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ABSTRACT

The acidity constants of the twofold protonated acyclic nucleotide analogue 9-[2-(phosphonomethoxy)-
ethyl]-8-azaadenine, H,(9,8aPMEA)*, as well as the stability constants of the M(H;9,8aPMEA)" and
M(9,8aPMEA) complexes with the metal ions M** = Ni*’, Cu®*" or Zn*', have been determined by
potentiometric pH titrations in aqueous solution at / = 0.1 M (NaNOs) and 25°C. The result for the release of
the first proton from H,(9,8aPMEA)" (pK, = 2.73), which originates from the (N1)H" site, was confirmed by
UV-spectrophotometric measurements. Application of previously determined straight-line plots of log
KII\\/IA(R—POQ Versus pKE(R-PO;) g
without an affinity for metal ions, proves that the primary binding site of 9,8aPMEA™" is the phosphonate

for simple phosph(on)ate ligands, R — PO2™, where R represents a residue

group for all three metal ions studied. By stability constant comparisons with related ligands it is shown, in
agreement with conclusions reached earlier for the Cu(PMEA) system [PMEA> = dianion of 9-[2-

" Correspondence should be addressed to
Prof. Dr. Helmut Sigel, Department of Chemistry, Inorganic Chemistry, University of Basel
Spitalstrasse 51, CH-4056 Basel/Switzerland, Fax: ++41-61-267 1017; E-mail: Helmut.Sigel@unibas.ch

331



Vol. 2, Nos. 3-4, 2004 Nickel(11),Copper(ll) and Zinc(l1l)Complexes of 9-/2-Phosphonomethoxy)
-8-azaadenine(9,8aPMEA)

(phosphonomethoxy)ethyl]adenine], that in total four different isomers are in equilibrium with each other, i.e.
() an open isomer with a sole phosphonate coordination, M(PA),,, where PA% = PMEA? or 9,8aPMEA”,
(i) an isomer with a 5-membered chelate involving the ether oxygen, M(PA)q0, (iif) an isomer which
contains 5- and 7-membered chelates formed by coordination of the phosphonate group, the ether oxygen and
the N3 site of the adenine residue, M(PA)yomn3, and finally (iv) a macrochelated isomer involving N7,
M(PA)¢n7. The Cu®! systems of PMEA?" and 9,8aPMEA” behave quite alike; the formation degrees for
Cu(PA)yp, CuM(PA)0, Cu(PA)gons and Cu(PA)gn, are approximately 16, 32, 45 and 7%, respectively,
which shows that Cu(PA)n- is a minority species. In the Ni** and Zn?" systems the open isomer is the

dominating one followed by M(PA)0, but there are indications that the other two isomers also occur to
some extent.

1. INTRODUCTION

The acyclic nucleoside phosphonate, 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), also known as
Adefovir [1], can be considered as an analogue of (2'-deoxy)adenosine 5'-monophosphate ((d)AMP*") [2].
PMEA has excellent antiviral properties [1] and in the form of its bis(pivaloyloxymethyl)ester, Adefovir
dipivoxil, it has recently been approved by the US Food and Drug Administration (FDA) for the treatment [3]
of hepatitis B patients; these people suffer from an infection of a DNA virus.

PMEA and its relatives affect the viral reproduction cycle at the stage of DNA synthesis, i.e., they serve
in their diphosphorylated form as substrates for polymerases and lead after their incorporation to the
termination of the growing nucleic acid chain [1]. Since polymerases depend on the presence of metal ions
[4], we have studied over the past few years the metal ion-binding properties of PMEA in detail [2,5,6], and
suggested also a mechanism [7] which explains why diphosphorylated PMEA is initially an excellent
substrate for nucleic acid polymerases [8,9].

The stability determining binding site of PMEA” is the phosphonate group; however, biologically
important metal ions like Mg*', Ca**, Mn>" and Zn*" are able to interact also with the ether oxygen atom and
this gives rise to the following intramolecular equilibrium (1) [2,5,6]:

H O
I bk o
R-——O—C——-T —_— o
K R—O, e
H oo M "

This proposed metal ion-ether oxygen interaction is crucial for the suggested polymerase mechanism [7]
which agrees with the observation that deletion of this ether oxygen or a change in its position in the aliphatic
chain leads to compounds which are biologically inactive [8-10].

332



Raguel B. Gomez-Coca et al. Bioinorganic Chemistry and Applications

With certain metal ions like Cu**, PMEA> may also undergo an adenine interaction. This adenine
interaction occurs for a minority species via N7 [11], i.e., the phosphonate-coordinated metal ion forms a

macrochelate as indicated in equilibrium (2),

phosphonate-ribose-base phosphonate-r
N z o4 b
M —— M o 2
s
base-e

and which is well known to occur in the complexes of AMP, where a phosphate group is the primary binding
site [12,13]. The majority species, however, results with Cu?* from an interaction with N3 [2,11,14] in such a
way that a M(PMEA) species, which exists as a fivemembered chelate (eq. (1)), forms in addition a seven-
membered chelate involving N3; this species is designated as M(PMEA)yon; and consequently, the
macrochelated (eq. (2)) and ether oxygén-bound isomers (eq. (1)) are abbreviated as M(PMEA).n; and
M(PMEA), 0, respectively, and the open isomer seen in equilibria (1) and (2) as M(PMEA),,. The indicated
situation regarding Cu(PMEA) is most fascinating because for the first time a quantitative evaluation of a
system in which four isomers occur in equilibrium was possible [11].

