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Rheumatoid arthritis (RA) is a severe chronic pathogenic inflammatory abnormality that damages small joints. Comprehensive
diagnosis and treatment procedures for RA have been established because of its severe symptoms and relatively high morbidity.
Medication and surgery are the two major therapeutic approaches. Infliximab (IFX) is a novel biological agent applied for the
treatment of RA. IFX improves physical functions and benefits the achievement of clinical remission even under discontinuous
medication. However, not all patients react to IFX, and distinguishing IFX-sensitive and IFX-resistant patients is quite difficult.
Thus, how to predict the therapeutic effects of IFX on patients with RA is one of the urgent translational medicine problems in
the clinical treatment of RA. In this study, we present a novel computational method for the identification of the applicable and
substantial blood gene signatures of IFX sensitivity by liquid biopsy, which may assist in the establishment of a clinical drug
sensitivity test standard for RA and contribute to the revelation of unique IFX-associated pharmacological mechanisms.

1. Introduction

Rheumatoid arthritis (RA) is a severe chronic pathogenic
inflammatory abnormality that damages small joints [1, 2].
Some patients with severe and progressive RAmay also suffer
from pathogenic lesions in various body systems, including
the skin, eyes, lungs, and blood vessels [1]. According to the
statistics provided by the American College of Rheumatology
in 2008, more than 1.3 million people in the USA suffer from
pathogenic rheumatoid arthritis with typical symptoms [3,
4]; thus, RA is the leading cause of arthritis among multiple
pathogeneses.

Comprehensive diagnosis and treatment procedures for
RA have been established because of its severe symptoms
and relatively high morbidity [1, 5–8]. The diagnosis of RA

can be divided into two major procedures: symptom-
dependent diagnosis [9] and clinical laboratory examinations
[10]. A group of typical symptoms can be used to preliminary
screen for RA. The typical symptoms of RA include the swell-
ing of small joints (which may further extend to larger joints,
such as the hips and shoulders), fatigue, fever, and anemia,
which are quite easy to identify and recognize [11, 12]. How-
ever, the types and severity of these symptoms vary among
patients. Thus, RA is difficult to diagnose based only on clin-
ical symptoms. Apart from clinical symptoms, blood tests
and imaging tests have also been applied for the accurate
diagnosis of RA. Erythrocyte sedimentation rate [13] and
C-reactive protein [13] are nonspecific biomarkers for the
diagnosis and progression monitoring of RA that reflect the
degree of inflammatory responses in the whole body. The
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gold standard for RA diagnosis is clinical liquid biopsy, and
rheumatoid factor [14] and anticyclic citrullinated peptide
[15] antibodies are the specific biomarkers for the blood test
screening of RA. Pathogenic lesions in the joints can be
regarded as a diagnosis measurement for RA and can be eas-
ily identified by X-ray [16], ultrasound [17], and magnetic
resonance imaging [18].

Medication and surgery are the two major therapeutic
approaches for RA [19, 20]. Different from surgery-based
approaches, which focus on the direct relief of joint damage,
most medications focus on the prevention of abnormal inflam-
matory immune responses and therefore indirectly relieve sys-
temic symptoms. Four subgroups of medications are clinically
applied, namely, nonsteroidal anti-inflammatory drugs, ste-
roids, disease-modifying antirheumatic drugs, and biological
agents [21]. Among these drugs, infliximab (IFX) is a novel bio-
logical agent applied for the treatment of RA. As a chimeric
monoclonal antibody, IFX has been approved by the Food
and Drug Administration (FDA) for the treatment of multiple
immune-associated diseases, including RA, early in 2007 [22].
IFX targets one of the pathogenic proinflammatory cytokines,
tumor necrosis factor-alpha (TNF-α), and thus has been
applied in classical TNF antagonist therapy against multiple
chronic autoimmune inflammatory diseases, including RA
[23]. The clinical application of IFX has been studied for nearly
30 years; IFX greatly improves physical functions and is bene-
ficial for the achievement of clinical remission even under dis-
continuous medication [24, 25]. However, not all patients react
to IFX, and its anti-inflammatory effects vary among patients
with RA. IFX-sensitive and IFX-resistant patients are difficult
to distinguish based on traditional clinical examination; thus,
how to predict the therapeutic effects of IFX on patients with
RA is one of the urgent translational medicine problems in
the clinical treatment of RA.

