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The excessive number of COVID-19 cases reported worldwide so far, supplemented by a high rate of false alarms in its diagnosis
using the conventional polymerase chain reaction method, has led to an increased number of high-resolution computed
tomography (CT) examinations conducted. The manual inspection of the latter, besides being slow, is susceptible to human
errors, especially because of an uncanny resemblance between the CT scans of COVID-19 and those of pneumonia, and
therefore demands a proportional increase in the number of expert radiologists. Artificial intelligence-based computer-aided
diagnosis of COVID-19 using the CT scans has been recently coined, which has proven its effectiveness in terms of accuracy
and computation time. In this work, a similar framework for classification of COVID-19 using CT scans is proposed. The
proposed method includes four core steps: (i) preparing a database of three different classes such as COVID-19, pneumonia,
and normal; (ii) modifying three pretrained deep learning models such as VGG16, ResNet50, and ResNet101 for the
classification of COVID-19-positive scans; (iii) proposing an activation function and improving the firefly algorithm for feature
selection; and (iv) fusing optimal selected features using descending order serial approach and classifying using multiclass
supervised learning algorithms. We demonstrate that once this method is performed on a publicly available dataset, this system
attains an improved accuracy of 97.9% and the computational time is almost 34 (sec).

1. Introduction

The novel Coronavirus Disease 2019 (COVID-19) has
spread to at least 184 countries worldwide, with over one
hundred seventeen million confirmed cases [1]. The number
of deaths due to COVID-19 is over 5.3 million (http://
worldometers.info). The timely diagnosis of COVID-19 has
been a prime issue to be tackled. A test known as polymerase
chain reaction (PCR) has proven relatively effective, but it
generally takes around 6-8 hours to give results [2]. Since

COVID-19 is a respiratory tract infection, chest X-ray
images and high-resolution computed tomography (HRCT)
or simply CT scans may also be used for its diagnosis [3, 4].
The manual inspection of CT images, however, becomes
tedious when performed incessantly and requires expert
radiologists to give the final verdict [5, 6]. Artificial intelli-
gence (AI) can help in diagnosing COVID-19 at early stages
using the CT images [7, 8], and several methods based on
machine learning (ML) [9] have been recently proposed
for identifying COVID-19 [8, 9]. The available literature
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verifies that the diagnosis of COVID-19 using ML tech-
niques is straightforward and time efficient [10, 11].

The ML techniques have shown great success in image
processing applications during the last two decades
[12–14]. In image processing, the input images are refined
by a few filters (i.e., Gaussian filter and Weiner filter) and
followed by segmentation of the object [15, 16]. The output
of this step is utilized for feature extraction (i.e., texture,
color, and point), which are classified using the ML algo-
rithms like support vector machine (SVM) and to name a
few more [17, 18]. This domain’s development, especially
deep learning, has shown great success in segmentation
and classification tasks [19]. In a simple deep learning
model, the automated features are extracted instead of hand-
crafted features [12].

Recently, deep learning has been applied to classify
COVID-19 scans into infected or normal classes [20, 21].
The computer vision (CV) researchers have introduced
many techniques using deep learning to classify COVID-19
using CT images [22]. Few CV researchers have also focused
on fusing multiple features in one matrix for better classifi-
cation accuracy [23, 24]. However, this fusion process
increases the number of predictors, which eventually
increases the computational time [25]. This problem is
resolved by other researchers using feature selection (FS)
techniques [26]. The FS techniques are most important in
medical imaging and have recently received increased atten-
tion of the research community for better classification accu-
racy in minimal time, which they promise [27, 28].

Deep learning has played an important role in medical
imaging during the last decade [29, 30]. The CV researchers
have introduced many techniques for classifying medical
infections like COVID-19, cancers of different types (skin,
stomach, and lung), and brain tumors [31, 32]. Recently,
Abbas et al. [33] implemented a deep Convolutional Neural
Network (CNN) framework named DeTraC to diagnose the
COVID-19 patients. In this approach, they focused on the
chest X-ray scans and considered pretrained models. The
training of the pretrained models was performed using shal-
low tuning, deep tuning, and fine-tuning [34]. Sun et al. [35]
presented a computer-aided system using the deep forest
learning. The main motive of this approach was to minimize
the burdens of clinicians. The extraction of location-specific
features was performed, and later, among them, the best fea-
tures were chosen. Then, a deep forest learning model was
employed for the learning. Ozturk et al. [36] proposed
another technique intended to detect and diagnose
COVID-19 in X-ray scans using deep learning. This method
is implemented for binary class classification (COVID vs. no
findings) and multiclass classification (COVID vs. no find-
ings vs. pneumonia). In the learning process, the DarkNet
model was employed, plus it attained enhanced perfor-
mance. Apostolopoulosa and Mpesiana [37] described a
multiclass framework for classifying COVID-19, pneumo-
nia, and normal CT scans. In this framework, the authors
compared the performance of pretrained models and evalu-
ated the best one based on the accuracy.

