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INTRODUCTION

The recording of seizures is of primary interest in the evaluation of epileptic patients. Seizure is the phenomenon of rhythmicity
discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since
seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph
(EEG) recordings is highly recommended. As EEG signals are nonstationary, the conventional methods of frequency analysis
are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-
frequency analysis. Initially, selected segments of the EEG signals are analyzed using time-frequency methods and several features
are extracted for each segment, representing the energy distribution in the time-frequency plane. Then, those features are used
as an input in an artificial neural network (ANN), which provides the final classification of the EEG segments concerning the
existence of seizures or not. We used a publicly available dataset in order to evaluate our method and the evaluation results are
very promising indicating overall accuracy from 97.72% to 100%.

Copyright © 2007 A. T. Tzallas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

nied by impairment or loss of consciousness: psychic, auto-

Epilepsy is one of the most common neurological disorders
with a prevalence of 0.6-0.8% of the world’s population.
Two-thirds of the patients achieve sufficient seizure control
from anticonvulsive medication, and another 8—10% could
benefit from resective surgery. For the remaining 25% of pa-
tients, no sufficient treatment is currently available [1]. The
epilepsy is characterized by a sudden and recurrent mal-
function of the brain, which is termed “seizure.” Epileptic
seizures reflect the clinical signs of an excessive and hyper-
synchronous activity of neurons in the brain. Depending on
the extent of the involvement of other brain areas during
the course of the seizure, epilepsies can be divided into two
main classes. Generalized seizures involve almost the entire
brain, while focal (or partial) seizures originate from a cir-
cumscribed region of the brain (epileptic focus) and remain
restricted to this region. Epileptic seizures may be accompa-

nomic or sensory symptoms, or motor phenomena [2, 3].
Traditionally, suspected seizures are evaluated using a
routine electroencephalogram (EEG), which is typically a 20-
minute recording of the patient’s brain waves. Because a rou-
tine EEG is of short duration, it is unlikely that actual events
are recorded. Routine EEGs may record interictal hallmarks
of epilepsy, including spikes, sharp waves, or spike-and-wave
complexes. However, diagnostic difficulties arise when a per-
son has a suspected seizure, or a neurological event of un-
clear etiology, not obvious in the routine EEG. The current
gold standard is the continuous EEG recording along with
video monitoring of the patient, which usually requires in-
patient admission. This is a costly endeavour, which is not
always available. The patient is away from his environment
and routine, which may be associated with factors that pro-
voke the patient’s events [4]. The introduction of portable
recording systems (ambulatory EEG), however, has allowed
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out-patient EEG recording to become more common. This
has the advantage that patients are monitored in their nor-
mal environment without the reduction in seizure frequency
usually occurring during in-patient sessions [4, 5].

Clinical neurophysiologists can then periodically review
the EEG recordings and analyze the seizures that may have
occurred during the monitoring session. However, review-
ing a continuous EEG recording lasting several days can be a
time-consuming process. In practice, the patient can indicate
that a seizure occurs through the use of an alarm button, so
that only the recording sections around the use of the button
need to be analyzed. Unfortunately, in many cases, patients
are not aware of the occurrence of their own seizures. An au-
tomated seizure detection system can thus be of great inter-
est in identifying EEG sections that need to be reviewed. The
main difficulty with it lies in the wide variety of EEG pat-
terns that can characterize a seizure, such as “low-amplitude
desynchronization, polyspike activity, rhythmic waves for a
wide variety of frequencies and amplitudes, and spikes and
waves” [6]. In extracranial recordings, EMG, movement, and
eye blink artefacts often obscure seizures. Thus, from the
pattern recognition point of view, the problem is extremely
complex.

Research in automated seizure detection began in the
1970s and various algorithms addressing this problem [5—
7] have been presented. Methods for automatic detection of
seizures may rely on the identification of various patterns
such as an increase in amplitude [8], sustained rhythmic ac-
tivity [9, 10], or EEG flattening [11]. Several algorithms have
been developed based on spectral [12-18] or wavelet features
[19-23], amplitude relative to background activity [12, 24]
and spatial context [24-27]. Chaotic features [28-31] such
as correlation dimension [32, 33], Lyapunov exponents [34],
and entropy [35] have also been proposed to characterize the
EEG signal. These features can then be used to classify the
EEG signal using statistical methods [28-30], nearest neigh-
bour classifiers [36], decision trees [16], ANNs [21, 34], sup-
port vector machines (SVMs) [18, 37], or adaptive neuro-
fuzzy inference systems [23, 35] in order to identify the oc-
currence of seizures. It is crucial for seizure detection sys-
tems to result in high sensitivity, even if this results in a large
number of false detections. Such systems can then be used
to reduce considerably the amount of data that need to be
reviewed; neurophysiologists can then easily discard false de-
tections.

In addition, to seizure detection systems, warning sys-
tems have also become increasingly valuable since detection
of seizures at an early stage can warn the patient that a seizure
is occurring. Also, they alert medical staff, and allow them
to perform behavioral testing to further assess which specific
functions may be impaired as a result of a seizure and help
them in localizing the source of the seizure activity. Tech-
niques used to forecast seizures include time-domain anal-
ysis [38], frequency-based methods [39], nonlinear dynam-
ics and chaos [31, 40], methods of delays [41], and intelli-
gent systems [42]. Advances in seizure prediction promise to
give rise to implantable devices able to warn of impending
seizures and to trigger therapy to prevent clinical epileptic
attacks [2]. Treatments such as electrical stimulation of focal

drug infusion could be given on demand and might elimi-
nate side effects in some patients taking antiepileptic drugs.