With the development of liquid biopsy and high-
throughput sequencing technologies, a recent study [26]
revealed that patients with different drug susceptibility
against IFX have different pretherapeutic blood expression
patterns; thus, liquid biopsy and the transcriptomic profiling
of patients’ blood may help predict the therapeutic effects of
IFX in RA and therefore assist in clinical medication. How-
ever, the application of whole transcriptome sequencing on
every patient with RA is not feasible; therefore, the identifica-
tion of accurate and efficient transcriptomic biomarkers and
their respective pathogenic expression pattern would be the
priority. In this study, we presented a novel computational
method to identify the applicable and substantial blood gene
biomarkers of IFX sensitivity by liquid biopsy. This study may
assist in the establishment of a test standard for clinical drug
sensitivity for RA treatment and contribute to the revelation
of unique IFX-associated pharmacological mechanisms.

2. Materials and Methods

2.1. Data. The blood gene expression profiles of 140
patients with RA before IFX treatment were downloaded
from the Gene Expression Omnibus under accession num-
ber GSE78068 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE78068) [26]. Among the patients, 42 showed

remission and 98 showed nonremission. 19595 genes were
involved to constitute the blood gene expression profiles. Pre-
dicting the response of patients with RA to IFX before therapy
using their blood will help in deciding previse treatments,
which is the ultimate goal of precision medicine. We would
like to build such IFX response prediction models for patients
with RA based on their blood gene expression profiles.

2.2. Monte Carlo Feature Selection (MCFS). In this work, the
MCFS method, which is a decision tree- (DT-) based feature
selection method [27–29], was used to select important gene
candidates. MCFS can randomly select a few feature subsets
from the original features. Each feature subset consists of a
small number of features from the original ones. One boot-
strap sample dataset can be induced from this feature subset,
and then, multiple DTs can be learned and tested on this
bootstrap sample datasets. The process is repeated several
times to produce many feature subsets. Each feature subset
can help learn the same number of DTs.

The contribution of each feature in these DTs can be
evaluated by the relative importance (RI) score, which is
calculated as follows:

RIf = 〠
pt

τ=1
wAccð Þu 〠

nf τð Þ
IG nf τð Þ� � no: in nf τð Þ

no: in τ

� �v

, ð1Þ

where wAcc indicates the weighted accuracy and nf ðτÞ repre-
sents a node of feature f in DT τ. The information gain of
nf ðτÞ in the DT is measured by IG½nf ðτÞ�, and no:innf ðτÞ
points the number of training samples in node nf ðτÞ. In addi-
tion, the weighting factors u and v have a value of 1 by default.

After each feature was assigned a RI value, we ranked all
features in a list with the decreasing order of their RI values.
In addition to the feature list, the MCFS method also outputs
some most important features, called informative features,
which are some top features in the list. These features are
accessed by determining a threshold of RI values via a per-
mutation test on class labels and one-sided Student’s t-test.

This study used theMCFS program retrieved from http://
www.ipipan.eu/staff/m.draminski/mcfs.html. Its default
parameters were used.

2.3. Incremental Feature Selection (IFS). IFS is widely used to
determine the optimal number of features for constructing a
classification model with an integrated supervised classifier
[30]. On the basis of a ranked feature list obtained from
MCFS, a series of feature subsets are produced with a step
interval of 10. For example, the first feature subset includes
the top 10 features and the second feature subset includes
the top 20 features. For each feature subset, a classifier (e.g.,
support vector machine (SVM)) is trained on a training data
induced from this feature subset. An optimal feature subset is
selected when it has the highest performance among the can-
didate feature subsets, where performance is evaluated by the
Matthews correlation coefficients (MCC) [31] under 10-fold
cross-validation [32]. The classifier with such optimal feature
subset can be built and was called the optimum classifier in
this study.
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2.4. Support Vector Machine (SVM). SVM is a classification
algorithm suitable for linear and nonlinear data [33–39].
For a dataset with two classes, SVM tries to find out an opti-
mum hyperplane, which can divide samples in two classes
with a maximum margin. However, in many cases, such
hyperplane is not easy or impossible to be discovered. SVM
employs a kernel trick to convert the original sample in a
low-dimensional space to a new sample in some high-
dimensional space, in which the optimum hyperplane can
be easily constructed. For a new sample, it is also mapped
into the high-dimensional space and its class is determined
according to the side of the hyperplane it lies. In this study,
we used the tool “SMO” in Weka [40, 41] to quickly imple-
ment SVM. Such SVM is optimized by the sequential mini-
mum optimization algorithm [42]. For convenience, default
parameters were adopted, where the kernel was a polynomial
function.