Islam et al. [38] presented a combined framework for
diagnosing COVID-19 with the help of X-ray images, called

LSTM-CNN. The features were extracted from the CNN
model, and LSTM performed the detection. The LSTM was
employed as a classifier that was trained on the CNN fea-
tures for the detection purpose. The experimental process
was conducted on 4575 X-ray images and achieved an
improved accuracy. Gianchandani et al. [39] presented an
ensemble deep learning framework for classifying the
COVID-19 patients from X-ray images. The presented
framework was based on the pretrained models. The main
functionality of this framework was that it was useful for
both binary and multiclass classification. Shaban et al. [40]
introduced a hybrid diagnosis strategy for detecting the
COVID-19 patients. A feature connectivity graph approach
was introduced for the selection of important features. Then,
a hybrid model was employed for the final classification.

1.1. Problem Statement. This research is aimed at helping in
early detection and analysis of COVID-19 using CT images.
The significant challenges considered in this work are (i)
there is extraction of irrelevant features from low-contrast
chest CT images; (ii) a very common part of chest CT image
is infected, and the rest is the same as healthy regions, so
there exists a high chance of incorrect classification of the
infected and the healthy images; and (iii) simple shape and
texture features might not support the correct area of
infected regions and, therefore, might result in extraction
of the features from the whole image [41]. A deep
learning-based framework has been presented in this
research to classify the COVID-19 images. The proposed
method is evaluated on a publically available dataset called
SARS-CoV-2 CT scan. This dataset contains 1252 CT chest
scans of COVID-19-infected patients and 1229 CT chest
scans of non-COVID patients. Then, we also added around
1500 CT chest scans of patients affected with community-
acquired pneumonia (CAP). By training our CNN-based
models, we have obtained a detection accuracy of 93.7%.

1.2. Major Contributions. The key contributions presented in
our work are listed as follows:

(i) We have collected a CT image database consisting
of three classes, including COVID-19, normal, and
pneumonia

(ii) Three deep learning models named VGG16,
ResNet50, and ResNet101 are modified for the
COVID-19 patients’ classification. The modified
models are trained using transfer learning

(iii) Features are fused using a new approach named
descending order via serial fusion (DOvSF)

(iv) An enhanced firefly algorithm (EFA) is proposed for
the best feature selection. Within this enhanced algo-
rithm, a new activation function is also proposed

The rest of the manuscript is organized as follows. Sec-
tion 2 presents the proposed methodology. Results and
comparisons are discussed in Section 3. Finally, Section 4
presents the conclusion of this work.
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2. Methodology

The proposed framework is intended for COVID-19 CT
scan classification by using some unique deep learning fea-
tures. The architecture of the framework is shown in
Figure 1. This figure illustrates that the proposed framework
consists of the following steps: (i) preparation of a CT image
database composed of three classes, COVID-19, pneumonia,
and normal; (ii) implementation followed by modification of
three deep learning models (i.e., VGG16, ResNet50, and
ResNet101); the modification is according to the prepared
dataset; (iii) feature extraction from each model and optimi-
zation using an improved firefly algorithm. Later, the
selected features are combined using the DOvSF technique.
We have used supervised learning classifiers to classify the
final features. The detail of every single step is described as
follows.

