Fig. I: Gel migration pattern of ATOXI on 10% Native-PAGE (A) and 16% SDS-PAGE in the absence (B)
or presence of 300 mM 2-mercaptoethanol (C). Ten i of 0.3mM of untreated, reduced (+DTT, 3:1

molar ratio) or 1:1 metal/protein + DTT was loaded on the gel as indicated on each lane. No add

apoprotein without DTT or metal.

using sample buffer containing excess reducing agent, as shown in Figure 1C. Results from SDS gels also

indicated that some of the dimer bands observed on the gel were not formed through disulfide bonds, as the

electrophoretic patterns remained even in the presence of reducing agent. Results obtained from native gel

(Figure A) initially led us to suspect that the untreated (oxidized) apo-ATOXl might exist as an oligomer

whereas the fully reduced apo-AYOXI, as well as Cd(ll)-complex, is a monomer, and Cu(l)- or Ag(1)-

complex is a dimer. Failure to detect increased oligomerization on SDS gel might be due to the instability of

dimerization by metal such that in the presence of the strong negative charge of SDS the complex was able to

dissociate.

One approach to capture different stages of oligomerization of protein is to use a cross-linking reagent.

Thus cross-linking reactions between metaI-ATOXI complexes and DMS, or EGS were performed, and the

products were separated on SDS gel. Contrary to our suspicion that the Cd(ll)-ATOX complex may exist as

a monomer, results shown in Figure 2A and 2B indicated that out of the four metal-complexes, Cd(ll)-

ATOXI could be cross-linked with EGS as a dimer. Dimerization of Cd(I|)-ATOXI could also be captured

by using DMS, but to a much lesser extent. Hg(II)-ATOXI complex could also form a dimer, though to a

lesser extent than Cd(ii)-ATOX I. Furthermore, faint bands of trimers and tetramers are also detected in the

cross-linked products of metal complexes. Results obtained from these cross-linking experiments implied

that Cd(ll) binding to ATOXI altered the conformation on the protein so that Lys residues from each subunit

became close enough to facilitate cross-linking reactions. This result also helps explain the behavior of

migration of Cd(II)-ATOX! complex on native-PAGE. On native-PAGE, protein containing more exposed

basic residues migrates slower toward cathode.. Binding of Cd(ll) to ATOXI may change conformation of the
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SDS-PAGE of crosslinked products of ATOXI with DMS or EGS in the absence and presence of

metals + DTT. Cross-linking reactions were performed as described in the Materials and Methods

section. Ten tl of cross-linked products were loaded on the gel as indicated on each lane. A, without

cross-linker; B, Cross-linked with DMS; C, cross-linked with EGS. No add apoprotein without

DTT or metal.

protein so that some Lys or Arg residues are shielded or brought inward and results in decrease of overall

basic charge on the surface, hence the faster migration toward cathode as compared to apo-protein. The fact

that more dimer was obtained when EGS was used, as compared to DMS, indicated that the nearest distance

between the Lys residues from each subunit must be slightly more than 11 /, and up to at least 16 .
Although the results proved that Cd(II)-ATOXI and, to some extent, Hg(II)-ATOXI complexes existed as

dimers, it did not exclude the possibility that the other metal-complexes were also dimers. Specifically, apo-

ATOXI, as well as other metaI-ATOX1 proteins, may exist as dimers but have different conformations from

that of Cd(II)-ATOX1 in such a way that the Lys residues from each subunit are too far apart to be cross-

linked. An X-ray crystallographic study of metal-AYOXl complexes showed that Cd(ll) ligated to ATOXI

in a perfect tetrahedral configuration by sharing 4 Cys residues between two subunits /39/. Our results

confirmed that Cd(II)-ATOXI exists as a dimer. Regarding Cu(1) and Hg(ll) bindings, the results from

Wernimont et al /39/ showed that these two metals could also ligate ATOXI as a dimer through a distorted

tetrahedral configuration. With respect to Cu(1)-ATOXI, according to their proposed mechanism for metal

transfer between subunits; at equilibrium there would be a mixture of the copper-bound forms as a monomer

(when Cu(1) bound digonally between two essential Cys residues on the same subunit), and as a dimer (when