2.5. Random Forest (RF). RF [43] is a metaclassifier that is
widely applied in biological and biomedical researches [44–
52]. RF includes many DTs as members. To construct a
DT, a dataset, in which samples are randomly selected, with
replacement, from the original dataset, is constructed. Such
dataset has the same size of the original dataset. The DT is
grown at each node by determining an optimal splitting
way on some features, which were randomly selected from
all features. Given a new sample, each DT gives its prediction.
RF integrates these predictions with majority voting. Similar
to SVM, we also employed a tool “RandomForest” in Weka
[40, 41], which implements RF. Likewise, the default param-
eters were used, where the number of DTs was set to ten.

2.6. Rule Learning. In addition to “black-box” classification
algorithms, the interpretable rules for a classification model
can also be extracted to explain the feature differences
between groups of patients with particular response to drug
treatment. To accelerate this procedure, we directly picked
up the informative features extracted by the MCFS method.
These features were further filtered by the Johnson Reducer
algorithm [53]. The remaining features were fed into the
repeated incremental pruning to produce error reduction
(RIPPER) algorithm [54] to extract classification rules.
Obtained rules were represented by IF-ELSE rules. The above
rule learning procedures were also integrated in the MCFS
program, which was directly adopted in this study.

2.7. Measurement. The MCC [31] within 10-fold cross-
validation was applied in this work to evaluate the classifica-
tion performance of different classification models. The
MCC for the binary problem is calculated as follows:

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × TN × FPð Þ × TP + FNð Þ × TP + FPð Þp ,

ð2Þ

where TP, TN, FP, and FN represent the number of true-pos-
itive, true-negative, false-positive, and false-negative samples,
respectively. As a measurement for the classification model,
the MCC value ranges from −1 to +1, where a value of +1

indicates that the classification model has the best perfor-
mance. To date, it has wide application in bioinformatics
for evaluating the performance of different classification
models [55–61].

Besides, we also employed other five measurements to
give a full evaluation on different classification models. They
were sensitivity (SN), specificity (SP), accuracy (ACC), preci-
sion, and F1-measure, which can be calculated by the follow-
ing equations:

SN = TP
TP + FN

,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FN + TN + FP
,

Precision =
TP

TP + FP
,

F1‐measure =
2 ⋅ Recall ⋅ Precision
Recall + Precision

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3Þ

3. Results

In this study, we gave a computational investigation on the
blood gene expression profiles of patients with RA before
IFX treatment. The entire procedures are illustrated in
Figure 1. This section gave the results of all procedures.

3.1. Results of MCFS. The blood gene expression profiles were
first analyzed by the MCFS method. As a result, each feature
was assigned a RI value, which indicated its importance. The
RI values of all features are listed in Table S1. Accordingly, all
features were ranked in a list by the decreasing order of
features’ RI values. Such list is also provided in Table S1.