The relative affinities of N3 versus N7 of an adenine residue are of general interest since N7 is exposed to
the solvent in the major groove of DNA whereas N3 is located in the minor groove [15]. Therefore it was
desirable to confirm the observations summarized above for M(PMEA) systems with another acyclic
nucleoside phosphonate. We selected 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA) [16], which
also exhibits some antiviral activity [17] and which is shown in its dianionic form together with PMEA®™ in
Figure 1, and studied its metal ion-binding properties with Ni**, Cu** and Zn*". We selected these metal ions
since they are known [18] to have a relatively pronounced affinity toward N donors. To complete the picture,
the previously obtained equilibrium data [5,11] for the Ni** and Zn®* complexes of PMEA” were now also

evaluated regarding the equilibrium scheme (3),

Kinz
K'\MA(PA)OP /M(PA)C|/N7
M?* + PAZ ==——=—==M(PA),,
Ko = M(PA)u0
3)
' Kiiona
M(PA)cion3
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where PA* = PMEA” or 9,8aPMEA?". The presented results prove that at least with Cu®" all four isomers
occur in solution with both ligands, whereas with Ni** and Zn®* the proof of their occurrence is more difficult

since the differences in complex stability between the various species are small.

NH,
N
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2 / N
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Fig. 1: Chemical structures of the dianions of 9-[2-(phosphonomethoxy)ethylladenine (= PMEA* =
Adefovir) [1] and of 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (= 9,8aPMEA?"), together with
the structure of PME-R*", where R is a non-interacting residue, and which represents the metal ion-
coordinating properties of the ether-phosphonate chain occurring in PMEA” and 9,8aPMEA>". A
further ligand to be considered in this study is 9-(4-phosphonobutyl)adenine, which is abbreviated as
dPMEA? (= 3'-deoxa-PMEA?) to indicate that its structure corresponds to that of PMEA®™ except
that the ether O atom is replaced by a CH, group.
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2. MATERIALS AND METHODS

2.1. Materials

Twofold protonated 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine, i.e. H,(9,8aPMEA)*, was synthesized
by alkylation of 8-azaadenine with a synthon carrying the structural constituents of the required side chain
[16]; in fact, the same lot of compound was used as previously [19]. The aqueous stock solutions of the
ligand were freshly prepared just before the experiments by dissolving the substance in deionized, ultrapure
(MILLI-Q185 PLUS; from Millipore S.A., 67120 Molsheim, France) CO,-free water, adjusted to pH about
8.5 by adding 2 equivalents of 0.1 M NaOH.

The disodium salt of 1,2-diaminoethane-N,N,N',N'-tetraacetic acid (Na,H,EDTA), potassium hydrogen
phthalate, HNO,, NaOH (Titrisol), and the nitrate salts of Na*, Ni**, Cu*" and Zn" (all pro analysi) were
from Merck AG, Darmstadt, FRG. All solutions for the potentiometric pH titrations were prepared with
ultrapure CO,-free water. The buffer solutions (pH 4.00, 7.00, 9.00 based on the NBS scale; now NIST) used
for calibration of the pH-measuring instruments were from Metrohm AG, Herisau, Switzerland.

The exact concentrations of the stock solutions of the divalent metal ions were determined by
potentiometric pH titrations via their EDTA complexes. The exact concentration of the ligand solutions was
in each experiment newly determined by the evaluation of the corresponding titration pairs, i.e. the difference
in NaOH consumption between solutions with and without ligand (see Section 2.3).

2.2. Potentiometric pH Titrations

The pH titration curves for the determination of the equilibrium constants in HO were recorded with a
Metrohm E536 potentiograph connected to a Metrohm E665 dosimat and a Metrohm 6.0222.100 combined
macro glass electrode. The pH calibration of the instrument was done with the mentioned buffer solutions at
pH 4.00, 7.00 and 9.00. The titer of the NaOH used was determined with potassium hydrogen phthalate.

The direct pH meter readings were used in the calculations of the acidity constants; i.e. these constants
determined at / = 0.1 M (NaNQ,) and 25 °C are so-called practical, mixed or Brensted constants [20]. They
may be converted into the corresponding concentration constants by subtracting 0.02 from the listed pK,
values; this conversion term contains both the junction potential of the glass electrode and the hydrogen ion
activity [20,21]. It should be emphasized that the ionic product of water (K,,) and the mentioned conversion
term do not enter into our calculation procedures because we always evaluated the differences in NaOH
consumption between a pair of solutions, i.e. with and without ligand. The stability constants determined are,
as usual, concentration constants.