Consequently, epileptic seizures give rise to changes in
certain frequencies bands. Recent works have focused on the
analysis of the 6 (0.4—4 Hz), 0 (4-8 Hz), a (8-12Hz), (12—
30 Hz) rhythms, and their relation to epilepsy. An epilep-
tic signal is nonstationary, having time-varying frequency
components. Time-frequency (TF) representations combine
both time and frequency information into a single represen-
tation and have proven to be powerful tools for the analysis of
nonstationary signals [43], and have been used for neonatal
seizure detection [44, 45].

In this work, we use TF analysis in order to extract several
features from EEG segments, and subsequently use these fea-
tures to classify the segments concerning epileptic seizures.
The method is divided into three stages. Initially, TF analy-
sis is performed for each EEG segment and its spectrum is
acquired. Then, several features are extracted from it, mea-
suring the fractional energy on specific TF windows. For this
purpose, several partitions on the time axis and the frequency
axis are tested. Finally, these features are used as inputs in an
ANN, which provides the final classification according to the
specified number of categories. A dataset of 500 EEG seg-
ments is used, while the method is evaluated for four differ-
ent classification problems, each of them addressing a differ-
ent interpretation of the medical problem and thus differ-
ent selection of EEGs from the whole EEG segment dataset is
required for each classification problem. TF analysis and fea-
ture extraction, reflecting the energy distribution over the TF
plane, have been employed only for neonatal epileptic seizure
detection and have not been previously applied in general
epileptic seizure detection. In addition, no work addresses all
four classification problems, which are directly related to the
diagnosis provided by an expert. The obtained results indi-
cate high accuracy compared to other existing approaches.

The rest of the paper is structured as follows. In
Section 2, the dataset used in our work along with the em-
ployed methodology is described in detail. Then, the eval-
uation procedure and the obtained results are presented
(Section 3), followed by an extensive discussion regarding
them (Section 4). Finally, some concluding remarks are in-
cluded in Section 5.

2. MATERIALS AND METHODS

The flowchart of the proposed method is shown in Figure 1.
Below the dataset and its partitions used are briefly discussed
and the three stages (time-frequency analysis, feature extrac-
tion, and classification) of the method are explained in detail.

2.1. Dataset

An EEG dataset, which is available online [46] and includes
recordings for both healthy and epileptic subjects, is used.
The dataset includes five subsets (denoted as Z, O, N, F, and
S) each containing 100 single-channel EEG segments, each
one having 23.6-second duration. The subsets Z and O have
been acquired using surface EEG recordings of five healthy
volunteers with eyes open and closed, respectively. Signals in
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FIGURE 1: The flowchart of the proposed method.
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FiGure 2: Exemplary EEG segments from each of the five subsets (Z,
O, N, F, and S). From top to bottom: subset Z to subset S. The am-
plitudes of surface EEG recordings are typically in the order of some
uV. For intracranial EEG recordings, the amplitudes range around
100 V. For seizure activity, these voltages can exceed 1000 pV.

two sets have been measured in seizure-free intervals from
five patients in the epileptogenic zone (set F) and from the
hippocampal formation of the opposite hemisphere of the
brain (set N). Finally, subset S contains seizure activity, se-
lected from all recording sites exhibiting ictal activity. Sub-
sets Z and O have been recorded extracranially, using stan-
dard electrode positioning (according to the international
10-20 system [47]), whereas subsets N, F, and S have been
recorded intracranially. More specifically, depth electrodes
are implanted symmetrically into the hippocampal forma-

tion. EEG segments of subsets N and F were taken from all
contacts of the relevant depth electrode [46]. In addition,
strip electrodes are implanted onto the lateral and basal re-
gions (middle and bottom) of the neocortex. EEG segments
of the subsets S were taken from contacts of all electrodes
(depth and strip). All EEG signals were recorded with the
same 128-channel amplifier system, using an average com-
mon reference. The data were digitized at 173.61 samples
per second using 12 bit resolution and they have the spec-
tral bandwidth of the acquisition system, which varies from
0.5 Hz to 85 Hz. Typical EEG segments (one from each cate-
gory of the dataset) are shown in Figure 2.

In our analysis, we use the above-described dataset to cre-
ate four different classification problems and then we tested
our method with all of them.

(1) In the first, all the EEG segments from the dataset
were used and they were classified into three different
classes: Z and O types of EEG segments were combined
to a single class, N and F types were also combined to
a single class, and type S was the third class. This set is
the one closest to real medical applications including
three categories; normal (i.e., types Z and O), seizure-
free (i.e., types N and F) and seizure (i.e., type S).

(2) In the second, again all the EEG segments from the
dataset were used and they were classified into two dif-
ferent classes: Z, O, N, and F types are included in the
first class and type S in the second class. This is also
close to real medical applications, being slightly sim-
pler than the previous, classifying the EEG segments
into nonseizures and seizures.

(3) The third has similar classes with the first, that is,
normal, seizure-free and seizure, but not all the EEG
segments from the dataset were employed. The nor-
mal class includes only the Z-type EEG segments, the
seizure-free class the F-type EEG segments, and the
seizure class the S-type.