3.2. Results of IFS. Based on the feature list obtained in the
above section, the IFS method is followed. It first constructed
several feature subsets. Then, on each feature subset, a classi-
fier was built using SVM or RF as the classification algorithm.
Each classifier was evaluated by 10-fold cross-validation. Six
measurements (see equations (2) and (3)) were obtained for
each classifier, which are listed in Tables S2 and S3. For an
easy observation, a curve was plotted for each classification
algorithm, as shown in Figure 2, in which MCC was set as
the y-axis and the number of features was set as the x-axis.
It can be observed that for SVM, the highest MCC was
0.760 when top 1260 features were used. Thus, these 1260
features constituted the optimum feature subset of SVM
and the SVM classifier with these features was the optimum
SVM classifier. Other measurements of such classifier are
listed in Table 1. As for RF, the highest MCC was 0.611
when only top ten features were adopted. An optimum RF
classifier was built based on these top ten features. The MCC
of the optimum RF classifier was much lower than that of
the optimum SVM classifier. Other five measurements of
such RF classifier are provided in Table 1. Evidently, each
measurement was inferior to that of the optimum SVM
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Figure 1: Entire procedures to investigate the blood gene expression profiles of rheumatoid arthritis patients. Profiles are retrieved from Gene
Expression Omnibus, which are analyzed by the Monte Carlo feature selection method. A feature list is obtained, which is fed into the
incremental feature selection method to construct efficient classifiers and extract essential genes. On the other hand, informative features,
which are some top features in the list, are used to construct classification rules via Johnson Reducer and RIPPER algorithms.
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Figure 2: IFS curves with different classification algorithms on different numbers of features (genes). The support vector machine yields the
highest MCC of 0.760 when top 1260 features are used, whereas the random forest generates the highest MCC of 0.611 when top 10 features
are adopted.

Table 1: Performance of some key support vector machine (SVM) and random forest (RF) classifiers.

Classification algorithm Number of features Sensitivity Specificity Accuracy Precision F1-measure

SVM 1260 0.690 0.990 0.900 0.967 0.806

SVM 60 0.619 0.980 0.871 0.929 0.743

RF 10 0.643 0.929 0.843 0.794 0.711
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classifier. Therefore, it can be concluded that the optimum
SVM classifier is better than the optimum RF classifier.

As mentioned above, the optimum SVM classifier needed
much more features than the optimum RF classifier. In fact,
the SVM classifier can yield good performance when much
less features were used. As shown in Figure 3, when top 60
features were used, the SVM classifier can generate the
MCC of 0.686, which was still higher than that of the opti-
mum RF classifier. The detailed performance of such SVM
classifier is listed in Table 1. It can be seen that all measure-
ments, except SN, of this SVM classifier were higher than
those of the optimum RF classifier. Thus, we picked up such
SVM classifier as the proposed classifier because it can pro-
vide good performance and was much more efficient than
the optimum SVM classifier.

3.3. Rule Learning Results. The optimum SVM and RF classi-
fiers gave good performance. However, they were black-box
algorithms. Few medical insights can be captured from these
classifiers. In view of this, we further employed a rule learn-
ing procedure. The informative features yielded by MCFS
were processed by the Johnson Reducer and RIPPER algo-
rithms one by one. As a result, three rules were constructed,
as shown in Table 2, where two rules were for prediction of
IFX-sensitive patients and the last one was for identification
of IFX-resistant patients. We counted two measurements:
support and accuracy for each rule, as listed in Table 2. Each
rule covered some samples, and all accuracies were quite
high, implying the utility of the rules.

Furthermore, to test the effectiveness of the above rule
learning procedures, we did the 10-fold cross-validation
three times. Six measurements calculated by equations (2)
and (3) were counted. The MCC was 0.439, and other five
measurements were 0.421 (SN), 0.939 (SP), 0.783 (ACC),

0.746 (precision), and 0.538 (F1-measure), respectively.
Clearly, the rule classifier was inferior to the optimum SVM
and RF classifiers. However, it can explain the detailed gene
expression pattern for distinguishing patients with RA who
respond to IFX treatment or not.

4. Discussion

IFX is one of the major clinically applied drugs for RA. How-
ever, the sensitivity and effectiveness of this drug vary among
patients. Recent publications confirmed that the sensitivity of
this drug against RA can be predicted by obtaining the
expression profiling pattern of patients’ pretherapeutic blood.
However, the core signatures/biomarkers for the prediction
and understanding of IFX sensitivity are difficult to identify.
We identified gene signatures for drug therapeutic effect
evaluation and established a series of quantitative rules that
explain the detailed accurate recognition of patients with dif-
ferent IFX sensitivity using a novel computational approach
on the expression profiling of pretherapeutic blood. All the
identified signatures have been confirmed by recent publica-
tions, and the detailed analysis of the representative genes
and rules is discussed below.

4.1. Gene Signatures Associated with IFX Response. In this
study, with some computational methods, several genes asso-
ciated with IFX response were identified. Here, we selected
some of them for detailed analysis, which are listed in
Table 3.