All equilibrium constants were calculated by curve-fitting procedures in the way and with the equipment
described recently [11, 22].
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2.3. Determination of Equilibrium Constants

The acidity constants K:z (9.8aPMEA) and Kll:ll(9,8aPME A) of H,(9,8aPMEA)* (see eqs (4) and (5)),
where one proton is at the nucleobase moiety and the other at the phosphonate group, were determined by
titrating 30 mL of aqueous 2.3-2.5 mM HNO; (25 °C; I = 0.1 M, NaNO3) in the presence and absence of 0.4
mM deprotonated ligand under N, with 2.2-2.5 mL of 0.03 M NaOH. The differences in NaOH consumption
between such a pair of titrations were used for the calculations. The pH ranges evaluated were 2.8-8.6 and
3.4-7.8. Under these experimental conditions the initial formation degree of H,(9,8aPMEA)* is about 46%
and 18%, respectively, and at the end of the titration about 2% and 10% of H(9,8aPMEA)" are left,
respectively. The results for the acidity constants are the averages of 15 pairs of independent titrations.

The stability constants K\f 1.0 gapvea) @04 K\io gapmea, ©F M(H;9,8aPMEA)" and M(9,8aPMEA)
(egs (6) and (7)), were determined under the same conditions as the acidity constants but now the HNO;
concentration was reduced to 0.83 mM and hence, only 1 mL of 0.03 NaOH was needed for a titration.
NaNO; was partly replaced by M(NO;), (25 °C; I = 0.1 M). The M**/ligand ratios were for Cu’* 11:1 and
5.5:1, for Ni** 50:1 and 25:1, and for Zn*" 28:1, 26.5:1 and 11:1.

The stability constants were calculated [23] by considering the species HY, H,(9,8aPMEA)",
H(9,8aPMEA)", 9,8aPMEA”>", M*', M(H;9,8aPMEA)* and M(9,8aPMEA). The experimental data were
collected every 0.1 pH unit from about 4% (Ni*"), 1.6% (Cu®") and 2.4% (Zn**) complex formation of
M(H;9,8aPMEA)" to a neutralization degree of about 90% with respect to the species H(9,8aPMEA)’, or
until the beginning of the hydrolysis of M(aq)®*, which was evident from the titrations without ligand. The
maximal formation degrees for the Ni(H;9,8aPMEA)*, Cu(H;9,8aPMEA)" and Zn(H;9,8aPMEA)" complexes
were only 8.7%, 3.3% and 6.3%, respectively, and hence, the stability constants of the monoprotonated
M(H;9,8aPMEA)" species are estimates only. For the Ni(9,8aPMEA), Cu(9,8aPMEA) and Zn(9,8aPMEA)
complexes the maximal formation degree reached in the experiments was about 71%, 51%, and 18%,
respectively; the reason for the low formation degree of Zn(9,8aPMEA) is that the experiments were
hampered by precipitation.

The individual results for the stability constants showed no dependence on pH or on the excess of metal

ion concentration used. The results are in each case the averages of at least 5 independent pairs of titration
curves.

2.4. Spectrophotometric Measurements

The acidity constant that describes the release of the proton from the (N1)H' site of the adenine residue in
H,(9,8aPMEA)*, pK ;‘2 (9.8aPMEA) (eq (4)), was also determined by spectrophotometry. The UV-Vis spectra
of 9,8aPMEA (1.2 mM) were recorded in aqueous solution (25 °C; I = 0.1 M, NaCl) and 1-cm quartz cells
with a Varian Cary 3C spectrophotometer connected to an IBM-compatible desk computer (OS/2 system)
and an EPSON Stylus 1500 printer. The pH of the solutions was adjusted by dotting with relatively
concentrated HCl and measured with a Metrohm 713 pH meter using a Metrohm 6.204.100 glass electrode.
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The spectra were recorded within the range of 205 to 330 nm; for further details see Figures 2 and 3 in
Section 3.1.

3. RESULTS AND DISCUSSION

Derivatives of purines are well known to undergo self-association via m-stacking [24]. Therefore, all
potentiometric pH titrations (25 °C; I = 0.1 M, NaNQ;), the results of which are summarized below, were
carried out with a ligand concentration of 0.4 mM. Under these conditions self-stacking is negligibly small as
has been shown for PMEA [5]. Hence, it is ascertained that the results given below reflect the properties of
monomeric species.

3.1. Acidity Constants of H,(9,8aPMEA)*

From the structure of 9,8aPMEA”" (see Figure 1) it is evident that this species can accept three protons,
two at the phosphonate group and one at the N1 site of the 8-azaadenine residue [25,26]. Further protonations
at an adenine residue are possible at N7 and N3, but these protons are released with pK, < 0 [27]; similarly,
release of the first proton from the -P(O)(OH), group of Hy(PMEA)" occurs with pK, = 1.2 [26,28] and the
same may be surmised for H;(9,8aPMEA)*. Hence, in the present study, for which all potentiometric pH
titrations were carried out at pH > 2.8, only the following two deprotonation reactions, in which
9,8aPMEA® and related species like PMEA? (Figure 1) are abbreviated as PA”" (this also holds for other
equations further below), need to be considered:

Hy(PA)' = H(PA) + H' (42)
Kit pny = | HOPAY | 1 ]/[HaPAY*] (4b)
H(PAY = PA™ + H' (52)
Kiloa = PAY (1 ]/ 1A ] (5b)

Indeed, all the experimental data from the potentiometric pH titrations in aqueous solution could be
excellently fitted by taking into account equilibria (4) and (5). The acidity constants obtained in the present
study for H,(9,8aPMEA)" are given in Table 1 together with some related data [29-31].