(4) The fourth has similar classes with the second, that is,
normal and seizure, but again not all the EEG seg-
ments from the dataset were employed. The normal
class includes only the Z-type EEG segments while the
seizure class includes the S-type.

The above classification problems are shown in detail in
Table 1.

2.2. Time-frequency analysis

In the proposed method, the smoothed pseudo-Wigner-Ville
distribution (SPWVD) [48, 49] is applied to each EEG seg-
ment, defined as

SPWVD,(t, w)
- f: h(T)( j: g(s—t)x(s+%>x* (s— %)ds) e /endr,
(1)

where x(-) is the signal, f is the time, w is the frequency,
and g(-) and h(-) are time and frequency smoothing window
functions, respectively. SPWVD can substantially suppress
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TaBLE 1: The classes and the corresponding number of EEG seg-
ments of the four classification problems.

Classification

problem Classes Number of EEG segments
Normal (Z, O) 200
1 Seizure-free (N, F) 200
Seizure (S) 100
Total 500
5 Nonseizure (Z, O, N, F) 400
Seizure (S) 100
Total 500
Normal (Z) 100
3 Seizure-free (N) 100
Seizure (S) 100
Total 300
4 Normal (Z) 100
Seizure (S) 100
Total 200

TasLE 2: The frequency ranges (Hz) of four frequency subbands (4,
5,7,and 13).

Frequency subbands
4 5 7 13
0-4 0-2.5 0-2 0-2
4-8 2.5-5.5 2-4 2-4
8-12 5.5-10.5 4-6.5 4-6
1240 10.5-21.5 6.5-9 6-8
— 21.5-43.5 9-12 8-10
— — 12-25 10-12
Frequency ranges (Hz) — — 25-40  12-16
— — — 16-20
— — — 20-24
— — — 24-28
— — — 28-32
— — — 32-36
— — — 36-40

the cross terms, which is a major limitation of the time-
frequency analysis. The time smoothing window was selected
to be a Hamming 64-point length window, which was the
same for all tests performed for evaluation. The length of the
frequency smoothing window is not always the same; we have
selected several different frequency resolutions (64, 128, 256,
and 512 points length window), and we tested the method for
all of them. Time-frequency (TF) analysis is used to calculate
the spectrum of the signal. Figure 3 shows the spectrum of
five EEG segments, one of each of the original dataset cate-
gories (Z, O, N, E, and S), using a 512-point length window.

2.3. Feature extraction

The spectrum of the signals, computed using TF analysis, is
used to extract several features. To do that, a grid is used,
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FiGure 3: The obtained spectrum for five EEG segments, one for
each of the original dataset categories (Z, O, N, F, and S).

based on a time and a frequency partition. In the time do-
main, two different partitions were used, having three and
five equal-sized windows, respectively, while in the frequency
domain, four different partitions were used, which divide the
frequency domain in 4, 5, 7, and 13 subbands. These sub-
bands, which are not always equal, are shown in Table 2 and
they are created using medical knowledge about the EEG
and the features that are expected to be found in certain
frequency bands for the specific types of EEG segments in-
cluded in the original dataset. All the combinations between
these time and frequency partitions are used, in order to ex-
tract several sets of features. The result of the application of
TF analysis in an EEG segment for different combinations of
time windows and frequency subbands is shown in Figure 4.
Each feature, f (i, j), is calculated as

£, j) = L L SPWVD, (1, w)daw dt, @)

where t; is the ith time window and w; is the jth frequency
band. Each feature represents the fractional energy of the sig-
nal in a specific frequency band and time window; thus the
total feature set depicts the distribution of the signal’s energy
over the TF plane. Therefore, it is expected that each feature
set carries sufficient information related to the nonstation-
ary properties of the signal and thus, it can be useful for the
classification process. The feature set initially is represented
as an N X M matrix, where N is the number of time win-
dows and M is the number of frequency subbands, and then
it is reshaped into an N - M size vector. The length of the fea-
ture vector is not the same in all cases and it depends only on
the time and frequency partitions. In all cases, an additional
feature is used, which is the total energy of the signal. Thus,
in each case the total number of features is N-M + 1.
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F1GURE 4: The spectrums obtained for various combinations of time and frequency partitions: (a) 3 time windows and 4 frequency subbands,
(b) 5 time windows and 4 frequency subbands, (¢) 3 time windows and 5 frequency subbands, (d) 5 time windows and 5 frequency subbands,
(e) 3 time windows and 7 frequency subbands, (f) 5 time windows and 7 frequency subbands, (g) 3 time windows and 13 frequency subbands,

and (h) 5 time windows and 13 frequency subbands.

2.4. Classification

The calculated features are fed into a feed-forward artificial
neural network (ANN). To reduce the dimensionality of the
input patterns, principal component analysis (PCA) is em-
ployed with the threshold set to 1%. The architecture of the
neural network is different in each classification problem: N
inputs (N is the number of features resulted from the PCA),
one hidden layer with 4%N neurons, and M outputs (M is
the number of the classes), each of them being a real num-
ber in the interval [0, 1]. The units in the hidden layer are
sigmoid units with hyperbolic tangent as activation function,
while the outputs are linear. Half of the patterns of the dataset
were randomly selected to be used for training, while the rest
were used for testing. The network is trained using a standard
backpropagation algorithm [50]. Ten different training-test

sets were created for each classification problem and thus ten
different neural networks were optimized. The final result is
obtained as the average of their results.