DISC1, which encodes a scaffold protein, participates in
the synthesis of hemoglobin in peripheral blood [62, 63].
Although no direct evidence confirmed that the blood
expression ofDISC1may directly contribute to the pathogen-
esis of RA, recent publications validated that DISC1 may
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Figure 3: IFS curves with different classification algorithms on top 10-200 features. The support vector machine (SVM) yields the MCC of
0.686 when only top 60 features are used. It is still higher than the highest MCC yielded by the optimum random forest (RF) classifier.
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participate in TNF-α-associated biological processes [64, 65].
A further study on the biological processes of TNF-α recep-
tors reported that our predicted gene, DISC1, may be func-
tionally related to MIPT3, a microtubule-interacting
protein associated with TNF receptors; thus, DISC1 has
potential regulatory effects on TNF-associated biological pro-
cesses [66]. The therapeutic effects of IFX rely on the phar-
macological regulation on TNF-α-associated biological
processes [67, 68]; therefore, as a regulator for the TNF
receptor, the different expression patterns of DISC1 can indi-
cate different TNF-related biological processes and affect the
pharmacological effects of IFX.

SAMD11, as a transcription coactivator, contributes to
the development of a photoreceptor [69]. In 2009, SAMD11
was identified as a susceptibility gene for RA by high-
throughput genotyping techniques [70]. Multiple publica-
tions have also confirmed its specific role in inflammatory
regulation [71, 72] and even validated its functional relation-
ship with IL17 [73, 74]. The pharmacological effects of IFX
are mediated by TNF-α inhibition; thus, IFX is functionally
related to the regulation of immune responses via the
interactions between IL17 and TNF-α [75, 76]. As a specific
regulator of IL17, our candidate gene, SMAD11, may also
participate in the regulation of IFX-mediated pharmacologi-
cal responses in patients with RA. Therefore, the expression
level of SMAD11 in the blood may indirectly reflect the
reactiveness of IFX in patients with RA.

EID2B, as an RA-associated gene, participates in MyoD-
dependent transcription, glucocorticoid receptor-dependent
transcription, and muscle differentiation as a functional
repressor [77, 78]. MyoD-associated biological functions
induce muscle lesions by interacting with abnormal regulation
on TNF-α pathways, targeted by IFX during the initiation and
progression of RA [79]. Further studies on the pharmacologi-

cal effects of IFX confirmed that MyoD may directly partici-
pate in IFX-associated therapeutic metabolism in Crohn’s
disease, which is another autoimmune disease [80]. Our pre-
dicted gene EID2B may also participate in the regulation of
the therapeutic effects of IFX by interacting with the core reg-
ulator, MyoD. Therefore, the expression level of EID2B in the
peripheral blood may reflect EID2B expression in mesenchy-
mal cells and immune cells in the blood and may also be a
novel parameter for the prediction of the prognosis of IFX-
dependent therapeutics.

NTS, which encodes a common precursor for peptides
neuromedin N and neurotensin, participates in the regulation
of fat metabolism in muscles [81, 82]. A recent research con-
firmed its specific pathogenic role in the pathophysiology of
RA [83]. As for its distinctive role for the sensitivity of IFX,
NTS participates in TNF-α-associated biological processes
[84, 85]. Considering that IFX acts as the inhibitor of TNF-
α-associated biological processes [23], the therapeutic effects
of IFX are functionally associated with the abnormal
activation status of TNF-α-associated biological processes.
Therefore, as an effective participator of TNF-α-associated
biological processes, the expression pattern of NTS may reflect
the activation status of TNF-α-associated biological processes
and therefore indicates the therapeutic effects of IFX.

STAT2, as an effective member of the STAT protein fam-
ily, participates in the transcriptional regulation mediated by
type I interferons (IFNs) [86] and the Jak kinase signaling
cascade [87, 88]. The treatment effects of IFX are functionally
connected to the IFN signaling cascade [89–91]; hence, IFN-
associated biological processes may be crucial for the
pharmacological effects of IFX. Therefore, as a transcrip-
tional regulator at the downstream of IFN-associated biolog-
ical processes, the expression level of our predicted gene
STAT2 may also be an alternative following the expression
alteration of genes in the type I IFN-associated pathways.
This finding indicates the potential identification ability of
STAT2 on the therapeutic effects of IFX.