From a quick comparison of the acidity constants in Table 1 it is immediately evident that the first proton
released from H,(9,8aPMEA)* according to equilibrium (4) is from the (N1)H" site and the second one
according to equilibrium (5) from the -P(O),(OH)  group. This site attribution is confirmed by the

spectrophotometric measurements seen in Figure 2; the change in absorption of the Hy(9,8aPMEA)*/
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Table 1

-8-azaadenine(9,8aPMEA)

Negative Logarithms of the Acidity Constants of Hy(9,8aPMEA)* and H,(PMEA)*
(eqs (4) and (5)), as Determined by Potentiometric pH Titrations in Aqueous Solution (25 °C;
I=0.1 M, NaNOs), Together with Some Further Related Data®

No Protonated pKﬂz(p A) pKH(p A) Ref.
species (NDH* P(0),(OH)~

1 H(9Me8azaAde)* 2.70/2.80 [25,29]°

2 H,(9,8aPMEA)* 2.73+£0.02 6.85 +0.02 =

3 H,(PMEA)* 4.16 £0.02 6.90 +£0.01 [5,26]

4 H(PME-R)" 6.99 +0.04¢ (5,30]

5 H,(dPMEA)* 4.17£0.02 7.69 £0.01 [11]

6 CH;P(0),(OH)~ 7.51+0.01 [31]

The error limits given are three times the standard error of the mean value or the sum of the probable
systematic errors, whichever is larger. So-called practical (or mixed) acidity constants are listed; see
Section 2.2.

Determined by 'H-NMR shift [25] and spectrophotometric [29] measurements, respectively;
9Me8azaAde = 9-methyl-8-azaadenine.

° The result pk'

H,(9,8aPMEA)
Figures 2 and 3); pKH

N1); for details see ref. [30].

=2.73+0.08.2

H,(9,8aPMEA)
Average value from compounds like R-CH,CH,-O-CH,-P(O),(OH)", where R = H or cytosine (bound via

=2.73+0.02 was confirmed by spectrophotometric measurements (see

H(9,8aPMEA) ™ pair occurs in this range of wavelengths where protonation/deprotonation reactions of related

aromatic moieties are commonly seen [32].

A further reasor for the spectrophotometric measurements was that the formation degree of the

H,(9,8aPMEA)” species that could be reached in the potentiometric pH titrations was relatively low (see

Section 2.3). This means that it was desirable to determine the acidity constant for equilibrium (4) also by

another independent method. Therefore we measured the absorption spectra of 9,8aPMEA as a function of

pH; a representative set of spectra is shown in Figure 2. The evaluation of the same experiment by a curve-

fitting procedure, but involving more data, is given in Figure 3. Since NaNO; absorbs in part of the
wavelength range needed for the evaluation of 9,8aPMEA data, / was now adjusted to 0.1 M with NaCl. The

final result from two independent series of measurements is pK ::2 (9.8aPMEA) 2.73 + 0.08, and this value is

in excellent agreement with the constant given in Table 1 and determined by potentiometry.
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Fig. 2:

Fig. 3:
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Wavelength, nm
UV absorption spectra measured in 1-cm quartz cells of 9,8aPMEA (1.2 mM) in aqueous solution in
dependence on pH; i.e., the pH values varied from 1.207, 2.286, 2.525, 2.796, 3.047, 3.841 to 5.031.
The sample beam contained 9,8aPMEA, HCI and NaCl, and the reference beam HCI and NaCl (25
°C; [ = 0.1 M, NaCl). For the evaluation of the spectra see Figure 3.
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The UV absorption spectra of 9,8aPMEA (Figure 2) in aqueous solution were evaluated at 210, 240,
260, 280 and 290 nm in dependence on pH. These evaluations furnished only the first acidity
constant of H,(9,8aPMEA)”. Giving the averaged result (weighted mean) pk ;'2 (9.8a.PMEA) 2,67+
0.10 (30) for this experiment (25 °C; I = 0.1 M, NaCl). The solid curves shown are the computer
calculated best fits for the various wavelengths through the experimental data points obtained at pH
1.082, 1.207, 1.294, 1.389, 1.719, 1.881, 2.095, 2.286, 2.525, 2.712, 2.796, 3.047, 3.432, 3.788,
3.841, 4.291, 4.811, 5.031, 5.331 and 5.436 (from left to right) by using the mentioned average of
the acidity constant. The seven solid (e) points, i.e., at pH 1.207, 2.286, 2.525, 2.796, 3.047, 3.841
and 5.031 are those that correspond to the spectra shown in Figure 2. The final result