3. RESULTS

The four classification problems, described above, are used
to evaluate the proposed method. For each of them, all com-
binations between frequency resolutions (64, 128, 256, or
512), time windows (3 or 5), and frequency bands (4, 5, 7,
or 13) were tested; totally 32 different combinations for each
classification problem. For each problem, half of the EEG
segments, randomly selected, were used for the training of
the neural network, while the other half for testing.

The size of the confusion matrix depends on the classi-
fication problem: 3 X 3 for problems (1) and (3), 2 X 2 for
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TABLE 3: Results for the first classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those
are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

4
NF

Frequency subbands

Classes 70

70

5
NF

7
NF

13

70 70 NF

98.90
98.00
97.06
95.40
95.53
93.44

94.20
98.53
97.72
91.90
95.07
92.55

97.00
98.40
93.81
90.80
98.40
93.42

Sens
Spec
Sel

Sens

Time
windows

Frequency
resolution

Spec
Sel

97.90
97.53
96.36
95.70
96.20
94.38

96.80
97.80
96.70
95.50
94.40
91.92

95.60
99.75
98.96
88.80
99.85
99.33

95.80
95.67
93.65
96.20
96.27
94.50

93.20
95.80
93.67
92.90
96.27
94.31

93.80
99.35
97.30
92.20
98.20
92.76

96.10
98.27
97.37
93.30
95.33
93.02

97.80
95.53
93.59
93.30
93.87
91.02

90.80
99.30
97.01
88.60
98.55
93.86

99.20
97.60
96.50
95.90
96.73
95.14

95.50
98.87
98.25
92.70
96.47
94.59

97.40
99.35
97.40
97.40
98.75
95.12

Sens
Spec
Sel

Sens

Time

Frequency 128
windows

resolution

Spec
Sel

97.90
96.80
95.33
96.80
95.67
93.71

95.20
96.80
95.20
93.10
96.40
94.52

91.20
99.15
96.41
92.00
98.90
95.44

99.60
98.00
97.08
96.30
95.33
93.22

96.90
98.13
97.19
93.60
96.07
94.07

94.60
99.80
99.16
89.80
98.85
95.13

96.80
95.47
93.44
96.20
94.93
92.68

93.20
95.47
93.20
91.60
97.60
96.22

87.40
98.65
94.18
93.00
97.75
91.18

96.60
98.27
97.38
95.20
96.80
95.20

95.70
97.20
95.80
93.50
95.40
93.13

98.00
99.05
96.27
93.80
98.65
94.56

Sens
Spec
Sel

Sens

Time

Frequency 256 me
windows

resolution

Spec
Sel

98.20
93.53
91.01
94.90
95.27
93.04

90.80
95.87
93.61
92.40
94.13
91.30

87.20
99.25
96.67
89.80
99.05
95.94

98.00
97.20
95.89
94.00
95.53
93.35

96.00
97.93
96.87
91.90
94.73
92.08

96.20
99.70
98.77
92.80
98.45
93.74

96.50
97.60
96.40
96.80
92.47
89.55

98.00
97.67
96.55
92.00
97.33
95.83

93.00
99.05
96.07
85.00
98.30
92.59

97.50
98.20
97.31
95.70
95.47
93.37

95.00
96.67
95.00
90.20
96.27
94.15

93.80
98.55
94.18
95.80
98.10
92.65

Sens
Spec
Sel

Sens

Time

Frequency 51
windows

. 2
resolution

Spec
Sel

98.50
97.33
96.10
95.60
95.27
93.09

97.30
98.13
97.20
92.70
95.93
93.83

91.60
99.20
96.62
90.00
98.25
92.78

97.30
98.53
97.79
92.30
93.60
90.58

95.70
97.20
95.80
90.40
93.27
89.95

96.40
98.80
95.26
90.00
98.70
94.54

98.80
98.20
97.34
96.00
95.67
93.66

99.00
98.20
97.35
95.70
94.13
91.58

93.00
99.85
99.36
83.20
99.30
96.74

problems (2) and (4). Results for each class 7 are derived in
terms of sensitivity (Sens), specificity (Spec), and selectivity
(Sel):

Sens;

3)

_ Number of patterns of class i classified in class i

>

Total number of patterns in class i
Spec;
_ Number of patterns not in class i classified notin class i
Total number of patterns notin class i

(4)
Sel,-

_ Number of patterns of class i classified in class i
Total number of patterns classified in class i

(5)

The results for the classification problems (1)—(4) are shown
in Tables 36, respectively.
The accuracy (Acc), defined as

(6)

