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The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this pur-
pose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects
was created. The statistical analysis of the EEG was done on the subject’s basis instead of the commonly used grand averaging.
Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results
of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and
resting states (classification score of 94–100%), but it was unable to recognize the type of the movement. This is caused by the large
fraction of other (nonmovement related) EEG activities in the recorded signals. A classification method based on advanced EEG
signal denoising is being currently developed to overcome this problem.
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1. INTRODUCTION

There are a great number of existing BCI prototypes all
around the world. However, all of them suffer from one ma-
jor drawback; the communication channel between a human
brain and a computer is usually very slow working at a speed
lower than 100 bits per minute. If we compare this communi-
cation channel with a standard keyboard computer interface
allowing us to type texts at blazing speeds up to 1 kbit per
minute, we can conclude that all these BCI devices are still
not very suitable for the real computer control.

One possibility leading to higher data transfer lies in the
recognition of more distinct brain states, which means trans-
ferring more bits per state via the communication channel
(high-resolution EEG recognition), while keeping the aver-
age recognition score for the single states as high as possi-
ble. However, the currently existing systems recognize only
few very different EEG phenomena (left/right- hand or fin-
ger movement [1–5], mental activities such as mental arith-
metic, mental rotation, visual imagination [3, 4, 6, 7], con-
scious EEG rhythm control [8, 9], or event-related potentials
[10–12], among others). Our research is targeted to the ex-
ploration of possibilities of the high-resolution movement

recognition from the EEG signal. The movement-related
EEG was selected because it is very natural to control any-
thing with movement-related EEG as we usually control our
surroundings in this way. It is well known that only imagi-
nation of the movement is sufficient [13, 14] to produce the
desired brain activity pattern and last, but not the least, it
is possible to change quickly the movement-related states of
the brain compared , for example, to mental activities further
increasing the interface transfer speed.

Our previous work showed that it is possible to distin-
guish right-shoulder and right-index finger movements eas-
ily from the EEG signal [15, 16] and classify the direction of
the right-index finger movement on the basis of the EEG sig-
nal [17]. Movements performed at only one side of the body
were used. This task is more complicated compared to dif-
ferentiating only the left/right-hand movement or types of
mental activities. The key requirement built into the classifi-
cation system was to use changes in signal parameters rather
than information stored in the difference of signal powers
from different electrodes (extracted by means of appropri-
ately defined spatial filters [18]), which lies in contrast with
other existing systems. Encouraged by our previous result, we
targeted our research to the development of a classification
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method which is able to recognize the single-finger move-
ments from the EEG signal. Finger movements were chosen
owing to the results of other works [19, 20].

The second important finding we learnt from our ex-
periments is that the individualities of experimental subjects
cause great differences between their recorded brain activi-
ties. These differences nowadays obstruct the possibility of
the BCI generalization (the usage of the system trained on
one subject for the movement classification of another sub-
ject). This led us to the conclusion that an individual ap-
proach to the EEG statistical analysis will be selected instead
of the commonly used grand averaging (see, e.g., [20, 21]).

Last, but not least, the developed classification scheme
[16] allows us to do a movement-related EEG classification
without any need of subject training, which is a great advan-
tage compared to other systems.

Our current work deals with the right-index and little-
finger flexion movement-related EEG analysis and classifi-
cation. This contribution is organized as follows. The gen-
eral properties of the movement-related EEG are introduced
in Section 2. Further, the EEG recording experiment is de-
scribed. Section 4 section is devoted to a simple prelimi-
nary analysis of the recorded EEG proving the validity of our
database. The core of our work is described in Sections 5 and
6. First we analyze the EEG in an individual way to find subtle
differences between movements, then the classification sys-
tem description and classification results are introduced. Fi-
nally, several conclusions and future steps are drawn.

2. GENERAL PROPERTIES OF
THE MOVEMENT-RELATED EEG

We deal with movement-related changes of the EEG in the
spectral domain in our work. The following characteristic
phenomena are observed in the short-time EEG spectrum
around the time of a movement (see [20, 21]).

μ-rhythm event-related desynchronization (μERD) starts
about 1 second prior to the movement onset (see Figures 1
and 4 with marked ERDs and interval II in Figure 2). μERD
is usually localized to the C3/CP3 and C4/CP4 scalp ar-
eas [14, 20, 22] and it exhibits a contralateral preponder-
ance; usually we see two foci over both sensorimotor cortices.
μERD allows to differentiate not only the side of the body
performing the movement but slow and fast movements as
well [23]. The desynchronization accompanies even the mere
motor imagery and it is present in most normal adults’ EEG.

β-rhythm event-related desynchronization (βERD) has a
diffuse character over the scalp central area, and it is more
widespread than βERS [14, 24]. βERD is at least partially
coupled to the μERD showing the desynchronization at the
frequency of the second harmonic component of the μ-
rhythm [25]. Although there might be some components re-
lated to the βERS in the β-band during the ERD, there is no
known evidence that they somehow allow to distinguish be-
tween different types of movement.