2.1. Dataset Collection and Normalization. The publically
available SARS-CoV-2 CT scan dataset is utilized in this
work. This dataset includes actual patients of Brazilian hos-
pitals. It comprises 1252 CT scans of COVID-19-infected
patients, 1152 CT scans for healthy patients, and 1536 CT
images of pneumonia-infected patients. Figure 2 presents
some samples from the dataset. We have divided the dataset
in the percentage ratio of 70 : 30 to use it for training and
then testing purposes, respectively. In this figure, the given
sample images correspond to COVID-19-infected, pneumo-
nia, and normal. For the experimental process, this dataset is
not enough; therefore, we perform data augmentation. In the
data augmentation phase, two operations are performed: left
flip and right flip. After the augmentation step, the images of
each class are increased to 4000. The nature of each image is
grayscale and of the dimension 512 × 512.

2.2. Convolutional Neural Networks (CNN). A Convolutional
Neural Network (CNN) is a deep learning procedure in
which we apply an image as input. Weights and biases are
allocated in a layer called the convolutional layer [17, 42].
When working in this layer, the image pixels are initially
considered weights and processed through a convolutional
filter. Through the latter, the pixels are transformed into fea-
tures. Mathematically, the equation of this operation is as
follows:

xlij = 〠
n−1

a=0
〠
n−1

b=0
ωaby

l−1
i+að Þ j+bð Þ, ð1Þ

where xlij represents output layer features and w repre-
sents weights. After employing this layer, the nonlinearity
is defined as follows:

ylij = σ xlij
� �

: ð2Þ

After the convolutional layer, a ReLu layer is employed.
The ReLu layer is also known as activation layer. In this
layer, the weights of the convolutional layer are quantized
to zero or a positive integer. It means that if weights are pos-
itive values, they are considered as they are; otherwise, they
are replaced with zero. Mathematically, this operation is
defined as follows:

f xð Þ =max 0, xð Þ, ð3Þ

f xð Þ =
0, if x < 0
x, if x ≥ 0

( )
: ð4Þ

A batch normalization layer is added in the neural net-
work to adjust the input values, means, and variances of each
layer. Then, a few irrelevant weights are removed using the
pooling layer. Through the pooling layer, the spatial size of
each layer (input data) is decreased. The pooling process
depends on the filter size and stride. For example, in the
CNN, the filter size is usually 3 × 2 and stride 2. Mathemat-
ically, this process is formulated as follows:

W2 = W1 − F
À Á

S
+ 1, ð5Þ

H2 = H1 − F
À Á

S
+ 1, ð6Þ

D2 =D1, ð7Þ
whereW1 represents the width of input data volume, H1

is height, and depth is represented by D1. Two major param-
eters such as filter size and stride are defined by F and stride

Database

Modified VGG16

Modified resnet50

Modified resnet101

Train modified models 
using transfer learning

Features extraction and optimization

Features optimization
using improved firefly

algorithm

Features optimization
using improved firefly

algorithm

Features optimization
using improved firefly

algorithm
Feature vector 3

Feature vector 2

Feature vector 1

Features fusion using
DOvSF

Classification
Results

•

•
•

Figure 1: The proposed multiclass architecture of COVID-19 classification using deep learning feature selection and fusion.
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S. The features are converted into 1D in the fully connected
(FC) layer. In the FC layer, neurons consume complete links
to all activations in the previous layer. Hence, their activa-
tions are calculated with a matrix multiplication and then
the bias offset. In this layer, the features are extracted for
the classification purpose. Softmax classifier is applied for
the classification purpose.

2.3. Novelty 1: Modified VGG16 Network Features. A unique
feature of the VGG16 is that rather than having numerous
hyperparameters, it concentrates on using identical PL and
MPL of 2 × 2 filter of stride two and a convolutional layer
of 3 × 3 filter with stride 1. In this model, convolution layers
and pooling layers are continuously followed by the fully
connected layers. In this model, the total number of layers
is 16, as indicated by its name, comprising 13 convolutional
layers and three fully connected layers. The architecture of
the VGG16 model is shown in Figure 3. This model was ini-

tially trained on the ImageNet dataset and of input size
224 × 224 × 3.

In this work, we modify this network as follows. The last
fully connected layer has been removed, and a new fully con-
nected layer has been added, which includes only three clas-
ses as COVID-19, pneumonia, and normal. The modified
model is trained on the selected COVID dataset using trans-
fer learning (TL). The process of TL is described in Section
2.6. The features are extracted from FC layer seven and a
vector of dimension N × 4096 is obtained, where the output
of the last layer is N × 3. Visually, this network is illustrated
in Figure 4.