(pK :2 (9.82PMEA) 2.73 + 0.08 (30)) is the average of two independent experimental series.
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The most obvious conclusions from the data in Table 1 are that replacement of (C8)H by a nitrogen atom
reduces the pK, of the (N1)H" site by about A pK, = 1.5, i.e., this site becomes considerably more acidic as
follows from a comparison of entries 1 and 2 with 3 and 5. In contrast, entries 2-4 demonstrate that the
nucleobase residue hardly affects the release of the proton from the -P(O),(OH)  group. However,
elimination of the ether oxygen from the R -CH2CH; -O-CH; - PO%” chain enhances the basicity of the

—PO%‘ group remarkably (cf. entries 2-6).

3.2. Stability Constants of the M(H;9,8aPMEA)" and M(9,8aPMEA) Complexes

Since under the experimental conditions the metal ions (M>*) are present in a large excess compared to

the concentration of the ligand only the following two equilibria need to be considered for complex

formation:
M?* + H(PA) = M(H;PA)" (6a)
Kipay = [M(H; PAY 1/(IM** J[H(PA) ]) (6b)
M*" + PA* = M(PA) (7a)
K\ipay =IM(PA/(IM> J[PA*"]) (7b)

It should be noted that in formulas like M(H;PA)" the H" and PA> are separated by a semicolon to
facilitate reading, yet they appear within the same parentheses to indicate that the proton is at the ligand
without defining its location.

Indeed, together with equilibria (4) and (5), equilibria (6) and (7) are sufficient to obtain excellent fitting
of the titration data (see Section 2.3), provided the evaluation is not carried into the pH range where
formation of hydroxo species occurs, which was evident from the titrations without ligand. Of course,
equilibria (6) and (7) are also connected via equilibrium (8)

M(H;PA)" = M(PA) + H" (8a)
Kyhipay = IMPAHT T/[M(H; PA)Y* | (8b)

and the corresponding acidity constant (eq. (8b)) may be calculated with equation (9) [33]:

H _ oH M M
PKMn:pA) = PKi(pa) 7108 Kyi11.pa) 108 Kyypa) ®

The results are listed in column 4 of Table 2 together with the constants for the corresponding M(PMEA)

complexes and some further related data. The stability constants given in footnote “e” for the
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M(H;9,8aPMEA)" complexes need to be considered as estimates since the formation degree of these species
was low (see Section 2.3). The stability constants of the M(9,8aPMEA) complexes show the trend expected
for divalent 3d metal ions, i.e., they vary within the series Ni** < Cu®* > Zn*", and this holds for the constants
due to the M(H;9,8aPMEA)" species as well.

The analysis of potentiometric pH titrations only yields the amount and distribution of the species of a net
charged type; i.e., further information is required to locate the binding sites of the proton and the metal ion in
the M(H;9,8aPMEA)" species. At first one may ask where the proton is located because binding of a metal
ion to a protonated ligand commonly leads to an acidification of the ligand-bound proton [34,35]. Hence, the
acidity constants according to equilibrium (8) are needed; these values are calculated with the data listed in

Tables 1 and 2 by application of equation (9) to give the following results:

H

PKNi(H:9,8aPMEA) = 5-30£0.26 (10a)
H

pKCu(H;9,8aPMEA) =3.82+0.25 (10b)
H

pKZn(H;9,8aPMEA) =4.83+0.27 (10¢)

It is revealing to see that these acidity constants of the M(H;9,8aPMEA)" complexes are by about 1.5 to

3.0 log units smaller than pK";'(H,9 8aPMEA) =6.8510.02 (Table 1) but approximately 1.1 to 2.6 log units

larger than pK:2 (H.9.8aPMEA) = 2.73+0.02 - (Table 1). This comparison shows that the proton in
M(H;9,8aPMEA)" is bound to the phosphonate group, hence, one may tentatively assume that the metal ion
is coordinated preferentially to the nucleobase, since a monoprotonated phosphonate group is only a weak

binding site. Indeed, this suggestion agrees with evidence obtained previously for other related M(H;PA)"
species [5,14,36].

3.3. Evaluation of the Stabilities of the M(9,8aPMEA) Complexes

For the M(9,8aPMEA) complexes the question arises: Does the 8-azaadenine residue also participate in
metal ion binding next to the phosphonate group? Should such an additional interaction with the nucleobase
residue occur then it has to be reflected in an increased complex stability [37]. Hence, it is necessary to
define the stability of a pure —PO%‘ /M?** interaction. This can be done by applying the previously defined
[5] straight-line correlations which are based on log K&A(R—Pog) versus pKS(R_POS) plots for simple
phosphate monoesters [38] and phosphonates [5]; these ligands are abbreviated as R-PO?™, where R

represents a noncoordinating residue. The parameters for the corresponding straight-line equations, which are
defined by equation (11),

M e
log K\yr-poy) = * PKr_po,) 0 (tn
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have been tabulated [2a,5,39,40], i.e., the slopes m and the intercepts & with the y-axis. Hence, with a known
pK, value for the deprotonation of a -P(O),(OH)™ group an expected stability constant can be calculated for
any phosph(on)ate-metal ion complex.