Acc = Trace(cm),

where cm is the confusion matrix, defined as

cm; ; = number of patterns belonging to class i

(7)

and classified to class j,

is calculated for each confusion matrix. The computed ac-
curacies, along with the standard deviations are presented
in Table 7. Additionally, the initial number of features and
the reduced number of features after the PCA application
are presented. For each classification problem, overall re-
sults have been derived, that is, the maximum and minimum
accuracies (for all combinations between frequency resolu-
tions, time windows, and frequency subbands) as well as the
average accuracy and the standard deviation. For the first
classification problem, the best obtained accuracy is 97.72%,
achieved for 512 frequency resolution, 3 time windows, and
13 frequency subbands. For the second classification prob-
lem, the best obtained accuracy is 97.73%, achieved for 512
frequency resolution, 3 time windows, and 5 frequency sub-
bands. For the third classification problem, the best obtained
accuracy is 99.28%, achieved for 128 frequency resolution,
3 time windows, and 4 frequency subbands. Finally, for the
fourth classification problem, the best obtained accuracy is
100%, achieved in most of the cases; in 28 out of 32 different
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TABLE 4: Results for the second classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values.
Those are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4 5 7 13
Classes ZONF S ZONF S ZONF S ZONF S
Sens 98.40 97.60 98.55 95.60 99.30 96.00 99.10 92.40
Spec 97.60 98.40 95.60 98.55 96.00 99.30 92.40 99.10
Frequency 64 Time Sel 99.39 93.85 98.90 94.28 99.00 97.17 98.12 96.25
resolution windows Sens 97.70 97.00 99.35 93.20 98.70 91.80 98.65 91.80
Spec 97.00 97.70 93.20 99.35 91.80 98.70 91.80 98.65
Sel 99.24 91.34 98.32 97.29 97.97 94.64 97.96 94.44
Sens 99.50 98.40 99.25 92.60 99.55 96.80 98.05 92.40
Spec 98.40 99.50 92.60 99.25 96.80 99.55 92.40 98.05
Frequency 128 Time Sel 99.60 98.01 98.17 96.86 99.20 98.17 98.10 92.22
resolution windows Sens 99.50 97.80 99.05 92.80 98.95 93.20 98.10 94.80
Spec 97.80 99.50 92.80 99.05 93.20 98.95 94.80 98.10
Sel 99.45 98.00 98.22 96.07 98.31 95.69 98.69 92.58
Sens 99.25 99.00 98.90 86.40 99.45 96.60 99.40 93.60
Spec 99.00 99.25 86.40 98.90 96.60 99.45 93.60 99.40
Frequency 256 Time Sel 99.75 97.06 96.68 95.15 99.15 97.77 98.42 97.50
resolution windows Sens 98.55 96.20 99.00 94.40 98.70 94.20 97.15 92.60
Spec 96.20 98.55 94.40 99.00 94.20 98.70 92.60 97.15
Sel 99.05 94.31 98.61 95.93 98.55 94.77 98.13 89.04
Sens 98.90 96.20 99.05 94.20 98.85 95.60 99.70 94.20
Spec 96.20 98.90 94.20 99.05 95.60 98.85 94.20 99.70
Frequency 512 Time Sel 99.05 95.63 98.56 96.12 98.90 95.41 98.57 98.74
resolution windows Sens 98.35 95.00 98.65 92.60 98.75 93.40 98.85 89.20
Spec 95.00 98.35 92.60 98.65 93.40 98.75 89.20 98.85
Sel 98.74 93.50 98.16 94.49 98.36 94.92 97.34 95.10

evaluations of the fourth classification problem we obtained
accuracy 100%.

For the first two classification problems, the obtained
accuracies of the different evaluations varied significantly;
almost 6.5% (max-min) for both of them, with average
95% and standard deviation 1.7%. For the third classifica-
tion problem, the max-min difference is 3% and the av-
erage 97.94%, with 0.75% standard deviation. Finally, for
the fourth classification problem, the max-min difference is
1.3% and the average 99.92%, with 0.26% standard devia-
tion.

4. DISCUSSION

We have proposed an automated method for seizure detec-
tion in EEG recordings. The method is based on TF analysis
of the EEG segments and extraction of several features from
the spectrum of the signal. These features are fed into neural
networks, which provide the final classification of the EEG
segments. The method is evaluated using four different clas-
sification problems originated from the type of medical diag-
nosis, which can be obtained. The effect of different param-
eters of the method on the classification accuracy is exam-

ined. Those parameters are the frequency resolution of the
TF analysis, the length of the time window, and the width of
the frequency subbands used in the feature extraction. The
different combinations among all the afore-mentioned pa-
rameters result in a large number of different experimental
settings (32) for each classification problem (4) and 10 differ-
ent realizations (selections of training/test datasets) for each
of them—totally 1280 optimized and evaluated ANNs—and
results are presented for all of them. This is considered an
extensive validation procedure, which can sufficiently exploit
the potentials of the proposed method.

In this method, the SPWVD has been employed for the
TF analysis of the EEG signals. Other distributions have been
also tried but the better results were obtained for SPWVD.

The frequency resolution, used in the TF analysis, does
not greatly affect the accuracy of the proposed method; the
average accuracies of all different combinations of time win-
dows and frequency subbands, for the four classification
problems, are 96.71%, 97.13%, 96.7%, and 96.87% for 64,
128, 256, and 512 points length windows, respectively. It is
obvious that the use of 128 points length window slightly im-
proves the results. On the other hand, the number of the time
windows is important for the analysis; in the case of three
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TABLE 5: Results for the third classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those
are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4
Classes Z F S

5 7 13
S zZ F S Z F S

Sens 99.00 93.80 96.60
98.90 97.80 98.00
97.83 9552  96.02
Sens 94.60 8420 96.40
5 Spec 9450 9620 96.90
Sel 8958 91.72 93.96