TheHELZ gene can encode a member of the RNA helicase
superfamily I class. HELZ participates in RNA hydrolysis in
multiple tissues [92]. In fact, TNF-α and its related immune
regulatory functions are regulated by multiple RNA helicases,
including helicase with zinc finger (HELZ) [93–95]. Therefore,
the expression pattern of HELZmay also affect the therapeutic
effects of IFX by interfering with TNF-α-associated biological
processes. Similarly, SUMO2 also affects IFX sensitivity by
interfering with TNF-α-associated biological processes [96, 97].

Apart from unannotated RNA transcripts with no vali-
dated protein products, all the predicted genes have been
confirmed to be functionally related to TNF-α-associated

Table 2: Classification rules yielded by RIPPER.

Index Condition Result Support# Accuracy$

1 DISC1 ≤ 5:2301 IFX-sensitive patient 7.86% 90.91%

2 SAMD11 ≥ 4:2938 IFX-sensitive patient 7.14% 90.00%

3 Others IFX-resistant patient 85.00% 80.67%
#Support is defined as the proportion of samples satisfying the rule to all samples. $Accuracy is defined as the proportion of correctly predicted samples to the
samples satisfying the rule.

Table 3: Some top genes associated with IFX response.

Gene
symbol

Description
RI

score

DISC1 DISC1 scaffold protein 0.0506

SAMD11 Sterile alpha motif domain containing 11 0.0410

EID2B
EP300 interacting inhibitor of

differentiation 2B
0.0345

NTS Neurotensin 0.0257

STAT2
Signal transducer and activator of

transcription 2
0.0233

HELZ Helicase with zinc finger 0.0198

SUMO2 Small ubiquitin-like modifier 2 0.0190
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biological processes in either physical or pathological condi-
tions. Therefore, these genes may further affect the therapeu-
tic effects and sensitivity of IFX in patients with RA. This
finding validates the efficacy and accuracy of our prediction
method and analysis.

4.2. Signature Rules Associated with IFX Response. Apart
from the qualitative analysis of each top-ranked gene
signatures in our prediction list, we also set up a series of
quantitative recognition rules for the detailed and accurate
recognition of IFX-sensitive and IFX-resistant patients. The
first rule involves only the DISC1 gene. A low DISC1 expres-
sion (<5 FPKM) indicates that the patient may be sensitive to
IFX. Based on the analysis, a low DISC1 expression may indi-
cate abnormal TNF-α-associated immune activation status in
RA [66]. Therefore, patients with a low DISC1 expression
pattern may have an activated TNF-associated signaling
pathway and are definitely sensitive to therapeutic effects. The
expression level of DISC1 is quite high in normal conditions
(>10 FPKM). Therefore, our thresholdmay indicate lowDISC1
expression level and corresponds to our analysis above.

The second rule involves the SAMD11 gene. Different
from DISC1, a high SAMD11 expression level may indicate
an activated inflammatory status in the whole body and a
high TNF-α expression level [75, 76]. Therefore, the thera-
peutic effects of IFX may also be more effective in conditions
with more potential pharmacological targets. This finding
corresponds to our prediction rules. According to recent
publications, the expression level of SAMD11 in normal
whole blood is <1 FPKM. Therefore, under the predicted
conditions, the expression level of SAMD11 may be upregu-
lated and result in the stronger activation of the TNF-α sig-
naling pathway. Patients with specific SAMD11 expression
levels that follow our rules would be sensitive to IFX. By con-
trast, patients with expression profiling that does not follow
these quantitative rules may be resistant to IFX-mediated
RA therapeutics.

5. Conclusions

The identified blood gene signatures participate in IFX-
sensitive pharmacological processes in patients with RA.
Thus, these genes may be potential biomarkers for the dis-
tinction of IFX-sensitive and IFX-resistant patients at the
transcriptomic level. Several quantitative signature rules for
the distinction of patients have also been verified by other
recent publications. Therefore, our newly presented method
provides comprehensive qualitative and quantitative predic-
tion standards for prognosis guidance on the clinical applica-
tion of IFX on patients with RA.
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