Cu bound 3 or 4 Cys residues trigonaily or tetrahedrally between two subunits). The reason why we could not

detect more dimer form of Cu(I)-ATOXI than that of apo-protein by cross-linking reaction might be

explained by the lack of stability of Cu(1)-ATOX dimer in solution.
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Characterization of metal-complexes with ATOX1 mutants and with yeast Atxl

Unlike ATOXI, the NMR, and X-ray crystallographic studies of Atxl showed that the yeast protein

formed complexes with Cu(1) and Hg(ll) as monomer. In general, Atxl and ATOXI are very similar except

that Atxl is five amino acids longer, and there are only two Cys residues in Atxl while ATOXI has three

residues. Given the possibility that the extra Cys residue (C4t) in ATOXI plays a role in dimerization, we

mutated this Cys residue to Ser. In addition, we generated four other mutants of ATOXI, which have

conserved Cys residues, mutated to Ser, either singly or in various combinations as described in the Materials

and Methods section. The first four mutants listed could be. expressed in large quantities similar to the wild

type. They were further characterized for their metal binding capability by comparing gel mobility on native

gel as criteria for binding. However, for unknown reasons, cells bearing CC/CS-ATOXI plasmid could not

express the protein. Results shown in Figure 3 indicate that the three mutants lacking one or both of

conserved Cys residues, namely CC/SC-, CC/SS- and 3C/3S-ATOX1, behaved differently from wild type.

The presence of DTT alone or together with metal did not alter gel migration patterns from that of untreated

apo-proteins. However, C41S-ATOXI behaved in a similar fashion to wild type in response to reduction and

to the presence of metals. Cross-linking experiments also showed dimerization of C41S-ATOXI in the

presence of Cd(ll), similar to what was observed with the wild type protein (data not shown). Since this

mutant was generated to imitate Atxl, this observation implied that Atxl should bind to various metals and

behave in the same fashion as ATOXI as well.

To prove this point, the yeast Atxl was cloned, expressed, purified, and its metal-complexes were

characterized. As expected, Atxl behaved identically to ATOXI in all aspects (Figure 4). Its tendency to

o r ( o I C) o 0 <
Z + + + Z + + + Z + + +

Wild type C41S CCISC

"o I- + + 91- + +
o ::1 o E:) 9 ,,
Z + + + z + + +

CC/SS 3C/3S

Fig. 3: Comparison of migration pattern on Native-PAGE of Wild-type and various mutants of ATOXI

with and without metals. C41S, non-conserved Cys (C4) was mutated: CC/SS, both of conserved

Cys (C 2 and C 5) were mutated; 3C/3S, all 3 Cys residues were mutated; CC/SC, only one of

conserved Cys (C 12) was mutated. No add apoprotein without DTT or metal.
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Fig. 4: Characterization of apo and metaI-Atxl complexes by gel electrophoresis. A, 10% Native-PAGE; B,
16% SDS-PAGE without 2-mercaptoethanol; C, 16% SDS-PAGE (without 2-mercaptoethanol) of

cross-linked product of Atxl and EGS in the presence of metals. No add apoprotein without DTT
or metal.

dimerize in the presence of both Cd(ll) as well as Hg(ll) (Figure 4C) is different from the observation from

crystal structure of Hg(ll)-Atxl which found the metal complex to be a monomer/33/. From these findings, it

is apparent that ATOXI and Atxl bind metals in similar manners. Based on the cross-linking experiments

there is no question that in the presence of Cd(ll) and Hg(ll) both proteins exist as dimers. However, whether

Cu(i)-, Ag(i)- or apoprotein exists as monomer or dimer remains unclear.

Size exclusion chromatography of ATOXI, Atxl and their metal-complexes

ATOXI, C41S-ATOXI, and Atxl, under various conditions such as untreated (oxidized apoprotein),

reduced apoprotein and Cu(l)-, Ag(l)-, or Cd-complex., were characterized on a Bio-Gel P-10 column. The

concentration of proteins used was 0.3, 0.5 and 0.3 mM for ATOXI, C41S-ATOXI and Atxl respectively.

The concentration of metals and DTT used was at I:1 and 3:1 molar equivalent of protein, respectively. The

elution profiles of these complexes are presented in Figure 5, which shows profiles of the apoprotein and

metal-complexes of Atxl as an example, in general, the elution profiles of the three proteins are similar in

many aspects. The oxidized apoproteins were eluted with a peak at fraction 39 40 (fraction size of ml).