2.4. Novelty 2: Modified ResNet50 Network Features. ResNet,
also known as the Deep Residual Network (DRN), shows
higher accuracy and efficiency for the image classification
task. This model is also trained initially on 1000 object clas-
ses. This model is based on the extra straight pathway for the

COVID Non-COVID

Pneumonia

Figure 2: Sample CT images considered from the prepared dataset.

Source dataset

Depth 64

Depth 128 Depth 256 Depth 512 Depth 512
FC1 FC2

FC3
layer

Output layer
(1000 classes)

Maxp
ool

Maxp
ool

Maxp
ool

Maxp
ool

Figure 3: Original architecture of VGG16 CNN model.
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transmission of data through a network. Backpropagation
does not come across the vanishing gradient problem when
working with ResNet. Therefore, the short connections are
employed, also called Residual Blocks (RB). For this pur-
pose, an input x has to be added for the output layer by add-
ing the shortcut connection after some weight layers. The
main functionality of the short connection is to avoid those
layers that are not valuable for the training process. Hence,
the output is achieved in rapid training. Mathematically, this
process is formulated as follows:

H xð Þ = F xð Þ – x, ð8Þ

F xð Þ =H xð Þ – x: ð9Þ
Visually, this network is illustrated in Figure 5.
This network is modified in this work based on the fully

connected layer. Only one fully connected layer has been
added to this network, which includes 1000 classes. We
remove this layer and change it by adding a new one, which
includes only three classes as COVID-19, pneumonia, and
normal. The modified model is later trained on the selected
COVID dataset using transfer learning (TL). Section 2.6
describes the process of TL. Then, the vital step of feature
extraction is performed on the global average pooling layer
plus a vector with dimensions N × 2048 is obtained. The
output of the last layer is N × 3. Figure 6 shows the architec-
ture of the modified ResNet50 CNN model.

2.5. Novelty 3: Modified ResNet101 Network Features. This
network consists of 104 convolutional layers, few batch nor-
malization layers, many pooling layers of max function, one
global average pool layer, and one FC layer. Similar to the
ResNet50, this network is also trained on the ImageNet data-
set, which consists of 1000 object classes. The input size of
this network is 224-by-224-by-3. The original architecture
is shown in Figure 7. This figure describes that the filter size
of the first convolutional layer is 7-by-7, which is minimized
for the subsequent layers.

In this work, this network is modified in terms of the FC
layer. The FC layer is removed from the original network,
and a new FC layer has been added, which includes only
three classes, as demonstrated in Figure 8. This explains that
the SARS-CoV-2 dataset is given as input to this model,
where the same filters are considered, such as input size
224-by-224-by-3, the first layer filter size is 7-by-7. For the
proceeding layers, the filter sizes are 1-by-1, 3-by-3, and 1-
by-1, respectively. To train this modified network, transfer
learning is employed. In the TL process, the learning rate,
epochs, and batch size are 0.0001, 200, and 64, respectively.
After training of the model, the feature extraction process
is performed on the average pooling layer. Here, the dimen-
sions of the extracted features are N-by-2048.

2.6. Transfer Learning. Transfer learning (TL) [43] can be
described as the capability of a system to learn information
and services while resolving one set of problems (source)

Depth 64

Target dataset

Depth 128 Depth 256 Depth 512 Depth 512

COVID Non-COVID

Pneumonia

Output layer (3 classes)
COVID 19, normal,

pneumonia
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M
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M
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Figure 4: Architecture of modified VGG16 for COVID-19 classification using CT images.
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Figure 5: Architecture of ResNet50 for image classification.
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and applying to a different set of problems (target). The key
objective of TL is to resolve the target domain with enhanced
performance. TL can be a great instrument if the dataset of
the target domain is considerably smaller than the dataset
of the source domain. Given a source domain DS = fðαS1, βS

1
Þ,⋯, ðαSi , βS

i Þ,⋯, ðαSn, βS
nÞg with learning task LD, LS, ðαSm,

βS
mÞ ϵℝ; target domain DT = fðαT1 , βT

1 Þ,⋯, ðαTi , βT
i Þ,⋯, ðαTm

, βT
mÞg with learning task LT , ðαTn , βT

n Þ ϵ ℝ, ðm, nÞ is the train-
ing data sizes where n≪m and βD

1 and βT
1 be the labels of

training data, whereDS ≠DT and LS ≠ LT . Visually, the transfer
learning process is shown in Figure 9. This figure describes that
the weights and parameters of source models (VGG16,
ResNet50, and ResNet101) are transferred to modified models
and then trained these models on the COVID dataset. At the
end of the training, three classes are considered as an output.