The plots of log KR’:(R_PO” versus pK:(R_PO3) according to equation (11) are shown in Figure 4 for
the 1:1 complexes of Cu”** and Zn**, as examples, with the data points (empty circles) of the eight simple
ligand systems used [5] for the determination of the straight baselines. The two solid circles refer to the
corresponding M(9,8aPMEA) complexes and the crossed ones to the M(PMEA) species. For further
comparison also the data points for the related M(PME-R) (solid squares) and M(dPMEA) (empty squares)
systems are shown.

All the latter mentioned data points are clearly positioned above their reference lines thus proving that
beyond the —PO%‘ /M* binding additional interactions occur. The smallest stability increase is observed for
the M(dPMEA) complexes, where JPMEA”" = 3'-deoxa-PMEA?" (i.e., the ether O is replaced by CH,) = 9-
(4-phosphonobutyl)adenine (Figure 1); in these instances macrochelates according to equilibrium (2)
‘involving N7 of the adenine residue are formed [11]. For the M(PME-R) complexes the stability increase is
more pronounced and clearly attributable to equilibrium (1) since no other additional binding site but the
- ether O atom is available (Figure 1) [5,30]. However, the stability increase observed for the Cu(9,8aPMEA),
Cu(PMEA) and Zn(9,8aPMEA) species is much larger than the one for the M(dPMEA) and M(PME-R)
complexes, thus indicating that an accumulation of extra interactions occurs as it is depicted in the
equilibrium scheme (3). No meaning should be attributed to the apparent equality of the stability increase
seen in Figure 4 for the Zn(PMEA) and Zn(PME-R) complexes because the stability constant for Zn(PMEA)
is only an estimate carrying a large error limit (see Table 2, entry 1c in column 4).

3.4. Extent of the Total Amount of Chelates Formed in the M(PA) Systems

Before considering the situation in the M(PMEA) and M(9,8aPMEA) complexes according to the
equilibrium scheme (3) in more detail (see Section 3.5), it is appropriate to evaluate first the total amount of
closed species, M(PA)qyoi, for all four PA* ligands considered (Figure 1) because evidently the sum of all
the closed species, independent of their structure, is responsible for the observed stability increase. Stability
enhancements like those seen in Figure 4 can be quantified by the differences between the experimentally
(exptl) measured stability constants and those calculated (calcd) according to equation (11); this difference is
defined in equation (12),

M

- M
og Awrea =108 Knip Ay 18 KA caes (123)
- M M
= log KM(PA) —log KM(PA)(,p (12b)
where the expressions log K,’\\:(P A and log K,’\‘,l"(P Ay € synonymous because the calculated value

equals the stability constant. of the ‘open’ isomer, M(PA),, (see equilibria (1)-(3)), in which only a

—PO%‘/ MZ* interaction occurs. In columns 4-6 of Table 2 the values for the terms of equation (12) are listed.
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Fig. 4:

4.2 PMEA2-

4.0 9,8aPMEA2-— € PME-R2-
3.8 ’/ GPMEAZ-

3.6
3.4- |

1 NPhPZ- RibMP2™

50 54 58 62 66 70 7.4 78
H H
PKLR-POg) OF PKH(PA)

Evidence for an enhanced stability of the M(PMEA) (®) and M(9,8aPMEA) (¢) complexes of Cu**
and Zn>* in comparison with the stability of the corresponding complexes formed with PME-R* (#)
and dPMEA* (<) (for the structures of the PA% ligands see Figure 1), based on the relationship
between log KM(R_P@) E(R—PO;)
monoester and phosphonate ligands (R- PO%‘ ) (O): 4-nitrophenyl phosphate (NPhP®"), phenyl
phosphate (PhP?>), uridine 5'-monophosphate (UMP?), D-ribose 5-monophosphate (RibMP?>),
thymidine [= 1-(2-deoxy-B-D-ribofuranosyl)thymine] 5'-monophosphate (dTMP*), n-butyl
phosphate (BuP*"), methanephosphonate (MeP?") and ethanephosphonate (EtP*") (from left to right).

versus pK for M(R-PO;) complexes of simple phosphate

The least-squares lines (eq. (11)) are drawn through the corresponding 8 data sets (O) taken from
ref. [38] for the phosphate monoesters and from ref. [5] for the phosphonates. The points due to the
equilibrium constants for the M**/PA”" systems are based on the values listed in Tables 1 (column 4)
and 2 (columns 4 or 6). The vertical broken lines emphasize the stability differences from the
reference lines; they equal log Aypa as defined in eq. (12) for the M(PA) complexes. All the plotted

equilibrium constants refer to aqueous solutions at 25 °C and /= 0.1 M (NaNOs).
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All values for log Ayypa are positive with the single exception of the one for the Zn(dPMEA) complex where
log Azwdpmea is zero within the error limits (Table 2, entry 4c in column 6).