3 Spec
Time Sel
windows

Frequency
resolution

97.80
98.60
97.22
96.40
95.80
91.98

95.20
98.50
96.95
92.40
95.30
90.77

98.20 97.00 87.80 97.80 97.40 98.00 93.20
98.50 94.60 98.30 98.40 99.30 94.60 98.90
97.04 89.98 96.27 96.83 98.54 90.07 97.69
92.80 95.20 92.80 94.80 90.20 90.60 93.60
99.70  97.40 9550 9850 96.40 92.80 98.00
99.36  94.82 91.16 96.93 92.61 86.29 95.90

Sens 99.20 90.60 97.40
96.50 98.50 98.60
93.41 96.79 97.21
Sens 9540 91.60 95.60
5 Spec 9730 95.60 98.40
Sel 9464 91.24 96.76

3 Spec
Time Sel

Frequency 128
windows

resolution

99.40
97.00
94.31
98.20
97.80
95.71

93.40
97.50
94.92
96.20
96.00
92.32

92.80 99.40 98.60 93.00 97.40 95.80 93.40
98.30 98.60 9750 99.40 98.50 96.40 98.40
96.47 97.26 95.17 98.73 97.01 93.01 96.69
92.20 9500 9540 9520 96.40 90.60 94.00
99.50 98.30 96.00 98.50 95.40 97.80 97.30
98.93 96.54 9226 96.95 91.29 9537 94.57

Sens 92.00 92.80 98.80
97.90 9540 98.50
95.63 90.98 97.05
Sens  95.60 91.40 95.40
5 Spec 97.40 9570 98.10
Sel 9484 9140 96.17

3 Spec
Time Sel

Frequency 256 me
windows

resolution

99.20
97.90
95.94
90.20
97.10
93.96

96.20
96.50
93.22
92.80
93.00
86.89

92.60 96.40 96.00 94.00 98.20 97.80 95.20
99.60 97.80 96.60 98.80 98.40 97.80 99.40
99.14 9563 9339 9751 96.84 95.69 98.76
94.40 9420 91.00 92.40 98.40 91.80 97.00
98.60 95.70 94.50 98.60 96.60 98.20 98.80
97.12 91.63 89.22 97.06 93.54 96.23 97.59

Sens 99.80 9520 96.20
98.20 98.30 99.10
96.52  96.55 98.16
Sens 97.60 85.80 95.40
5 Spec 9470 96.60 98.10
Sel 9020 92.66 96.17

3 Spec
Time Sel

Frequency 51
windows

. 2
resolution

99.60
98.40
96.89
98.00
97.50
95.15

97.40
98.60
97.21
91.20
96.50
92.87

96.20 9420 9420 94.60 99.40 96.40 93.80
99.60 98.00 9520 9830 9830 9730 99.20
99.18 9593 90.75 96.53 96.69 94.70 98.32
94.00 91.40 92.60 96.40 96.20 94.00 89.40
97.60 9790 9450 97.80 96.50 94.20 99.10
95.14 9561 89.38 95.63 93.22 89.02 98.03

time windows, the average accuracy of all different com-
binations between the frequency resolutions and frequency
subbands, for all four classification problems, is 97.52%,
while the accuracy in the case of five time windows is 96.2%.
This means that analyzing EEG segments of approximately
8-second length reveals more information for the epilep-
tic seizures than having 5-second windows. Other statisti-
cal measurements lead to the same conclusion; in the case
of three time windows, the minimum accuracy of all cases
is 93.04% and the standard deviation 1.8%, while the accu-
racy for five time windows is 91.08% and the standard devi-
ation 2.9%, respectively. Finally, concerning the number of
frequency subbands, again the reported average accuracies
for all combinations among the frequency resolutions and
the time windows, for all classification problems, are 97.07%,
96.87%, 96.84%, and 96.62% for 4, 5, 7, and 13 frequency
subbands, respectively. This gives indications that the sepa-
ration in &, 0, «, and f rhythms is the one that mostly de-
tects the TF components that characterize the signal regard-
ing epileptic seizures, compared to 5 and 7, which have been
used in other methods [20, 22], and 13, which is defined in
this work to examine if a frequency resolution with a large
number of frequency subbands improves the classification

accuracy. The results indicate that all selections for frequency
subbands result in similar high-average accuracies—the dif-
ference between the best and worst age accuracy is 0.45%.
This can be justified since they are generated either based on
expert knowledge or have been previously proposed in the
literature. Concerning the frequency subbands, the higher
their number, is the lower (slightly) the average accuracy ob-
tained.

To our knowledge, TF analysis and feature extraction,
which reflect the energy over the TF plane, have been only
applied in the analysis of neonatal EEG signals (and mainly
for neonatal epileptic seizure detection) and not EEG signals
in general. Moreover, the quality of the proposed method can
be proved from the obtained results. The accuracy achieved
by our method for the epileptic seizure detection is more
than satisfactory and also its automated nature makes it suit-
able to be used in real clinical conditions. Besides the feasibil-
ity of a real-time implementation of the proposed method,
the diagnosis can be made more accurate by increasing the
number of parameters. A system that may be developed as
a result of this study may provide feedback to the experts for
classification of the EEG signals quickly and accurately by ex-
amining the EEG signal.
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TaBLE 6: Results for the fourth classification problem, in terms of sensitivity (Sens), specificity (Spec), and selectivity (Sel) in % values. Those

are given for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and frequency subbands (4, 5, 7, and 13).

