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A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The
network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation.
Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects
via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training
phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object
representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned
by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also
implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of
the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes
able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism.

1. Introduction

The term semantic memory is commonly used to denote
a kind of declarative memory which is independent of the
context as well as culturally shared and involves words and
concepts. Several theories of semantic memory have been
developed in the past decades, with the aim of understanding
how words are linked with object representation, and how
this link is altered in pathological subjects with neurological
deficits. In most of these theories, semantic memory is
considered a distributed process, which involves many
different cortical areas and adopts a multimodal (sensory-
motor) representation of objects [1-4]. More specifically,
in these theories an object is usually represented as a
collection of features spreading across different sensory and
motor modalities, which must be linked together and with
the corresponding words. Hence, retrieval of objects from
memory requires that all these distributed representations,
and the corresponding words, be activated all together
starting from sensory or lexical cues, and integrated to form
a single coherent percept. Synchronization in the gamma
band is nowadays assumed to play an essential role in high-

level cognitive processes. Recent results suggest that gamma
rhythms are involved in high-level object memorization and
retrieval [5], and in linking words with senses [6].

Although the previous ideas are largely debated in the
present neurocognitive literature, just a few mathemati-
cal models have been presented until now. Recently, we
developed a mathematical model of object representation,
in which abstract objects are described as a collection of
features. In the model, features of the same object are linked
together, and separated from those of different objects, via
synchronization of neural oscillators in the gamma band.
The network was able to recognize objects, and separate them
from other objects simultaneously present, even in case of
partial or corrupted information, and when objects share
some common features [7, 8]. In a more recent version
of the same model, this object representation, spreading
across different feature areas, is linked with a lexical area
devoted to word representation, so that correct object
retrieval can evoke the corresponding word, and vice versa.
Some simple “semantic” relationships between words which
share common features were also realized with this network
[9].



In the present work, the same “semantic” network is
used to illustrate, with a simple exemplum, how the model
can be used to describe the process of word learning
in a second language. To this end, we assume that the
network, previously trained with a few words in a first
language (L1) (so that words are associated with object
representation), learns a second-language (L2) word. The L2
word is associated with a previous L1 word via a Hebbian
learning procedure. A competitive mechanism between
words representing the same object is also implemented.
After a prolonged training, the L2 word becomes able to
retrieve the same object representation as the original word.
The results are commented from the viewpoint of present
hypotheses on second-language representation and control.

2. Method

The model consists of two different layers: the first (named
“feature network”) is devoted to a description of objects
represented as a collection of sensory-motor features. The
second (named “lexical network”) is devoted to the represen-
tation of words, from an upstream process of phonemes. The
two networks communicate via trained synapses. Moreover,
the lexical network also receives a signal from a “deci-
sion network”, which recognizes whether a correct object
information is present in the feature network and avoids
that a misleading representation can evoke a word. A more
complete description of the model, with equations and
parameter values, can be found in previous works [8, 9].

In order to simulate learning of a second language, in
the present model we included an additional mechanism not
used before: two words, which represent the same object
(the first, named L1 word, in the original language and
the second, named L2 word, in the new language), interact
via a competitive mechanism. This competition is realized
by means of inhibitory interneurons. The synapses which
originate from these interneurons are also subject to Hebbian
learning

A schematic description of model structure is presented
in Figure 1.

2.1. The Feature Network. Each area in the feature network
is devoted to the representation of a specific attribute or
feature of the object, according to a topological organization.
Hence, one object is represented as the collection of F
features (one feature per each area). In this work we used
F = 4. We assume that each attribute has been extracted from
a previous processing in the neocortex, which elaborates
sensory-motor information. Each unit in the feature areas
consists of Wilson-Cowan oscillators [10, 11]. Oscillators
in the same area are connected via lateral excitatory and
inhibitory synapses, according to a classical “Mexican hat”
disposition, which implements a “similarity principle”; this
means that elements which signal similar attributes are
located in proximal positions in the network; hence, they
tend to be reciprocally connected and activate together. Neu-
ral oscillators belonging to different areas can be connected
via excitatory synapses after training. These synapses are
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FIGURE 1: Schematic diagram describing the general structure of
the network. The upper shadow squares represent distinct Feature
Areas and are organized in a topological way. Each area embodies
20 x 20 elements (black circles), represented by means of Wilson-
Cowan oscillators, devoted to the representation of a specific feature
of an object. The lower squares represent the two populations of
neurons in the Lexical Area: excitatory neurons, responsible for the
representation of words, and inhibitory interneurons, involved in
tasks like problem solving. Each of these areas is made of 40 x 40
elements (black circles), which are represented by a first-order
dynamic and a sigmoidal relationship. Between the Feature and
the Lexical Areas there is a decision network, which un-inhibits
the lexical area, in case of correctly segmented objects. The model
includes intra-area (excitatory and inhibitory) synapses among
elements belonging to the same Feature Area, long-range excitatory
interarea synapses between oscillators in different Feature Areas,
and long-range excitatory synapses between elements in the Feature
Network and in the Lexical Areas (WF — W1).

initially set to zero, but may assume a positive value through a
learning phase, to memorize “prior knowledge” on attributes
occurring together during the presentation of objects. Lateral
synapses are not subjected to a training phase. All equations
can be found in [7-9].