2.7. Novelty 4: Enhanced Firefly Algorithm. In the area of CV,
the feature selection techniques have shown great success in

accuracy and computational time [44]. By maintaining the
accuracy and, at the same time, decreasing the number of pre-
dictors, these feature selection techniques are really useful. The
fewer the number of predictors, the minimal the computa-
tional time. Many techniques are introduced in the literature,
and a few of them get notable performance. The metaheuristic
techniques are more useful for the selection of the best fea-
tures. In this work, we implement the firefly algorithm and
improved its work based on a new activation function. This
function is implemented to control the dimension of features
and also to minimize the computational time. The basis of this
function depends on entropy, kurtosis, and skewness values.
This information is put into an activation function and then
compared with the selected features of the firefly algorithm
based on the fitness value. Hence, this approach is called as
the enhanced firefly algorithm (EFA). This process can be
mathematically represented as follows.

Consider an original vector ∅ðFÞ of dimension N × K ,
and the selected vector is e∅ðFÞ of dimension N × ~K . As
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1×1, 256
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3×3, 128
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Figure 6: Architecture of modified ResNet50 for the classification of COVID-19 CT images.
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Figure 7: Architecture of Resnet101 for image classification.

SARS-CoV-2
dataset

COVID Non-COVID

Pneumonia

7×7, 64
1×1, 64
3×3, 64

1×1, 256

1×1, 128
3×3, 128
1×1, 512

1×1, 256
3×3, 256

1×1, 1024

1×1, 512
3×3, 512

1×1, 2048

×3 ×4 ×23 ×3

FC layer

DRF

2048-d

Output
(COVID-19,

normal,
pneumonia)

Conv 1
(112×112)

Conv 2
(56×56)

Conv 3
(28×28)

Conv 4
(14×14)

Conv 5
(7×7) N×3 classes

Figure 8: Architecture of modified ResNet101 for the classification of COVID-19 CT scans.
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mentioned, we have an original feature vector ∅ðFÞ having
G1 features and N number of training features.

∅ Fð Þ = ∅ F1ð Þ,∅ F2ð Þ,⋯,∅ FKð Þf gG1
, ð10Þ

where∅ðFKÞ represent input features up to the kth term.
There are two significant properties of the firefly algorithm,
namely, brightness variation and attractiveness. We have
used the distance formula between two fireflies i and j to
measure their attractiveness. When we have calculated the
distance, the brightness depends on it. The brightness is
decreased when the distance between the two fireflies i and
j is increased. The brightness is calculated in mathematical
form as follows:

∂ Dð Þ = ∂0e
−lD: ð11Þ

In the above equation, D is the distance between the two
fireflies i and j, ∂0 denotes original brightness, and l denotes
the light absorption coefficient. As we have explained
before, brightness ∂ and attractiveness ∂A between i and j
are relational to each other. Hence, this equation can be
written as

∂A Dð Þ = ∂0e
−lD: ð12Þ

By moving to the next destination, the firefly algorithm
achieves its goal. This motion is equated as follows, as it
depends on the previous and current firefly:

αt+1i = ∂Ae
−lD2

i j αtj − αti

� �
+ p1 r1 − 0:5ð Þ: ð13Þ

As written in the above equation, p1 represents the ran-
domization parameter, t denotes the current iteration, and
r1 is the current feature value. Also, in this equation, αt+1i

Source
data

Source
model

Source
label

Target
data

SARS COV 2 CT
SCAN

Target
model

Target
label

Transfer weights and parameters

VGG16
RESNET50

RESNET101

VGG16
RESNET50

RESNET101

1000 Classes

3 Classes Feature
layer

ImageNet

Figure 9: Transfer learning architecture.