Cu(l)- or Ag(l)-complex was also eluted off at a similar location. However, the reduced apoproteins as well
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Fig. 5: Size Exclusion chromatography of Atxl. 0.5 ml of 0.3 mM samples of untreated apo-Atxl

(oxidized), or reduced-Atxl (apoprotein+DTT), or metaI-Atxl complexes (apoprotein +metals

+DTT) were loaded onto a Bio-Gei P-10 column (1.5x60 cm). One-ml fractions were collected.

Metal and DTT were added at 1"1 and 3" molar ratio respectively relative to protein concentration.

V0 and Vt of the column are at fraction 28 and 68 respectively. The elusion positions of myoglobin

(18 kDa) and cytochrome C (12.5 kDa) are marked by the arrows.

as Cd(ll)-complex were eluted off earlier with a peak at fraction 34-35. When compared with elution profiles

of standard molecular weight proteins; myoglobin (18 kDa) and cytochrome C (12.5 kDa); the oxidized

apoprotein and Cu(l)-or Ag(1)-complex have a molecular weight slightly larger than 12.5 kDa whereas the

reduced apoprotein and Cd(ll)-complex are slightly smaller than 18 kDa but larger than oxidized apoprotein

and Cu(l)- or Ag(l)-complex. The molecular weights of ATOX1 and Atxl subunit are 7.813 kDa and 8.518

kDa respectively. Thus it is likely that the reduced-apoprotein and the Cd(ll)-complex are dimers. It was

surprising that the reduced apoprotein emerged as a dimer. Obviously dimerization involved hydrophobic

interaction or some form of interaction other than disulfide formation. As for the oxidized apoprotein, Cu(l)-

or Ag(1)-complex, their elution profiles fit neither as a monomer nor a dimer. One possible explanation is that

the peak may consist of the mixture of monomer and dimer. When the Cu(i) and Cd(ll) content in the peak

fraction of protein complexes was determined, there was only about 0.5-0.6 mol of Cu(l) detected per mol of

protein, but mol of Cd(ll) was found per mol of protein. If the Cu(l) and Cd(ll)-complexes are formed with

ATOXI or Atxl by sharing-SH groups between two subunits, then the expected amount of metal
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incorporated should be 0.5 mol/mol protein. Cu(1) content obtained from Cu(1)-Atxl peak seems to fit this

assumption. At equilibrium there may be a mixture of Cu(1)-Atxl dimers where two subunits share one

bound Cu(1), some monomers with one mol of Cu(I) bound per subunit via digonal coordination, as well as

some metal free subunits. As for Cd(ll)-Atxl, although the physical evidence strongly suggests that the

protein exists as a dimer, the 1:1 ratio of metal:protein does not support two subunits sharing one Cd(ll) as

seen in X-ray crystal structure/39/. Based on our results, the plausible explanation would be either Cd(ll)
bound to Atxl as 1:1 ratio via digonal coordinate or the protein dimers share two mol of Cd(ll) in a dimetal

cluster

When ATOXI was incubated with 2-fold excess of Cu(ll) plus DTT and at higher protein concentration

(1 mM), the elution profile of Cu(1)-complex emerged as two well-separated peaks (Figure 6). The first peak
came off at the void volume and contained some precipitation; the second peak was at fraction 35-36, which

is the range of dimer/monomer mixture. The first peak contained some aggregated Cu(1)-bound protein,

which formed a yellowish-green precipitate after centrifugation. The Cu(1) content in the soluble part of this

peak was about 2 mol per mol of protein, whereas the Cu(1) content in the second peak was only 0.5 per mol.

The precipitation of Cu(l)-protein complex, when ATOXI was used at high concentration and in the presence
of 2 times excess copper, has been consistently observed in our laboratory when the dialysis method was

used to remove excess copper, even under inert atmosphere of argon gas. On all occasions, although the

solution of the protein-Cu mixture was clear during the incubation period (30 min), a significant amount of

0.2

0.0

18kD 12.i kDa

0 10 20 30 40 50 60 70

Elution volume, ml

Fig. 6: Size Exclusion chromatography of Cu(I)-ATOXI. 0.5 ml of mM Atoxl +2 mM Cu(ll)+3 mM

DTT was loaded onto a Bio-Gel P-10 column. All conditions are the same as in Figure 5
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protein precipitated during thedialysis period, and the precipitate always had a yellowish-green color.