β-rhythm event-related synchronization (βERS) is dis-
played by central β rhythms as a rebound in the form of a
phasic synchronization [24] after the movement. βERS rep-
resents a postmovement rise of power in the β-band; the

phenomenon is located about 1 second after the movement
onset (see Figures 1 and 4 with marked ERSs, and Figure 2
for interval III). βERS is larger over the contralateral hemi-
sphere [24] and it is focused slightly anteriorly of the largest
μERD. It is known that βERS allows to distinguish vari-
ous types of movements such as wrist/finger flexion move-
ments [20], index finger extension/flexion movements [26],
or distal/proximal movements [21]. The βERS differences
between extension/flexion movements and distal/proximal
movements were successfully used for movement classifica-
tion [16, 17].

3. EEG RECORDING

The following paragraphs describe the EEG recording and
postprocessing procedures and provide basic characteristics
of experimental subjects.

3.1. Experimental subjects

Eight subjects took part in the experiment—7 men and 1
woman with average age of 24.5 years (σ = 3.59, see Table 1).
None of them had a previous experience with such an ex-
periment; all of them gave us an informed consent with the
experiment and stated that they were healthy, without any
known neurological problems, and were not under influence
of any drug in the time of the experiment.

At first, we examined all the subjects on hand dominance.
The [27] hand-dominance test consisting of three different
tapping and drawing tasks was used. According to this test,
four out of eight subjects were found to be right-handed,
three as nonright-handed, and one as left-handed. The sub-
jects with no significantly dominant hand were selected in-
tentionally as the proposed system will work independently
of the subject’s handedness.

3.2. EEG recording setup

We used 41 unipolar scalp Ag/AgCl electrodes with 9 mm di-
ameter placed symmetrically and equidistantly with 2.5 cm
spacing [28] above both sensorimotor areas of the experi-
mental subject (see Figure 3). Since the EEG changes in both
time and space, the selection of appropriate EEG electrode
representing movement is a crucial point for a successful
classification of movements. As both movements are con-
trolled primarily by the contralateral sensorimotor cortex,
the most suitable electrodes are those overlying the contralat-
eral sensorimotor hand area (electrode C3 and its surround-
ings) [14, 20]. The ground electrode was mounted on the
nose, and impedances of all the electrodes were kept be-
low 10 kΩ. The real exact positions of the scalp electrodes
were measured with the help of the Isotrak II 3D scanner
(manufactured by Polhemus, Colchester, Vermont, USA). In
addition to the scalp electrodes, the following four bipo-
lar channels were used: vertical and horizontal EOGs (elec-
trodes placed horizontally and vertically along the subject’s
right eye), thumb EMG electrode placed on thenar recording
the EMG of musculus flexor pollicis brevis, m. opponens polli-
cis, and m. adductor pollicis, and little-finger EMG electrode
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Figure 1: Example of the confidence intervals analysis (subject 1, electrode 4). The upper figures are the little-finger and thumb flexion
PSD spectrograms. The time is biased to the movement onset—the movement was done in 0 second. Both figures share the same color
scale. Lower left figure is the difference between both spectrograms. Some fluctuations can be seen at 11 Hz—μ-rhythm instabilities—and
a difference in the βERS amplitudes is marked with a circle (positive difference = little-finger PSD which is at the given frequency and time
instant larger than the thumb PSD). Finally, the lower right figure shows time-frequency combinations where the confidence intervals of
both spectrograms are disjoint. Besides some random fluctuations, a clearly pronounced βERS region may be seen.

placed on hypothenar recording EMG of m. flexor digiti min-
imi brevis and m. opponens digiti minimi. The BrainScope
EEG recording machine (manufactured by M&I, Prague,
Czech Republic) was used for the EEG recording.

3.3. EEG recording procedure

The subject sat in a comfortable armchair in a silent and dim
room with her/his right hand lying on the armrest in such
a way so as she/he might freely perform the required thumb
and little-finger movements. They were asked to keep their
eyes closed and to avoid other movements than those asked
for during the recording. Further, she/he was told to be as
much relaxed as possible, but not to fall asleep. Before the
recording was started, the subject was trained to perform the
required movements properly.

The EEG was recorded in four blocks. The subject was
performing the required self-paced voluntary movements
during the first three blocks. The order and time between the
movements were left at the subject’s free will; no stimulation
was used. This was to make the experimental procedure as
much similar as possible to the real BCI usage. Two kinds
of movements were performed during the recording—brisk
flexions of the right thumb and the right little finger. Each

of the three recording blocks contained about 30 movement;
the blocks were separated by 10 minutes of rest.