Table 1: Classification output of the proposed method using VGG16 and EFA.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec)

Linear SVM 95.26 95.33 4.74 0.993 95.3 157.58

Quadratic SVM 97.13 97.16 2.87 1.0 97.2 176.35

Cubic SVM 97.63 97.63 2.37 1.0 97.6 189.19

Medium Gaussian SVM 96.43 96.43 3.57 0.993 96.4 229.82

Fine KNN 96.96 96.96 3.04 0.976 97.0 247.06

Medium KNN 93.83 93.86 6.17 0.986 93.8 254.59

Cosine KNN 94.9 94.9 5.1 0.993 94.9 273.3

Cubic KNN 92.86 92.93 7.14 0.986 92.19 1471.3

Weighted SVM 94.86 94.86 5.14 0.993 94.8 305.36

Subspace KNN 96.83 96.83 3.17 0.993 96.8 975.05

96.2%

99.9%

96.8%3.2%

3.8%

0.1%

COVID

COVID

Non-COVID

Non-
COVID

Pneumonia

Pneumonia

Tr
ue

 cl
as

s

Predicted class

Figure 10: Confusion matrix of Cubic SVM for experiment 1.
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represents current firefly, αti represents preceding firefly,
and Dij represents the distance between the fireflies i and
j. The following equation can calculate the distance:

Dij = 〠
G1

∅=1
αi∅ − αj∅
Â Ã2

: ð14Þ

In the above equation, ∅∈∅ðFÞG1
. When these weights

move, the weights are updated every time. The weights are
changed according to the following function:

αt+1i∅ =
M, if 1

1 + eαti∅

0, Otherwise

8><
>:

9>=
>;: ð15Þ

In the above equation, the KNN fitness function is
applied for the selected features denoted by M in one itera-
tion. We apply the Manhattan distance formula in KNN as
follows:

Δm Mð Þ = 〠
M

u=1
αu − Luj j: ð16Þ

In the above equation, αu represents the selected fea-
tures that are updated and Lu denotes the labels of the class.
Until the best solution is achieved, we continue this process.
After this process, we get an optimal feature vector of
dimension N ×V1. This resultant vector is further refined
using a new activation function. Mathematically, the activa-
tion function is formulated as follows:

act = Entropy + Skew
Kurt + C

, ð17Þ

Entropy = −〠
n

i=1
p λf

À Á
log λf

À Á
, ð18Þ

Skew λf

À Á
=
∑N

i=1 λf i − μ
À Á3/N
N − 1ð Þ × σ3

, ð19Þ

Kurt λf

À Á
=
∑N

i=1 λf i − μ
À Á

/N
σ4 , ð20Þ

Act Fnð Þ =
S1 ið Þ forV1 ið Þ ≥ act,
Ignore, Elsewhere,

(
ð21Þ

where act represents the activation formula, ActðFnÞ rep-
resents the activation function, and S1ðiÞ is a final selected
feature vector. This function is applied for all three deep
feature vectors, and as a result, three last optimal vectors
are attained with dimensions N × 1620, N × 760, and N ×
750. The main purpose of this activation function is to
select the most appropriate features for the final classifica-
tion. In the end, all these features are sorted into descend-
ing order and serially fused in one vector. Mathematically,
this process is formulated as follows:

Fused =
S1 ið Þ
S2 ið Þ
S3 ið Þ

0
BB@

1
CCA

N×K

: ð22Þ

This fused vector of dimension N × 3130 is finally
classified using multiclass classification algorithms such as
SVM, KNN, and names a few more.

Table 2: Classification output of the proposed method using ResNet50 and EFA.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec)

Linear SVM 95.96 96.06 3.04 0.993 96.0 95.626

Quadratic SVM 96.93 97 3.07 0.996 96.9 107.41

Cubic SVM 97.20 97.23 2.8 1 97.2 121.81

Medium Gaussian SVM 95.0 95.0 5.0 0.993 95.0 140.97

Fine KNN 93.03 93.13 6.97 0.95 93.1 143.19

Medium KNN 89.9 90.86 10.1 0.98 89.9 151.14

Cosine KNN 93.36 93.33 6.64 0.986 93.4 162.94

Cubic KNN 89.9 90.43 10.1 0.976 89.9 609.23

Weighted SVM 89.76 91.1 10.24 8.986 89.8 178.37

Subspace KNN 94.13 94.1 5.87 0.986 94.1 440.78
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Figure 11: Confusion matrix of Cubic SVM for experiment 2.
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3. Experimental Results

The experiment was performed on the SARS-CoV-2 CT
scan dataset, containing 1252 CT images of COVID-
infected patients, 1152 CT images of non-COVID patients,
and 1536 CT images of pneumonia-infected patients. 70%
of the data is used for training purposes, while 30% of the
information is used for testing purposes. The following mea-
sures are utilized to analyze the proposed technique’s perfor-
mance: sensitivity, precision, F1 score, accuracy, FPR, and
FNR. The coding was done in MATLAB 2020a. The experi-
ments are done on Core-i7 7700 CPU, 8GB of memory, and
Intel HD 630 GPU.