Initially we suspected that the precipitation might be due to the presence of excess Cu(ll) adversely affecting
the protein, because dialysis did not remove it fast enough to prevent this consequence. In contrast, in the gel
filtration experiments, we expected that the protein complex would be separated from the excess Cu(ll) faster

than by dialysis and precipitation would not take place. It should be pointed out that at the time of loading to

the column, the protein mixture did not show any sign of precipitation; nevertheless, the first peak of Cu(1)-
ATOXI emerged as a mixture of insoluble and soluble oligomers, which also incorporated more Cu(1) than

the complex in the second peak. These findings suggest that polymerization of Cu(1)-ATOXI depends on

proteinas well as copper concentrations. A similar observation on Cu(1)-CopZ has also been reported/36/:

that Cu(1)-protein complex aggregated at protein concentration higher than 0.7 mM. The oligomeric state of

Cu(1)-ATOXI contains at least 2 mol of Cu(1) per mol of protein. The copper chaperone protein Cox 17, the

mitochondrial metallochaperone, has been reported to exist as a dimer/tetramer of polycopper complex, with

each subunit binding 3 tool of Cu(1) as a trinuclear cluster /44/. Copper was also reported to enhance

homodimerization of yeast CCS, a copper chaperone for SOD (45). Domains and III of hCCS, a human

homologue, were found to interact with each other via cysteine-bridged dicopper cluster, with up to 3.5 mol

of Cu(1) bound per mol/46/. How multiple Cu(1) atoms bind to ATOX1 oligomers is unclear and further

investigation is currently underway.

UV-visible spectral characteristics of metal-protein complexes of Atxl and ATOX1

The peak fraction of metal-protein complexes of Atxl, obtained from gel filtration experiments shown in

Figure 5, were scanned between the wavelengths of 240-360 nm. Other than the protein peak at 276 nm, all

metal-bound proteins displayed an increase in absorbance at 254 nm, as compared to apoprotein, but with

different intensity depending on the metal used. Ag(1)-complex was the highest, followed by Cu(1)-complex,

then Cd(ll)-complex, which had the weakest absorption at this wavelength (Figure 7). The scans of ATOXI

or C41S-ATOXI complexed with metals also showed similar results (data not shown). The absorbance at

254 nm is probably due to the metal thiolate bond of metal protein complex.

Next, a titration experiment was attempted by following the increase in the absorbance at 254 nm after

addition of Cu(ll) solution to the freshly reduced ATOX1. Figure 8A shows typical results of titration

between reduced ATOXI with increasing concentration of Cu(ll), from 0.1 to 6 molar ratios with respect to

protein. As can be seen, the absorbance at 254 nm increased with increasing ratio of Cu(ll) and slowly

leveled off after 2:1 molar ratio of Cu(ll) to protein was added. After ATOXI was titrated with 6 molar

excess of Cu(ll), there was only a total of mol of Cu(1) incorporated per mol of protein, as determined by

BCS reaction with the metal-protein mixture. BCS reacts specifically with Cu(1) and can be used to assay

Cu(1) in the presence of excess Cu(ll) (43) The Cu(1)-ATOX1 complex (or CuATOXI) was relatively stable

for at least 5 days. It should be pointed out also that these experiments were performed under normal

laboratory conditions without any extra precaution of maintaining anaerobic environment. Under these

conditions, there was no evidence of precipitation when excess Cu(ll) was used. These findings contrasted

the result obtained when the protein was used at mM and with 2x Cu(ll), which resulted in two species of

Cu(l)-complexes, one more aggregated containing 2 moi of Cu(l)/mol protein, the other soluble but
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Wavelength (nm)
Fig. 7: UV-visible Spectra of metal-Atxl complexes. Peak fractions (15 laM, each) from reduced apo-Atxl,

Cd(I|)-Atxl, Cu(1)-Atxl and Ag(1)-Atxl as shown in Figure 5 were scanned between 240-360 nm

containing only 0.5 tool of Cu(i) (see Figure 6). From titration experiments, due to low protein concentration

(15 IaM), it was not possible to identify whether there was one or two species of complexes in the solution.

The presence of Cu(1) at mol/mol may represent the homogeneous species of Cu(I) bound in digonal

geometry or it may consist of the mixture of dicopper and half-copper species as observed in Figure 6.