During the fourth block, the resting EEG was recorded.
We used this EEG as a referential one for false-movement de-
tection rate estimation later on. The results of the experimen-
tal procedure were four blocks of about 15-minute-long EEG
recordings per subject. The EEG was recorded with sampling
rate of 256 Hz.

3.4. Data postprocessing

The first step was the temporal movement localization by
means of visual inspection of EEG and EMG traces and
by flagging the movement onsets. All the movements were
found and tagged as either thumb or little finger. The resting
period was tagged automatically by resting tag periodic in-
sertion with 10-second period, with movement onset at the
fifth second of the record.

Further we localized artifacts. Any movement or resting
tag was changed into an artifact tag if any artifact was found
in the 10-second-long epoch centred around the examined
event. Also the EMG traces were checked and outliers were
discarded.
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Figure 2: Used model architecture and its correspondence to the real EEG shape. The first and last emitting states model the resting period
before and after the movement. The second emitting state holds the μand βERD characteristics, and the third one is related to the βERS.

Table 1: The list of the experimental subjects’ characteristics. Positive dominance score means that the subject’s right hand is more skilled
than the lefthand. Right-handed subjects had the average score of 17.2, nonright-handed had 5.2, and left-handed had −10.

Subject Age Dominance Dominant Little-finger Thumb Resting

number (yrs) score (–) hand epochs epochs epochs

1 26 24.18 Right 88 87 90

2 26 5.44 Nonright 55 60 56

3 25 7.92 Nonright 86 86 75

4 25 13.81 Right 94 89 95

5 30 −10.03 Left 66 85 93

6 25 2.29 Nonright 86 85 91

7 18 15.63 Right 83 70 105

8 21 15.92 Right 84 85 132

The last step of the postprocessing was the Laplacian
filtration with the 8-neighboring-electrodes Laplacian fil-
ter [29, 30]. Prior to the Laplacian filtration, the sequen-
tial sampling nature of our EEG machine was compensated
by quadratic interpolation to improve the Laplacian output
signal-to-noise ratio [31].

Since we wanted to perform a single-trial offline analysis
and classification, we divided the EEG into 10-second-long
epochs centered at the movement, with resting tags having
the movement onset in the fifth second of the movement
epoch. The resulting numbers of epochs for each of the sub-
jects are listed in Table 1.

4. VERIFICATION OF THE NEW EEG DATABASE

The next step was to check whether our EEG was valid. We
checked whether the movement-related phenomena in the
recorded EEG were in compliance with previously published
works [20, 21, 26] dealing with similar databases.

A standard method was used to extract the ERD and ERS
parameters [21, 26, 29]. First, the average spectrograms giv-
ing the time development of the EEG power spectral den-
sity (PSD) for each subject, electrode and type of movement
were computed (frequency resolution of 1 Hz, time resolu-
tion of 200 milliseconds, with Blackman window used; see
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Figure 3: Localization of the electrodes allowing for the highest classification score and the real scalp electrode placement diagram. The
10–20 electrode positions C3, C4, and CZ are denoted, and central sulcus is roughly localized. The electrode spacing is equidistant, 2.5 cm.
Figures correspond to Table 5 (a) to the upper half: and (b) to the lower half; all the electrodes are shaded. Frontal locations (electrodes 1–16)
correspond to the cases where the classifier distinguishes movement and resting EEG on the base of the βERS; classification on the parietal
locations relies very likely more on the ERD. The best electrodes allowing to obtain the highest recognition score are placed contralaterally to
the movement with the exception of electrode 5 (subject 8) and electrode 14 (subject 3 in Figure 3(a)) and electrodes 1 and 7 (in Figure 3(b)).
All these subjects have a strong βERS present in the EEG and electrodes 5 and 14 are the anterior ones where the ERS is often present. The
presence of the βERS thus allows the classifier to distinguish between resting and movement-related realizations here.

Table 2: The most reactive μERD spectral components’ parameters for the single subjects, and contralateral and ipsilateral scalp sides.

Contralateral hemisphere

Subject Little-finger Thumb

number Electrode frequency (Hz) ERD (%) Electrode frequency (Hz) ERD (%)

1 9 12 −87 9 13 −91

2 1 8 −95 1 8 −95

3 18 12 −87 18 12 −91

4 36 9 −79 30 9 −73

5 18 11 −88 18 12 −89

6 18 13 −93 18 13 −90

7 30 11 −72 30 10 −83

8 36 10 −62 36 10 −66

Ipsilateral hemisphere

Subject Little-finger Thumb

number Electrode frequency (Hz) ERD (%) Electrode frequency (Hz) ERD (%)

1 24 11 −87 24 11 −91

2 7 8 −89 7 8 −93

3 24 12 −75 24 11 −84

4 33 10 −77 33 9 −72

5 24 11 −85 24 11 −88

6 24 12 −87 24 12 −88

7 24 11 −69 31 10 −75

8 32 11 −66 24 14 −69

Figure 1, e.g.). Averaging was done across all the realizations
of the EEG belonging to one subject, movement, and elec-
trode. Then the reference “resting” EEG power spectral den-
sity (PSD) (see Figure 1) was computed by averaging the
PSDs belonging to time interval of 4.5−3.5 seconds before
the movement onset. The average spectrograms were biased

to this resting EEG giving a normalized course of the EEG
PSD over time [29].