2.2. Lexical Area. Each unit represents a specific “word”. It
can receive an input from a preprocessing stage which detects
words from phonemes but it can also be stimulated through
long-range synapses coming from the feature network; in
this way, a “word” is linked with elements in feature
areas representing specific properties of a stored object. All
together, a “word” and its specific attributes are combined
to embody the semantic meaning of that concept and the
integrated network can indifferently be activated by language
or sensory-motor information of an object.
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In the present model we assume that the lexical network
can be activated by the elements of the feature areas only if a
“decision network” is in the on state. This is realized sending
sufficient inhibition to all elements of the lexical area. This
inhibition is withdrawn by the decision network, as soon as
an object is recognized.

This network is located downstream of the Feature
Network. It receives input from all the elements of the
Feature Areas and verifies that (1) there is an “activation
bubble” in any area. (2) Any area produces just a single
activation bubble at a given instant. (3) The conditions (1)
and (2) are verified all along a certain time interval to ensure
the continuity of object perception. If all these conditions are
verified, then the Decision Network un-inhibit the Lexical
Area and allows its activation by object representation in the
Feature Network. An accurate description of this decision
network can be found in [8].

In the following each element of the lexical area
will be denoted with the subscripts ij or hk(i,h =
L,2,...,M; j,k = 1,2,...,M;) and with the superscript
L. In the present study we adopted M; = M, = 40. Each
single element exhibits a sigmoidal relationship (with lower
threshold and upper saturation) and a first-order dynamic
(with a given time constant). This is described via the
following differential equation:

7t %xz@(t) =~y + H (uf (1), W

where ! is the time constant, which determines the speed
of the answer to the stimulus, and H (u(¢)) is a sigmoidal
function. The latter is described by the following equation:

1
HH (1)) = 1w )

where 9" defines the input value at which neuron activity is
half the maximum (central point) and p’ sets the slope at the
central point. Equation (2) conventionally sets the maximal
neuron activity at 1 (i.e., all neuron activities are normalized
to the maximum).

According to the previous description, the overall input,
uiLj(t), to a lexical neuron in the ij position can be computed
as follows:

ub () =IL@0) + VE - G- (1-2H) - L - 1B, (3)

where IiLj(t) is the input produced by an external linguistic

stimulation. Vf; represents the intensity of the input due to
synaptic connections from the feature network; this synaptic
input is computed as follows:

VE =2 D W - %k (4)
h k

where xjr represents the activity of the neuron hk in the
Feature Areas and Wf;‘hk the strength of synapses from the

feature areas to the lexical area. The term Gt - (1 — zL(t))
accounts for the inhibition sent to the lexical area, withdrawn
by the decision network. In particular, z/(¢) is a binary
variable representing the output of the decision network (1 in
case of correct detection, 0 in case of incorrect detection—
see [8]); hence, the strength of the inhibition sent to the
Lexical Area is GF when the decision network is in the OFF
state and becomes 0 when the decision network shifts to
the ON state. It is worth noting that the external linguistic
input I, ,»Lj(t), when present, is set sufficiently high to overcome

the inhibition entering into the lexical area. The term C,»Lj
(not included in the previous model versions) represents the
competitive inhibition that the neuron at position ij in the
lexical area receives from other words in the lexical area. This
competition is triggered only in case of words representing
the same object (as in bilingualism) and is computed as
follows:

Cjj = > Win,hk X (5)
hok

where x], is the output of the inhibitory interneuron at
position hk, and ij,hk are the inhibitory synapses from a
presynaptic inhibitory interneuron at position hk to the post-
synaptic neuron at position ij in the lexical area.

Finally, the term Igi‘“ in (3) represents an external
inhibitory input, coming from high-level top-down influ-
ences, which try to inhibit a nontarget word. This input
is normally set to zero but may assume a high value in
problems like language selection or language switching (see
discussion).

The inhibitory interneuron output is computed with
equations similar to those of (1) and (2), with an analogous
meaning of symbols, that is,

. %xfj(t) = —xj;(t) + H' (x"Lf(t))’ ©
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It is worth noting, in (6) and (7), that the inhibitory
interneuron receives excitation only from the excitatory
neuron in the lexical area at the same position ij.

2.3. Synapse Training. Training has been subdivided in three
different phases: (i) learning of objects, (ii) learning of L1
words, and (iii) learning of L2 words. The first two phases
have been already described in a previous paper; hence, only
some general ideas are given here. Phase (iii) is new and
described in greater detail.

During the first phase, objects are individually given to
the network with all their four features, and the synapses
linking the feature areas are trained via a time varying
Hebbian mechanism. This is described in detail in [8]. At
the end of this phase, objects can be recognized even in the
presence of incomplete or moderately altered inputs [8].