Titration of reduced ATOXI with Ag(l) also generated a pattern of incremental absorbance at 254 nm

that was almost identical to that of Cu(II) titration (Figure 8B). The increase of absorbance generated by

Cu(ll) or Ag(l) titration was reversible after the pH of the mixture was decreased below pH 2. Titration with

Cd(II) produced a very small increase in absorbance at 254 nm (data not shown).

When oxidized ATOXI was titrated with Cu(II), surprisingly, there was also an increase in absorbance at

254 nm, which reached saturation with excess Cu(ll) (Figure 8C). However, unlike the reduced protein, the

oxidized ATOXI did not have any interaction with Ag(1) since there was no increase in absorbance at 254

nm with addition of Ag(1) (Figure 8D). There was also a pronounced difference in absorbance of Cu-thiolate

products of oxidized and reduced ATOXI at wavelength 300 nm (see Figures 8A and 8C). There was only

0.2-0.25 mol of Cu(l) formed per mol of protein, in the mixture of oxidized ATOX and 6 molar excess of

Cu(II), as opposed to 1:1 mol ratio when reduced protein was used. One possible argument for finding some

Cu(1)-complex with oxidized protein is that there was still a substantial residual amount of reduced form in

the mixture of "oxidized protein"; however, the lack of response to Ag(1) titration does not support this

explanation. When oxidized ATOXI (0.89 raM) was incubated with 3 molar excess of Cu(ll) and then

separated on a gel filtration column, aggregation of protein was not observed, as was the case when ATOX1
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Fig. 8: UV-visible Spectra of the titration of Reduced and Oxidized ATOXI with Cu(ll) and Ag(l). 15

of oxidized or freshly reduced ATOX! was titrated with small increment of CuSO4 or AgNO3.

Metals were added at 0, 0. I, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 and 6.0 molar ratio with

respect to protein concentration. The arrows indicate the direction of spectra from each addition. A,
Reduced ATOX1 + CuSO4. B, Reduced ATOXI + AgNO.. C, Oxidized ATOXI + CuSO4. D,

Oxidized ATOX + AgNO.

was incubated with 2:1 Cu(il) in the presence of DTT, and then separated on the column (shown in Figure 6).

After treatment, the protein still emerged at the same position as untreated oxidized ATOX I. Furthermore,

neither Cu(l) nor Cu(ll) was detected in the protein fractions. When an aliquot from these fractions was re-
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titrated with Cu(ll) and Ag(1), it produced the same results shown in Figure 8 C and D, with a yield of Cu(l)

formation of 0.2 mol per mol of protein. These findings suggest that both oxidized and reduced forms of

ATOXI are able to bind Cu(ll) and convert it to Cu(1) but the capacity for reduction of Cu(ll) is much more

limited in the oxidized form. Additionally, the affinity of oxidized ATOXI for copper is much weaker, and

the binding is unstable as compared to the reduced protein. The reduction of the protein and its subsequent

dimerization may be a prerequisite for metal binding and its stabilization. To our knowledge, this is the first

timethat Atxl or ATOXI was demonstrated to bind Cu(ll) and reduce it to Cu(l) without an exogenous

reducing agent being present. Previously, Cu(1)-protein complexes of various copper chaperones and of the

copper-binding domains of Wilson and Menkes proteins were obtained either by adding Cu(ll) plus excess

reducing agent/21,31/37,47/, or Cu(1) plus reducing agent/36,45,48/to the protein solution. As for Ag(1),

this metal could bind only to the reduced ATOXI but not to the oxidized form, if the increase in absorbance

at 254 nm is taken as a criterion for binding.

To clarify the differences between reduced and oxidized ATOXI and their respective metal complexes

further, these samples were subjected to native gel electrophoresis. As shown in Figure 9A, the oxidized

protein consisted of two bands with equal intensity and addition of Cu(ll), Ag(1) or Cd(ll) had no effect on

migration pattern of the protein. However, there were striking differences among products of metal

complexes of freshly reduced protein, as shown in Figure 9B. Compared to the oxidized form, which

contained two bands, the reduced protein consisted mainly of a slower migrating upper band. Cu(ll) did not

change the migration pattern from that of reduced protein alone, but the addition of an identical amount of

Ag(l) resulted in a complex which migrated faster than the apoprotein. This occurred in spite of the fact that

both metals produced a similar increase in absorbance at 254 nm. Since Cu(1) and Ag(1) have identical

Fig. 9: Native-PAGE of metal complexes formed by direct addition (1"1 tool ratio) of Cu (I!), Ag (i) or Cd

(!1) to oxidized, (A); or freshly reduced ATOX I, (B).
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charges, if both metals bind to the protein with the same coordination, then the overall charge effect on the

complex should be the same. The difference in migration patterns on native-PAGE suggests that complexes

formed by these two metals with ATOX1 are different.