3.1. Experiment 1: Modified VGG16 and EFA. In this exper-
iment, the modified VGG16 process of feature extraction is
performed, and they are given to EFA for the optimal feature
selection. The results are presented in Table 1. In this table, it
is described that the best accuracy is 97.6% achieved by the
Cubic SVM classifier. The recall rate and precision rate are
97.63%. The Cubic SVM accuracy is also validated in
Figure 10. The exact prediction rate shown by this figure
for COVID-19 is 96.2%, whereas the pneumonia and normal
classes’ prediction rates are 99.9% and 96.8%, respectively.
The accuracy of the remaining classifiers such as LSVM,
MGSVM, MKNN, CKNN, Cubic KNN, WSVM, and Sub-
space KNN is 95.3%, 96.4%, 93.8%, 94.9%, 92.19%, 94.8%,
and 96.8%, respectively. The computational time is also
noted during the testing process and shows the minimum
computational time of 157.58 (sec) for the Linear SVM.
The computational time of the Cubic SVM is 189.9 (sec).
Based on the accuracy value, however, the Cubic SVM has
performed better.

3.2. Experiment 2: Modified ResNet50 and EFA. The modi-
fied ResNet50 features are extracted and passed in EFA for
the optimal feature selection in this experiment. The results
are presented in Table 2. The best accuracy of 97.2% is
achieved by the Cubic SVM classifier. The recall rate and
precision rates are 97.2% and 97.23%, respectively. The
Cubic SVM accuracy is also validated in Figure 11. The exact
prediction rate shown by this figure for COVID-19 is 94.2%,
whereas the pneumonia and normal classes’ prediction rates

are 99.7% and 96.5%, respectively. In Table 2, each classifier
is shown with its computational time and accuracy during
the testing phase. The minimum computational time is
approximately 95 (sec) for Linear SVM, whereas the compu-
tational time of Cubic SVM is 121.81 (sec). The difference
among Linear SVM, Quadratic SVM, and Cubic SVM accu-
racy is approximately 1% and the time difference is around
15-20 (sec). Hence, the performance of Cubic SVM is overall
better for this experiment.

3.3. Experiment 3: Modified ResNet101 and EFA. The modi-
fied ResNet101- and EFA-based selected feature results are
discussed in this experiment. The results are presented in
Table 3. This table shows that the best accuracy is 97.5%
achieved by the Cubic SVM. Figure 12 illustrates the confu-
sion matrix of Cubic SVM. As shown in this figure, the exact
prediction accuracy of COVID-19 is almost 93%, whereas
the normal and pneumonia classes’ accuracy is 97.7% and
100%, respectively. Few other classifiers are also imple-
mented, and their accuracies are noted in this table. Based
on the accuracy, the Cubic SVM showed better performance.
The computational time of Cubic SVM during the testing
process was approximately 35 (sec); however, the minimum
noted time is 31.799 (sec) for the Linear SVM. Compared to
experiment 1 and experiment 2, the performance of this
experiment is significantly better in both accuracy and

Table 3: Classification output of the proposed method using ResNet101 and EFA.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec)

Linear SVM 95.0 95.1 5 0.993 95.0 31.799

Quadratic SVM 97.0 97.06 3 1 97.0 33.323

Cubic SVM 97.5 97.5 2.5 1 97.5 35.945

Medium Gaussian SVM 95.56 95.56 4.44 0.993 95.6 42.995

Fine KNN 95.36 95.4 4.64 0.963 95.4 21.224

Medium KNN 90.83 91.43 9.17 0.983 90.8 20.741

Cosine KNN 95.06 95.1 4.94 0.993 95.1 22.4

Cubic KNN 90.36 90.6 9.64 0.98 90.4 146.63

Weighted SVM 91.6 92.66 8.4 0.986 91.6 20.812

Subspace KNN 95.56 95.56 4.44 0.99 95.6 92.172
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Figure 12: Confusion matrix of Cubic SVM for experiment 3.
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computational time. However, this performance is essential
to enhance further; therefore, we have fused features of all
three experiments.