The most reactive frequencies for each of the subjects,
electrodes, and type of movement were found in the μ-
and β-bands—either the most attenuated one for ERD, or
the most amplified one for ERS analysis. We performed
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Table 3: The most reactive βERS spectral components’ parameters for the single subjects and contralateral and ipsilateral scalp sides.

Contralateral hemisphere

Subject Little-finger Thumb

number Electrode frequency (Hz) ERS (%) Electrode frequency (Hz) ERS (%)

1 12 31 262 12 32 222

1 12 29 222 4 26 337

2 17 27 141 37 22 126

3 10 27 260 10 26 231

3 — — — 03 10 125

4 8 14 85 27 21 80

5 8 17 132 8 18 95

5 8 28 107 — — —

6 10 26 174 1 16 145

6 1 33 131 10 27 143

7 27 21 738 18 21 509

8 9 19 389 9 18 379

8 21 30 164 21 28 236

Ipsilateral hemisphere

Subject Little-finger Thumb

number Electrode frequency (Hz) ERS (%) Electrode frequency (Hz) ERS (%)

1 12 31 262 4 26 338

1 12 29 221 4 26 338

2 16 28 650 16 35 192

3 15 26 169 16 14 117

4 — — — — — —

5 16 32 117 41 17 104

6 14 16 260 14 17 326

7 15 22 383 15 19 664

8 14 19 374 14 21 128

8 — — — 23 29 110

a separate analysis for contralateral as well as ipsilateral sides
of the scalp.

μ-band ERD: the following average frequency and ERD
attenuation on the contralateral scalp side were obtained (av-
erage value ± one sigma estimation): for little-finger flexion,
favg = 10.75 ± 0.67 Hz, ERDavg = −83.0 ± 4.0%; for thumb
flexion, favg = 10.88±0.67 Hz, ERDavg = −84.3±3.4%. There
were no significant differences apparent either between the
ERD central frequencies or between the average ERD ampli-
tudes for both fingers. The averaged frequencies and ampli-
tudes computed for the ipsilateral scalp side were as follows:
for little-finger flexion, favg = 10.75 ± 0.65 Hz, ERDavg =
−79.4 ± 3.2%; for thumb flexion, favg = 10.75 ± 0.65 Hz,
ERDavg = −82.5 ± 3.2%. Again, no significant differences
were obtained. In addition to these averaged values, we an-
alyzed the average ERD time courses across all the subjects.
No significant differences were found either. Detailed results
per subject are listed in Table 2.

Our results were compared to previously published re-
sults of experiments with similar EEG databases.

(i) Work [20] compares the μERD properties of right-
index finger, little-finger, and wrist movements. The
authors analyzed only the EEG recorded on C3 and C4

positions compared to our coverage of the whole sen-
sorimotor scalp area. No differences between the little-
finger and index-finger ERDs were found, which is in
compliance with our findings.

(ii) Works [22, 26] analyze μERD accompanying right-
index finger brisk extensions and flexions. Although
the authors chose different movements, we can at least
compare the localization of the strongest ERD to our
findings and see that we are in compliance with [26].

(iii) In compliance with other works (e.g., [22]), the con-
tralateral μERD was found to be stronger than the ip-
silateral one in 6 out of 8 subjects.

β-band ERS: the results of our βERS analysis—the most
reactive ERS components over both hemispheres—are given
in Table 3. For all of the subjects but 3 contralaterally and
for subjects 3 and 8 ipsilaterally, two distinct reactive bands
(upper and lower) were found. The ERSs of subjects 2 and 4 β
were very weak. We computed the ensemble average parame-
ters for contralateral hemisphere (little-finger flexion: favg1 =
22.8 ± 1.8 Hz, ERSavg1 = 272 ± 75%, favg2 = 18.0 ± 4.5 Hz,
ERSavg2 = 86 ± 28%; thumb flexion: favg1 = 21.8 ± 1.8 Hz,
ERSavg1 = 223 ± 53%, favg2 = 13.8 ± 4.5 Hz, ERSavg2 =
104 ± 45%) as well as ipsilateral hemisphere (little-finger
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flexion: favg = 22.9 ± 2.7 Hz, ERSavg = 156 ± 38%; thumb
flexion: favg = 21.8 ± 1.8 Hz, ERSavg = 188 ± 58%). It is ob-
vious that there are no significant differences between either
movement parameters. Further, in the grand average courses,
no differences were found either.