Ag(1) was used as a ligating metal in an NMR study of the 4th Cu-binding domain of Menkes protein/35/;

it formed a complex with the Cys residue in the MXCXXC motif of this peptide in a digonal geometry. Cu(1)

and Ag(1) were assumed to coordinate this motif in a similar fashion. Radioactive silver has been used in

fibroblast silver loading for diagnosis of Menkes disease/49/. Beside Cu(1), Ag(l) is also a substrate for a

bacterial/50/, as well as a yeast/51/, P-type ATPase homologue of Wilson and Menkes protein. The Cu/Ag-

ATPase, CopB, in E. hirae was found to have the same apoarent Km for both metals implying similarity in

metal binding/50/. However, the results from our study suggest that AgO) and Cu(1) binding to ATOX1 and

Atx cause different changes in conformation of the proteins.

Binding of Cd(II) to reduced Atoxl also resulted in a complex that migrated faster than Ag(1)-complex. In

this experiment, the patterns of gel migration of metal complexes formed by direct addition of metals to the

reduced protein in the absence of DTT are similar to those formed in the presence of DTT as shown in Figure

1A.

CONCLUSIONS

We have presented evidence that ATOXI and Atxl, as expressed, purified and used in this study, are

indistinguishable from each other in terms of subunit structure and metal binding properties. Both proteins

show the ability to bind to various heavy metals such as Cu(1), Ag(1), Cd(ll) and Hg(ll). However,

irrespective of whether ATOXI or Atxl is used, each of these metals seems to confer different effects on the

conformation or oligomerization state of the protein, as demonstrated by migration patterns on native gel

electrophoresis, by cross-linking reactions and by different intensity of absorbance at 254 nm, which

represent metal-thiolate charge transfer spectra. Moreover, we are able to show that ATOXI can bind and

reduce Cu(ll) into Cu(l) in the absence of added reducing agent. Thus the protein indeed possesses redox

activity. Previously, the Cu(1) complex of ATOXI, Atxl, or copper-binding motif of Menkes or Wilson

disease protein was only demonstrated by addition of either Cu(1) solution to the reduced protein or by

adding Cu(ll) solution in the presence of excess reducing agent to the protein solution. In this study, freshly
reduced ATOX1 was able to reduce Cu(ll) to Cu(l) stoichiometrically to moi equivalent of the protein

present irrespective of the excess amount of Cu(ll) added. The oxidized protein was also able to convert

Cu(ll) to Cu(1) but with only about 20% efficiency, although in both cases there were similar increases in

absorbance at 254 nm after same amount of Cu(ll) was added. Unlike Cu(ll), Ag(1) was able to bind only to

the reduced form of the protein, and although Ag(1)-ATOXI displayed similar increase in UV-visible spectra

as Cu(i)-ATOX 1, their conformations were definitely different as shown by native gel migration patterns.
Our studies provide strong evidence that Cd(ll)-complex of either protein is a dimer, the Hg(ll)-complex

is also dimeric, but Cu(i)-complex is a mixture of various forms depending on the concentration of protein
and the molar ratio of copper used. These findings indicate the need for cautious interpretation of structural

data for the copper chaperones or their target proteins, in the past, Ag(l), Hg(ll), Cu(i) or Cd(il) has been
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used in NMR or X-ray crystallographic studies of the structure of these proteins/33-36,39/. Ag(1) was used

as a ligating metal in NMR study of the fourth copper binding domain of Menkes protein/35/. In the case of

ATOX 1, the crystal structure of Cd(II), Hg(II) as well as Cu(1)-complex revealed the presence of dimer for

all three metal complexes /39/, whereas Hg (II)-Atxl /33/ or Cu(I)-Atxl /34/ was found to exist as a

monomer. Although Ag(1) had never been used in the studies of either ATOXI or Atxl, from our studies

presented here it is clear that Ag(1)- complex of both proteins is different from that of Cu(1)-complex.
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