The ‘total’ of the dimensionless intramolecular equilibrium constant, Kj, is defined by equation (13)
(see also below eq. (21)),

Kinor = [M(PA)cion]IM(PA)op ] (13)

and values for Kj, can be calculated following known procedures [5,12,37,39,40], i.e., via equation (14):

Kiot = 10"8 A _ (14)

Knowledge of Ky, allows then according to equation (15)
% M(PA)cior = 100° Ko} (1+Kiytor) (15)

to obtain the percentage of the sum of all the closed isomers (cl/tot) present in equilibrium, i.e., their total
formation degree. The corresponding results for the four PA® ligands of Figure 1 and their Ni**, Cu®" and
Zn** complexes are summarized in columns 6-8 of Table 2.

The most easily understood result of the evaluation is the one given under entry 3 in Table 2 because the
PME-R* ligand can only form the two isomeric complexes seen in equilibrium (1), i.e. here only the open
species, M(PA),,, and the ether oxygen-closed one, M(PA).y0, exist and therefore in these cases Kyt = Kio
(Table 2, column 7), which is defined by equation (16),

Kio = [M(PA)cy0][M(PA)] (16)

and % M(PA)q = % M(PME-R)y0 (Table 2, column 8). Similarly simple is the situation with dPMEA®
because in this case an additional metal ion interaction, next to the one with the —PO? group, must occur
with the adenine residue and it was previously concluded [11] that this is the N7 site; hence, here equilibrium
(2) applies. Consequently, for the M(dPMEA) complexes it holds Ky = Kin7, as defined by equation (17),

King = IM(PA)ans)/ [M(PA),,] an

and % M(PA)qot = % M(dPMEA) 7 (Table 2, columns 7 and 8).

It is evident that the situation for the complexes formed with PMEA® and 9,8aPMEA” is more
complicated, since more possibilities for the formation of closed isomers exist, and that these possibilities
materialize at least in part is evident from the observed rather large stability increases, log Aypa (Table 2,
column 6), and also from the high formation degrees calculated for % M(PA),j. Furthermore, it is revealing
to see that the values given in column 8 of Table 2 for % M(PMEA) . and % M(9,8aPMEA), . (entries 1

and 2) are for a given metal ion very similar or even identical within their error limits.
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3.5. Formation Degrees of the Four Isomers Existing in Equilibrium for the M(PMEA) and
M(9,8aPMEA) Species

Up to now the Cu*’/PMEA system is the one most thoroughly studied. Indeed, it had originally been
proven [14] that three isomers are important for the Cu(PMEA) system [7]: () An ‘open’ isomer,
Cu(PMEA),,, in which the metal ion is solely coordinated to the phosphonate group; (if) an isomer which
involves the ether oxygen (see Figure 1) as shown in equilibrium (1), designated as Cu(PMEA).0; and (iii)
an isomer in which not only a 5-membered chelate but in addition a 7-membered one involving N3 exists, i.e.
Cu(PMEA). 0. More recently [11] evidence was provided that there is a fourth isomer, a minority species,
in which the phosphonate-coordinated Cu®" interacts with N7 of the adenine residue forming a macrochelate,
Cu(PMEA),n7, as indicated in equilibrium (2). In this context it is important to emphasize that for steric
reasons no macrochelate involving only N3 can be formed by PMEA® and Cu** [2a]. If one tries to form
such a species with molecular models, one automatically forces the ether oxygen into the coordination sphere
of the metal ion, giving rise to the already mentioned Cu(PMEA)qon; isomer [2a]. If one summarizes all
these results then the simple equilibrium (7a) must be replaced for the Cu(PMEA) system by the rather
complicated equilibrium scheme (3) already introduced in Section 1. Of course, exactly the same reasonings
also apply to the PMEA” complexes formed with Ni** and Zn®* as well as for the M(9,8aPMEA) species.
For these systems a quantitative evaluation toward the formation degree of the various isomers needs now to
be carried out.

The four equilibrium constants seen in scheme (3) are defined by the already mentioned equations (16)
and (17) together with the also necessary equations (18) and (19):

|

Kuay, = [MPAGI(IM IPA™]) (18)

Il

Kyoms [M(PA)c jon:)/[M(PA)q0] 19)

With these definitions the measured overall stability constant (eq. (7b)) can be redefined as given in
equations (20a)-(20d):

M [M(PA)]
Kucoa) Py Ty my (202)
M7 ][PA*]
_ [M(PA)op 1+[M(PA)ct/N7 1+ [M(PA)ct/0 ]+[M(PA)cl/0/N3 ] (20b)
[M>* ][PA%"]

- M M M M
= Kueay, TKUNTKypa) T K0 Kyypp), + K103 K10 Ky pay (20¢)
= K,\'\:(pA)OP (1+ Ki/N7 + K10 + K170°K1/0/N3) (20d)
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The connection between the overall intramolecular equilibrium constant Kju, already introduced in
Section 3.4, and the accessible stability enhancement (eq. (12)) is given by equations (21a) - (21e):