Frequency subbands 4 5 7 13

Classes Z S Z S Z S Z S

Sens 100 100 100 100 100 100 100 100

Spec 100 100 100 100 100 100 100 100

Frequency Time Sel 100 100 100 100 100 100 100 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100 100 100 100 100 100 99.80

Spec 100 100 100 100 100 100 99.80 100

Frequency —,o  Time Sel 100 100 100 100 100 100 99.80 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100  99.80 9760 100 100 100 98.80

Spec 100 100  97.60  99.80 100 100  98.80 100

Frequency s, Time Sel 100 100  97.65  99.80 100 100  98.81 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Sens 100 100 100 100 100 100 100 99.00

Spec 100 100 100 100 100 100  99.00 100

Frequency 5,  Time Sel 100 100 100 100 100 100  99.01 100
resolution windows Sens 100 100 100 100 100 100 100 100
Spec 100 100 100 100 100 100 100 100

Sel 100 100 100 100 100 100 100 100

Table 8 presents a comparison between our method and
other methods proposed in the literature. Only methods
evaluated in the same dataset are included so that a com-
parison between the results is feasible. For the two classes’
problem, using only the Z and S types of EEG segments, the
results obtained from the evaluation of our method are the
best presented for this dataset. The difference between our
result and all other results proposed in the literature varies
from 0.4% to 10%. The second two classes’ problem that we
used to evaluate our method also presents high-accuracy re-
sults (97.73%). It is worth to mention here that a method
that discriminates EEGs into nonseizure and seizure is much
closer to the expert needs.

Regarding the three classes’ problem, the results obtained
from our method are the best presented for this dataset, ei-
ther using only the Z, E and S types or all the available
dataset. In the case of using the third problem to evaluate
our method (i.e., only the Z, F, and S types), the difference
between our results and all others’ results varies from 2.5% to
13.4%. In the case of using the first classification problem to
evaluate our method (i.e., the Zand O, F and N, S types), the
difference between our results and all others’ results ranges
from 1% to 12%. The second case has also the advantage of

being a more realistic classification, dividing the dataset to
normal, seizure-free, and seizure EEGs, and thus being closer
to clinical conditions.

Still, however, there are several other aspects either tech-
nical or medical which must be addressed. From the tech-
nical point of view, although we have examined the ef-
fect of various parameters (frequency resolution, number of
time windows, and frequency bands), some other, like time-
frequency distributions (e.g., reduced interference distribu-
tions), have not been explored. Furthermore, we mainly fo-
cused on the effects of the parameters related to frequency
analysis, either for the calculation of the spectrum of the
signal or for the frequency resolution for feature extraction.
More detailed examination of the time resolution for feature
extraction may also reveal important information regarding
the seizure detection; this feature will be addressed in fea-
ture communications. From the medical point of view, the
most important feature is that currently the method is used
to characterize predetermined (with respect to their length)
EEG segments. An important aspect is also the modification
of the proposed method in order to be able to automatically
detect highly suspicious segments (regardless of their length)
into long time EEG recordings and classify them.
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TABLE 7: Accuracy (%), standard deviation (in the parenthesis), and initial number of features/reduced number of features after PCA appli-
cation, for all classification problems (1, 2, 3, and 4) reported, for all TF resolutions (64, 128, 256, and 512), time windows (3 and 5), and

frequency subbands (4, 5, 7, and 13).