Compared to other works the following can be concluded
that

(i) work [20] did not find any significant difference be-
tween right-index finger and little-finger flexion βERSs
(this is in compliance with our findings),

(ii) work [26] analyzes the βERS accompanying the
right-index finger extension and flexion movement;
the strongest ERS is localized 2.5 cm anteriorly and
about 5–7.5 cm left from the Cz position; we found
the strongest thumb and little-finger ERS locations
roughly in the same area.

The results listed above clearly show that the database is
usable for our experiments and contains reliable movement-
related EEG. The analysis results of the most reactive EEG
frequency components are in compliance with previously
published works with similar EEG recordings. No systematic
differences between the EEGs of both movements are appar-
ent. Results summarized in Tables 2 and 3 show no common
relation between the βERS and μERD of the thumb and little-
finger flexions (e.g., ERS of the thumb is not always stronger
than ERS of the little finger).

5. INDIVIDUAL EEG ANALYSIS

Our previous experiments with the EEG signal classification
clearly showed that there are large differences in the EEG sig-
nals of different subjects. Although we usually observed the
same phenomena in the EEG recordings of different subjects,
the individual parameters were different. This observation
led us to the conclusion that the standard approach to the
movement-related EEG patterns analysis via grand averag-
ing the ERS and ERD over all subjects would not be suit-
able for finding subtle differences between both movement-
related types of the EEG. The grand averaging wipes out any
individual EEG differences between both movements which
are not systematic (i.e., the same trend occurred across all
the subjects). That is why we did a deep statistical analysis
of individual EEG patterns to find any statistically significant
phenomena in the EEG allowing us to recognize the finger
which performed the movement.

5.1. Method

For each of the subjects (subject s = 1, . . . , 8), elec-
trodes (electrode e = 1, . . . , 41), types of the EEG (type
m = littel finger, thumb), and realizations (realization r =
1, . . . ,R(s,m); R(s,m) is the number of realizations avail-
able for the given subject s and type of the EEG m), a
spectrogram Ss,e,m,r[ f , t] was computed. The frequency res-
olution was 1 Hz ( f = 0, . . . , 128; frequency in Hz) and
time resolution was 0.125 second (t = 0, . . . , 72; time in 1-
second segments with 0.875-second overlap [16]). The spec-
trograms described the time development of the short-time

EEG power spectra. Next, we computed the average spectro-
gram ̂Ss,e,m for the given subject s, electrode e, and type of
the EEG m by averaging Ss,e,m,r across all available realiza-
tions r = 1, . . . ,R(s,m) (see Figure 2). ̂Ss,e,m[ f , t] describes
the time development of the short-time EEG power spectral
density (PSD). No referencing to the resting EEG referential
period was applied here because we wanted to analyze ex-
actly the same spectra as those which would be used for the
classification later on.

As the PSD is χ2-distributed [32] with degrees of freedom
equal to two times the number of realizations (2R(s, e,m)),
we can simply find the 95% confidence-level interval as

2R(s, e,m)̂Ss,e,m
χ2

2R(s,e,m),0.025
≤ ̂Ss,e,m ≤ 2R(s, e,m)̂Ss,e,m

χ2
2R(s,e,m),0.975

. (1)

We computed these confidence intervals for all the spec-
trograms and found out where there were disjoint for both
types of movements. These areas were marked as “hot,” and
thus we devoted our attention to them (see Figure 1).

As the processed spectrograms were non-Gaussian and
since we needed to analyze the single frequency bins of
the spectrum, we applied Kruskal-Wallis nonparametric test
(KWT) of equal population means to the computed spec-
trograms in the “hot” areas instead of the commonly used
ANOVA which requires Gaussianity.

The KWT was applied to the precomputed PSD spectro-
grams giving us the confidence that the average PSD values
really differed between subjects. The confidence was thresh-
olded at the 95% confidence level, and regions in which the
average values differed were found. Then we passed through
all the subjects across all the electrodes by hand looking for
these regions, and we tried to summarize and systematize this
rather large amount of data. The results of this analysis are
the subjects of the following paragraphs.

The results discussed below need not necessarily be in
accordance with the results listed in Tables 2 and 3 which
were achieved by an approach commonly used by neurolo-
gists relying on searching for the most reactive ERD and ERS
components and comparing them. Instead, here we tried to
locate as many statistically significant individual differences
between both movements as possible.

5.2. β-band ERS

The β-rhythm ERS analysis gave us the most valuable results.
Our conclusions for the given experimental subjects are sum-
marized in Table 4; it may be clearly seen that we did not ob-
tain any systematical differences between the PSDs of both
movements’ EEGs. For subjects 1, 3, and 6, the ERS of the
thumb flexion was stronger; for subjects 5 and 8, the little-
finger flexion ERS was more pronounced; subject 7 showed
both cases depending on the scalp location, and no signifi-
cant differences were found for subjects 2 and 4. Note that the
electrodes at which the ERSs are stronger for the thumb flex-
ion are located more anteriorly compared to the electrodes
with stronger little-finger ERSs (except subject 5, electrode
1). This is in compliance with the more lateral and anterior
representation of the thumb compared to the more medial
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Table 4: Statistically significant βERS spectral components for the single subjects, summary of the analysis. The location column gives the
location of the found components in terms of our electrode numbers, see Figure 3.