3.4. Experiment 4: Final Fused Features. In this experiment,
we fuse all optimal features of three networks using descend-
ing order serial approach. The results of this experiment are
presented in Table 4. Cubic SVM achieves the highest accu-
racy of 97.9%, which is further confirmed by Figure 13. This
figure presents the confusion matrix of Cubic SVM. The exact
prediction accuracy, according to this figure, of COVID-19 is

95.7%. In the previous experiments (experiment 1, experiment
2, and experiment 3), this rate was approximately 93%.

Similarly, the prediction accuracy of normal and pneu-
monia classes is also increased. The performance of other
classifiers is also increased by approximately 2%. However,
the time is slightly increased. Based on the results, the Cubic
SVM manages to produce the highest accuracy after the
fusion is performed on all optimal features.

The confidence interval-based analysis is also conducted
for the final classification results (Table 5). The CI is
computed for confidence level 95%, 1:960σxÀ. Based on the

Table 4: Classification output of the proposed method using fusion of all optimal features.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec)

Linear SVM 95.2 95.3 4.8 0.993 95.2 30.564

Quadratic SVM 97.2 97.26 2.8 1 97.2 34.323

Cubic SVM 97.9 97.9 2.1 1 97.9 34.323

Medium Gaussian SVM 95.86 95.9 4.14 0.993 95.9 49.809

Fine KNN 95.26 95.23 4.77 0.96 95.3 22.065

Medium KNN 90.73 91.36 9.27 0.98 90.8 22.441

Cosine KNN 94.8 94.83 5.2 2.98 94.8 27.401

Cubic KNN 89.9 90.3 10.1 0.97 89.9 163.2

Weighted SVM 91.7 92.7 8.3 0.986 91.7 26.045

Subspace KNN 95.16 95.2 4.84 0.986 95.2 93.763
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Figure 13: Confusion matrix of Cubic SVM for experiment 4.

Table 5: Confidence interval-based analysis of proposed classification results.

Classifier Min Acc Avg Acc Max Acc σ σ�x CI

L-SVM 94.1 94.65 95.2 0.55 0.38 94:65 ± 0:762 (±0.81%)
SKNN 94.3 94.75 95.2 0.45 0.31 94:75 ± 0:624 (±0.66%)
F-KNN 93.7 94.50 95.3 0.80 0.56 94:5 ± 1:109 (±1.17%)
MG-SVM 93.9 94.90 95.9 1.0 0.70 94:9 ± 1:386 (±1.46%)
QSVM 96.4 96.80 97.2 0.4 0.28 96:8 ± 0:554 (±0.57%)
CSVM 97.2 97.55 97.9 0.35 0.24 97:55 ± 0:485 (±0.50%)
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(CSVM) outcomes are more consistent and accurate. Lastly,
we compare the proposed method accuracy (after fusion)
with some recent techniques, as presented in Table 6. This
table shows that our proposed method has obtained far bet-
ter results than recent techniques.

4. Conclusion

This research offers a unique combination of deep learning
feature-based framework to classify COVID-19, pneumonia,
and normal patients using CT images. This framework’s
main steps are preparing a database, modifying pretrained
deep learning models, enhancing the firefly algorithm for
feature selection, and final fusion, followed by the classifica-
tion. The core forte of this research is the choice of pre-
trained models to extract features. Several pretrained
models are implemented in this work, and three of them
are chosen based on their better performance, like minimum
error rate. The second strong point of this research is the
enhanced firefly algorithm to select the best features. By
the use of this algorithm, the features are first selected into
two phases. We propose an activation function based on
entropy, skewness, and kurtosis for the second phase’s more
rich features. The number of predictors is further minimized
by minimizing the computational time and improving the
accuracy. The fusion of these optimal features shows the
limitation of this research. This process increases computa-
tional time, but the advantage is gained in improving accu-
racy. In the future, we will focus on two key steps: (i)
increase the size of the database and design a CNN model
from scratch for COVID-19 classification and (ii) focus on
new feature fusion approach that does not affect the compu-
tational time.
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