Classification problem

Frequency resolution Time windows Frequency subbands ) 5 3 4
96.64 (0.34) 13/3  96.47(0.45) 13/3  98.24 (0.33) 13/3 100 (0) 13/3
5 97 (0.76) 16/3  97.07(0.78) 16/3  97.96 (0.61) 16/3 100 (0) 16/3
94.36 (0.58) 22/5 94.2 (0.89) 22/5 98.64 (0.34) 22/5 100 (0) 22/5
64 13 95.72 (0.71) 40/4  95.2 (1.25) 40/4  97.76 (0.33) 40/4 100 (0) 40/4
93.08 (0.96) 21/4 91.73 (0.84) 21/4 97.56 (0.39) 21/4 100 (0) 21/4
5 94.24 (0.54) 26/4 93.87 (1.08) 26/4  98.12 (0.6) 26/4 100 (0) 26/4
94.08 (0.7) 36/4  94.27 (0.95) 36/4 97.32 (0.19) 36/4 100 (0) 36/4
13 92.36 (0.81) 66/4 91.47 (0.82) 66/4 97.28 (0.37) 66/4 100 (0) 66/4
97.36 (0.34) 13/3  95.73 (0.47) 13/3  99.28 (0.17) 13/3 100 (0) 13/3
3 95.48 (0.33) 16/3  95.2(0.61) 16/3  97.92 (0.32) 16/3 100 (0) 16/3
97.52 (0.25) 22/4 97 (0.47) 22/4 99 (0.34) 22/4 100 (0) 22/4
128 13 93.48 (0.80) 40/5  95.53 (1.3) 40/5  96.92 (0.42) 40/5 99.9 (0.32) 40/5
94.92 (0.71) 21/4  94.2 (1.41) 21/4  99.16 (0.35) 21/4 100 (0) 21/4
5 94.36 (0.72) 26/4 95.53 (0.71) 26/4  97.8 (0.28) 26/4 100 (0) 26/4
93.92(1.1) 36/4  95.2(0.93)36/4  97.8(0.39) 36/4 100 (0) 36/4
13 93.72 (0.9) 66/5  93.67 (1.18) 66/5 97.44 (0.47) 66/5 100 (0) 66/5
4 96.52 (0.27) 13/3  94.53 (0.42) 13/3 99.2 (0) 13/3 100 (0) 13/3
3 5 93.04 (0.78) 16/3 96 (0.7) 16/3 96.4 (0.53) 16/3  98.7 (0.82) 16/3
96.84 (0.35) 22/5 95.47 (0.53) 22/5 98.88 (0.41) 22/5 100 (0) 22/5
)56 13 96.4 (0.9) 40/6  97.07 (0.84) 40/6  98.24 (0.39) 40/6  99.4 (0.52) 40/6
94.24 (0.8) 21/4  94.13 (1.21) 21/4 98.08 (0.53) 21/4 100 (0) 21/4
s 92.88 (0.53) 26/5 92.47 (1.18) 26/5 98.08 (0.49) 26/5 100 (0) 26/5
92.92 (0.6) 36/5 92.53 (0.61) 36/5  97.8 (0.43)36/5 100 (0) 36/5
13 92.52 (0.71) 66/5 95.73 (0.84) 66/5 96.24 (0.63) 66/5 100 (0) 66/5
4 95.76 (0.28) 13/3  97.07 (0.72) 13/3  98.36 (0.4) 13/3 100 (0) 13/3
3 5 96.64 (0.34) 16/4 97.73 (1) 16/4 98.08 (0.62) 16/4 100 (0) 16/4
96.48 (0.59) 22/5 94.33 (0.85) 22/5 98.2(0.28) 22/5 100 (0) 22/5
51 13 97.72 (0.38) 40/6  96.53 (0.69) 40/6  98.6 (0.47) 40/6  99.5 (0.53) 40/6
93.52 (0.67) 21/5  92.93(0.9) 21/5 97.68 (0.41)21/5 100 (0) 21/5
5 93.32 (0.46) 26/5 94.4 (1.1) 26/5 97.44 (0.43) 26/5 100 (0) 26/5
91.08 (1.18) 36/5 93.47 (0.88) 36/5 97.68 (0.45) 36/5 100 (0) 36/5
13 93.32 (1.16) 66/5  93.2 (1.47) 66/5 96.92 (0.5) 66/5 100 (0) 66/5
Total
Max 97.72 97.73 99.28 100
Min 91.08 91.47 96.24 98.7
Average 94.73 94.81 97.94 99.92
SD 1.78 1.63 0.75 0.26

5. CONCLUSIONS

In this paper, we explored the ability of the TF analysis
to classify EEG segments which contain epileptic seizures.
We have extracted several time-frequency features and we
examined the effect of the parameters entering the problem,
that is, the frequency resolution of the time-frequency analy-
sis and the number of time windows and frequency subbands
used for feature extraction. Promising results have been re-

ported after the evaluation of the proposed method in four
different classification problems, derived from a well-known
database. However, several types of artefacts have been re-
moved from this database after visual inspection. This is a
limitation of the evaluation of our method and thus further
evaluation under real clinical conditions is required in or-
der to fully exploit its potential. Another limitation is that in
the current study high-frequency components (over 40 Hz)
were not measured and thus taken under consideration; the
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TABLE 8: A comparison of the results obtained by our method and others’ methods (classification accuracy) for two and three categories

classification problems.

Classes Authors (year) Method Dataset Accuracy
. Nonlinear preprocessing filter, diagnostic
Nigam etal. [15] (2004) artificial neural network (LAMSTAR) ZS 97:2
.. Time & frequency domain features, recur-
1. [14] (2 ? Z, .
Srinivasan et al. [14] (2005) rent neural network (RNN) S 99-6
2 Entropy measures, adaptive neurofuzzy
K thal et al. [42] (2005 . Z,S 92.22
annathal etal. [42] ( ) inference system (ANFIS)
Kannathal et al. [35] (2005) Chaotic measures, surrogate data analysis Z,S ~ 90
Polat et al. [16] (2006) Fast Fourier transform (FFT), decision 7S 98.72
tree (DT)
Subasi [22] (2007) Discrete wavelet transform (DWT), mix- 7.8 95
ture of expert model
. Time frequency (TF) analysis, artificial
Th k (2 > Z, 1
is work (2007) neural network (ANN) S 00
. Time frequency (TF) analysis, artificial
This work (2007) neural network (ANN) (Z,O,N, F), S 97.73
Lyapunov exponents, recurrent neural
Guler et al. [34] (2005) network (RNN) Z,ES 96.79
3 . Discrete wavelet transform (DWT), adap-
Sadati et al. [23] (2006 . ’ Z,ES 85.9
adati etal. [23] ( ) tive neural fuzzy network (ANFN)
. Time frequency (TF) analysis, artificial
This work (2007) neural network (ANN) Z,ES 99.28
. Time frequency (TF) analysis, artificial
Th k (2 > Z,0), (N, F), 72
is work (2007) neural network (ANN) (Z,0), (N, F), S 97.7

employment of high-frequency components, such as gamma
activity, and their importance concerning epileptic seizure
detection will be addressed in a future communication. Fi-
nally, several technical aspects can be further investigated,
such as different techniques for feature reduction and alter-
native classification algorithms.
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