Subject Movement with Parameters Location

number stronger βERS (time, frequency) (electrode)

1 Thumb 0.5–1 sec, 26-27 Hz 2, 3, 4, 5, 9, 10, 18, 19, 24

2 No significant differences

3 Thumb 0.375–0.875 s, 25–29 Hz 14

4 No significant differences

5 Little 1.250–1.625 s, 16–20 Hz 1, 29, 31

6 Thumb 0.25–1.125 s, 20–27 Hz 6, 23

7 Thumb 1–1.5 s, 17–23 Hz 5, 7, 15, 16, 24

Little 1–1.5 s, 17–23 Hz 36, 37, 38, 39

8 Little 1.5–2.0 s, 20–24 Hz 15

localization of the little finger in the M1 and S1 areas [19].
Interestingly, this trend did not appear in the most reactive
ERS analysis (see Table 3), where the strongest ERS courses
for both fingers were often found at the same electrode.

In the later classification experiments, we reached a sig-
nificant level of the movement-resting EEG discrimination
on some of the electrodes mentioned in Table 4 (marked with
boldface). This fact implies that there must be strong statis-
tically significant differences between the resting EEGs and
movement-related EEG realizations as well. Our examina-
tion here shows statistically significant differences between
both movements. All these findings imply that it should be
possible to discriminate the movements after some suitable
EEG postprocessing.

Some more differences were found in addition to these
listed above, but they marked only changes in duration or
bandwidth of the ERS between both movements. We did not
list them here because they are outside the scope of this pa-
per.

5.3. μ-band ERD

Although the μERD parameters are believed not to be de-
pendent on the type of the movements [20], we analyzed the
μERD behavior with the test mentioned above. We discov-
ered the following phenomena:

(i) for subject 4, the little-finger μERD around the move-
ment onset was found to be stronger than the thumb
μERD at some of the locations (electrodes 20, 21, 25,
27, 29),

(ii) finally we found some differences in the length of
μERD of both movements.

5.4. β-band ERD

We also briefly examined ERD in β-band in order not
to neglect anything which might be helpful or interest-
ing. We found significant differences in the βERDs with
one subject—subject no. 1, electrodes 9, 10, and 26, where
the thumb-related βERD was significantly stronger than the
little-finger flexion-related one. The frequency of the most
reactive βERD component was 25–26 Hz. The βERD was ob-

served in the same band as the βERS. The βERD frequency
band did not contain the frequency of the μERD second har-
monic component, and thus it was not related to the ongoing
μERD.

6. CLASSIFICATION

The next step was to test the possibility of a single-trial offline
classification. The following paragraphs describe the classifi-
cation paradigm, parameterization, and results.

We intentionally always used only one electrode for the
EEG classification. Our target was to squeeze as much infor-
mation as possible from only one signal source, without uti-
lizing any information stored in differences between signals
from different electrodes.

6.1. Classifier

The used classification system is based on Hidden Markov
models (HMM) [16, 33]. The HMMs —although nearly not
used for EEG classification—have several advantages:

utilization of the context information: the system uses the
temporary context of the EEG to improve the classification
score,

physiological compatibility: the selected model architec-
ture matches the underlying physiological process, it is even
possible to segment the EEG with the help of the HMM clas-
sifier [16, 34],

ease of the interpretation: it is quite simple to interpret the
contents of the trained model. This is a big advantage com-
pared to, for example, some kinds of neural networks, where
the implementation of the trained system is not so straight-
forward,

ability to model the EEG: we are able to generate synthetic
realizations of the EEG for testing of various algorithms.

The used models have the left-to-right, no skips architec-
ture which captures the sequence of the movement-related
EEG phases (see Figure 2) with 4 emitting states modelling
the four significant phases of movement-related EEG [16, 21]
(resting EEG, desynchronization, post-movement synchro-
nization, resting EEG) generating p-dimensional Gaussian
random processes (p is equal to the number of used EEG
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Table 5: EEG-based movement classification, the best results from the overall classification score and minimalization of false positive move-
ment detection points of view. The meanings of the table fields are as follows: Subj. no. = number of the subject, Scalp loc. = scalp position
which gave the best classification score, Fingers correct = weighed classification score for both fingers, correct classification, Fingers wrg. =
weighed classification score for both fingers, thumb classified as little finger and vice versa, Fingers ign. = percentage of finger movements
classified as resting EEG—ignored movements, Fingers false = false positive detection, percentage of resting EEG realizations classified as
movement, Resting = classification score of resting EEG, Total = overall classification score, weighed average of the single scores, Parameters
= parameterization used to get the best results.