KM
— -1 =10kEAwes 1a)
KM(PA)OP

Kot =

_ [IM(PA)/t0t]

= m (21b)

_ [M(PA)c/N7]1+[M(PA)ci/0 ]+ [M(PA)ci/0/N3] 210)
[M(PA)op]

= Ki/n7 + K10 +Kijo/N3Ki/0 21d)

= Kiyn7+Kijo 1+ Ki/0/N3) (21e)

Values for Ky, were already calculated with equations (12) and (14) in Section 3.4; they are listed in
column 7 of Table 2 (entries 1 and 2). The relation between Ky, and the other three intramolecular
equilibrium constants follows from equations (21b) and (21c). Based on the reasonable assumption [7] that
the stability of the M(PA)y0 isomer, where PAZ = PMEA?” or 9,8aPMEAZ, is well represented by that of
the 5-membered M(PME-R).o species (Figure 1) and the stability of the M(PA)qn7 isomer by that of the
M(dPMEA )y macrochelate, values for Ko, which define the position of equilibrium (1), and Kjn7, which
refer to equilibrium (2), are also known (see the second to the last paragraph in Section 3.4). Hence, the only
unknown constant in equation (21¢) is Kyons (€q. (19)) and thus values for this constant can be obtained, and
consequently, the formation degrees for all four isomers appearing in scheme (3) can now be calculated. The
corresponding results are summarized in Table 3 for the M(PMEA) and M(9,8aPMEA) systems; as far as the
error limits are concerned it needs to be emphasized that three times the standard errors (3c) are given.

From Table 3 it is evident that Cu(PMEA) and Cu(9,8aPMEA) (entries 1b and 2b) have practically
identical properties: The Cu(PA).on: species with the 5- and 7-membered chelate rings dominate with
formation degrees of about 45% followed by Cu(PA)yo with about 30%. As far as Cu(PMEA)qon; is
concerned, the result with 41 + 12% is within the error limit identical with the previously obtained 49 + 10%
where the formation of the fourth isomer, Cu(PMEA). N7, had not been taken into account [5,7]. This
demonstrates immediately that the Cu(PA)yn, isomer must be a minority species; indeed, the present
calculations show that the formation degrees of Cu(PMEA)n; and Cu(9,8aPMEA)n; amount only to about
7% (see also ref. [11]).

It is interesting to see that for the Ni(PMEA) and Zn(PMEA) systems about 50% each exist as the open
isomer and the remaining half of the species is present as chelates (Table 3, entries 1a and Ic). In the case of
Ni(PMEA) all three chelated isomers occur with comparable concentrations though the formation degrees of
Ni(PMEA)0 and Ni(PMEA)on; appear to be slightly favored. With Zn(PMEA) the Zn(PMEA).o isomer

seems to be the dominating species, the formation degrees of the other chelates being zero within the error
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limits; here it should be recalled that the overall stability constant for Zn(PMEA) is an estimate only (Table
2, entry Ic) [S].

For Zn(9,8aPMEA) (Table 3; entry 2¢) the results are more clear-cut since in this case the overall stability
constant of the complex could actually be measured (see Section 2.3): Again the Zn(9,8aPMEA),o chelate
dominates. However, in this case it may be helpful to rewrite the results for Zn(9,8aPMEA)y0,
Zn(9,8aPMEA) N7 and Zn(9,8aPMEA).ons With one standard deviation (1o) only, that is 32 = 4, 10 £ 7,
and 24 + 9%, respectively. This view confirms that Zn(9,8aPMEA)., dominates but that
Zn(9,8aPMEA),0n; most likely also exists, whereas Zn(9,8aPMEA), 7 is definitely also for this system a
minority species. The great similarity between the Zn(PMEA) and Zn(9,8aPMEA) systems is evident, despite
all shortcomings, from a comparison of the values in entries 1¢ and 2c of Table 3. This is also true for the
Ni(PMEA) and Ni(9,8aPMEA) systems for which the values seen in entries 1a and 2a of Table 3 overlap
within their error limits.

4. CONCLUSIONS

The presented results prove that systems in which four different isomers occur in equilibrium in solution
can be treated in a quantitative way. They prove further that both N3 and N7 of an adenine residue may bind
to metal ions provided primary binding sites promoting a favorable steric orientation are available. With
regard to nucleic acids this result is of relevance; in fact, that the more basic N7 [27] is suited for such
purposes is by now general knowledge [12,39] whereas this property of N3 has only been recognized more
recently [14,27b,35,36a,41].

Furthermore, it is astonishing to see how similar the coordinating properties of the two nucleotide
analogues PMEA” and 9,8aPMEA” (Figure 1) are towards Ni**, Cu*" and Zn*'. On the other hand, this
observation complements the fact that both acyclic-nucleoside phosphonate analogues exhibit antiviral
activity [1,16,17]. Therefore, it is interesting to note that the coordination chemistry of 8-[2-
(phosphonomethoxy)ethyl]adenine (8,8aPMEA?) differs [42] from the one described herein, and that indeed
this nucleotide analogue does not show any useful biological activity [16,17].
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