Results sorted according to overall classification score

Subj. Scalp Fingers Fingers Fingers Fingers Resting Total Parameters

no. loc. corr. [%] wrg. [%] ign. [%] false [%] [%] [%] used

1 2 56.1 42.3 1.6 11.4 88.6 67.3 FFT+Δ

2 3 57.8 41.2 1.1 8.5 91.5 68.8 FFT

3 14 51.4 44.4 4.1 1.3 98.7 65.7 AR

4 37 52.9 42.7 4.4 0.0 100.0 68.8 AR

5 29 51.6 48.4 0.0 0.0 100.0 70.0 AR

6 10 53.8 42.8 3.4 28.3 71.7 60.0 FFT+Δ

7 17 57.7 39.4 2.9 1.9 98.1 74.2 AR

8 5 48.8 51.0 0.1 0.4 99.6 70.9 AR

Results sorted according to false positive detections

Subj. Scalp Fingers Fingers Fingers Fingers Resting Total Parameters

no. loc. corr. [%] wrg. [%] ign. [%] false [%] [%] [%] used

1 14 35.1 40.2 24.7 0.8 99.2 57.1 AR+Δ

2 1 49.4 46.1 4.5 0.0 100.0 65.8 AR+Δ

3 1 23.4 24.6 52.0 0.3 99.7 46.4 FFT

4 37 52.9 42.7 4.4 0.0 100.0 68.8 AR

5 29 51.6 48.4 0.0 0.0 100.0 70.0 AR

6 1 28.3 34.2 37.5 4.9 94.1 51.2 FFT+Δ

7 18 53.8 45.7 0.5 0.0 100.0 72.7 AR

8 5 48.8 51.0 0.1 0.4 99.6 70.9 AR

features, per the Parameterization paragraph below) with di-
agonal covariance matrices. The used classification system
was the same as in our other EEG BCI works [16, 34, 35]
built around the Hidden Markov Toolkit [36]. The classifica-
tion experiment consisted of the following steps performed
for all the subjects, electrodes, and types of parameterization:

(1) EEG was parameterized with a selected algorithm,
(2) the randomization procedure was applied to mitigate

the effect of the small training and testing set (only
≈ 100 realizations per movement, person, and elec-
trode). Each classification experiment was run for 16
times with different (and random) division of EEG re-
alizations between the disjunctive training (75% of re-
alizations) and testing (25% of realizations) sets. The
number of runs was selected to get 99% probability
that any of the realizations is used for testing. This
helps us to get reliable results independent on the
concrete selected training and testing EEG realizations
[34],

(3) models were trained (initialization followed by Baum-
Welch reestimation) on the training set,

(4) classification accuracy was tested,
(5) the average classification scores were computed for all

the EEG types across the 16 performed experiments.

6.2. EEG parameterization

Our previous results [15] showed that the best results are
reachable either with a pure FFT linear spectrum or with
AR model coefficients combined with Δ parameters. The Δ
parameters (although not used with EEG signal processing)
are able to improve the classification score significantly [15].
This is a result of emphasizing the movement-related spectral
changes which allows the classifier to better capture the un-
derlying signal statistics. In all cases, we extracted the features
from a sliding window of 1 sec length; step of the window was
chosen as 200 ms [16]. We utilized the following parameteri-
zations:

linear spectrum: FFT amplitude spectrum covering 5–
40 Hz band with spectral resolution of 1 Hz. The k-th feature
vector consisted of 36 parameters Fk = ( fk[1], . . . , fk[36])
where k is the time index,

linear spectrum + Δ coefficients: additional 36 Δ fk[i] coef-
ficients were added to the already computed linear spectrum.
The following polynomial approximation of the first deriva-
tive common in speech processing was used [36]

Δ fk[i] =
∑ 3

l=1l
(

fk+l[i]− fk−l[i]
)

2
∑ 3

l=1l2
, (2)
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Figure 4: Confidence intervals computed for the selected frequency components (subject 1, electrode 4); see also Figure 1. Black:thumb
flexion; red:little-finger flexion; thin lines:average courses of the indicated spectral components; thick lines:boundaries containing 75 % of
the real EEG realizations.

AR coefficients: 8th order AR model coefficients [15]
were used; the feature vector had 8 coefficients here. The EEG
was decimated by factor 2 before the coefficients were com-
puted to cover the important low-frequency part of the spec-
trum better,

AR coefficients + Δ coefficients: 8 first-order derivative ap-
proximations (2) were computed and the feature vector was
extended to 16 values.

6.3. Results

The complete classification was run with all these parame-
ters covering all the scalp electrodes. The results were sorted
according to two criteria:

(1) overall classification score computed as a weighed av-
erage of the little finger, thumb and resting EEG clas-
sification scores. This number tells us how good it is
possible to discriminate the single types of EEG at the
given electrode and for the given subject,

(2) false movement rate detection which is a probability
measure of a movement detection when the subject is
actually resting.

The best results selected according to these criteria for
each of the subjects are listed in Table 5. It may be seen that
it is possible to distinguish between movement-related and
resting EEG and to find an electrode and parameterization
which minimizes the possibility of false movement detec-
tion for any of the subjects. On the other hand, the classifier
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was not able to distinguish between the thumb and little fin-
ger EEG. Some of the movements are always ignored (less
than 10%) recognizing them as resting EEG; however, the
thumb—little finger discrimination—failed. Figure 3 with
the localization of the electrodes summarizes the best per-
formances from the classification score point of view.

Subsequent analysis of the recognized movements
showed that—although the mean values of the movement-
related EEG spectra are significantly statistically different—
the real time courses of the movement-related EEG are heav-
ily buried in the non-movement related activity, see Figure 4.

7. CONCLUSIONS, NEXT STEPS

In this work, a detailed finger movement-related EEG sta-
tistical analysis and result of classification experiment were
presented.

The movement-related EEG was analyzed in an indi-
vidual way searching for as statistically significant phenom-
ena as possible instead of the commonly used analysis of
the strongest EEG component. This approach is in contrast
with the method used by [20, 21, 26] and others, where the
strongest ERDs and ERSs are found first and their statistical
significance is checked afterwards.

We found statistically significant differences between
both types of movement-related EEG signals. The differences
in the β and μERD parameters were present, although not
very important. More interestingly, we discovered signifi-
cant differences in the βERS courses, their characters being
highly individually dependent. These results are promising
from the classification point of view. No such results of fin-
ger movement-related EEG analysis have been published yet.
In addition to this, our analysis covered the whole EEG fre-
quency band (5–30 Hz) and both sensorimotor areas extend-
ing the results of [20], where only EEG recorded from C3/C4
positions and only signal powers in 10–12 Hz, 16–20 Hz and
20–24 Hz bands were examined.

Our classification paradigm was only partially succes-
sful—we were able to distinguish the movement-related and
resting EEG, but the movements were not distinguished
from each other. This was attributed to the fact that the
movement-related spectral EEG courses are masked by other
on-going EEG activities not related to the movement. Thanks
to the individual analysis results we believe it will be able to
separate and successfully classify both movements with the
help of an advanced denoising approach.

In our recent work [37] we showed that it is possible to
separate movement-related EEG sources and non-movement
related EEG activity with the help of the independent com-
ponent analysis (ICA). Now we have been working on the
integration of an ICA-based denoising procedure into our
classification system. This approach should help us to in-
crease the classification score by means of EEG separation
into meaningful sources.

Next step will be to combine the developed method with
the left/right limb movement recognition to double the num-
ber of recognized states—to increase the brain-computer
channel data rate.
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[7] C. W. Anderson and Z. Sijerčı́c, “Classification of EEG sig-
nals from four subjects during five mental tasks,” in Solv-
ing Engineering Problems with Neural Networks: Proceedings of
the Conference on Engineering Applications in Neural Networks
(EANN ’96), pp. 407–414, Turku, Finland, June 1996.

[8] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan, “Brain-computer interfaces for communi-
cation and control,” Clinical Neurophysiology, vol. 113, no. 6,
pp. 767–791, 2002.

[9] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-
computer interface research at the Wadsworth Center,” IEEE
Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp.
222–226, 2000.

[10] J. D. Bayllis and D. H. Ballard, “Recognizing evoked poten-
tials in a virtual environment,” in Advances in Neural Informa-
tion Processing Systems 12, vol. 12, pp. 3–9, Denver, Colo, USA,
November-December 2000.

[11] G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller,
“EEG-based communication:presence of an error potential,”
Clinical Neurophysiology, vol. 111, no. 12, pp. 2138–2144,
2000.



12 Computational Intelligence and Neuroscience

[12] U. Hoffman, J.-M Versin, K. Deserens, and T. Ebrahimi, “An
efficient P300-based brain computer interface for disabled
subjects,” preprint, 2007, http://bci.epfl.ch/efficientp300bci
.html.

[13] W. D. Penny, S. J. Roberts, and M. J. Stokes, “Imagined hand
movements identified from the EEG μ-rhythm,” Tech. Rep.,
Department of Electrical Engineering, Imperial College, Lon-
don, UK, August 1998.

[14] D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw,
“μ and β rhythm topographies during motor imagery and ac-
tual movements,” Brain Topography, vol. 12, no. 3, pp. 177–
186, 2000.
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in Proceedings of the 23rd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, vol. 2,
pp. 2020–2023, Istanbul, Turkey, October 2001.
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