During the second phase, an object (already learned
in phase (i)) is given to the network together with the
corresponding word. Synapses linking the word and the
object features (in both directions) are then learned with
a Hebbian mechanism. This is described in [9]. At the end
of this phase, objects can evoke the corresponding words and
words can evoke the sensory-motor object representation in
the feature areas. Moreover, several words and their objects
representation can coexist by oscillating in time division in
the gamma range.

The third phase consists in learning words of a second
language. To this end, we assumed that a word in the first
language (named L1 word), previously learned in phase (ii),
is given to the subject together with a new word (L2 word)
representing the same object in a second language. Of course
the L1 word activates the object representation in the feature
areas, and the synapses linking the feature areas to the L2
word (i.e., synapses Wf;)hk in (4)) are learned with a Hebbian
mechanism (similar to that used in phase (ii)). Moreover,
the inhibitory synapses linking the inhibitory interneurons
to the lexical area (i.e., synapses Wilj’hk in (5)) are also learned
with a Hebbian mechanism. In fact, during this phase, the L1
and the L2 words are active, and so, also the corresponding
interneurons are active. The equations for synapse learning
are

Wt + Ts) = W (8) + Bl - x50 - (1),
(8)
Wi (t+ Ts) = W (8) + Bl - X5 (8) - x,(8),
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where xiLj(t), xnk(t), and x{m(t) represent the activity of the
excitatory neuron at position ij in the lexical area, the
Wilson-Cowan oscillator at position hk in the feature area,
and of the inhibitory interneuron at position Im, respectively,
and f3 represent the learning rates. Finally, we assumed
that synapses cannot overcome a maximum saturation
value. This is realized assuming that the learning rates
are progressively reduced to zero when synapses approach
saturation.

3. Results

Simulations have been performed at three different moments
of the second-language learning process: (i) at the beginning
of training, when the second language word has never
been perceived before, (ii) during an intermediate learning
moment, when synapses linking the object with the L2 word
are still weak, that is, much smaller than the synapses linking
the same object with the L1 word, and (iii) after a long
training period, when the synapses linking the object to the
L2 word are almost as strong as the synapses from the same
object to the L1 word.

Three exemplary cases are presented for each training
phase, characterized by different inputs to the model: L2
word as input to the model, L1 word as input to the model,
and the object features as input to the model.
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Figure 2 shows the model response in the feature areas
(upper panels) and in the lexical area (bottom panels) at
a particular instant of the simulation, when the L2 word
is used as input. In each simulation, the external input
activates the corresponding neuron in the lexical area. At
the beginning of training (Figure 2(a)) this word cannot
evoke any object representation in the feature areas. After
moderate training (Figure 2(b)) the L2 word can evoke the
representation of the object in the feature areas (with the
appearance of four activation bubbles, which represent the
four features of the object). However, it is remarkable that
also the L1 word representation is activated in the lexical
area. This signifies that an L2 word is able to evoke the
correct representation of the corresponding object, but it
still requires some participation of the L1 word. In other
terms, at this stage of training the second language still
takes advantage of the first language, and both words (the
L2 word and the L1 word) participate synergistically to
the object representation. Conversely, after a strong training
(Figure 2(c)) the L2 word can evoke the object representation
with just a negligible activation of L1. This means that
L2 has become almost completely independent of any L1
support.

The temporal patterns of neuron activities are given in
Figure 3, when the network is stimulated with the L2 word
as input. In case of weak training, L2 word can evoke the
object representation (with the four features which oscillate
in phase in the gamma band, at about 40 Hz, Figure 3(a)).
However, it is noticeable the activation of the L1 word in the
lexical area, which oscillates with the same phase as the object
representation, Figure 3(c). After a prolonged training, the
L2 word is able to almost entirely suppress activity of the
L1 word, thanks to the presence of a strong competitive
mechanism. The subject can use L2 without evoking L1,
Figures 3(b) and 3(d).

Figure 4 shows snapshots of neuron activation in the
different areas of the model, when model is stimulated with
the L1 word as input. Independently of the training length,
the L1 word can evoke a correct object representation in
the feature areas without any significant participation of L2.
This signifies that, at any stage of learning, L1 is independent
of the new language and, even after a prolonged second-
language training, it is able to recover an object by totally
inhibiting the corresponding L2 word.

The third case (Figure 5) shows model behavior when the
network is stimulated with the entire object representation
(i.e., all four features are given to the network as an
external input). Of course, at the beginning of training the
object evokes only the L1 word. Similarly, after a moderate
training, when the second language is just poorly known, the
object evokes the L1 word only, and the L2 word is almost
completely inhibited. However, after a prolonged training,
the object representation evokes both the L1 word and the
L2 word, which coexist despite the presence of a reciprocal
competitive inhibition.

The previous simulations show that, if a subject has a
low-proficiency L2, an external object automatically activates
L1, while L2 is inhibited. Conversely, for a high-proficiency
L2 subject, word production caused by an external object
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FIGURE 2: Some snapshots of the model response at some instant of the simulations, performed when the L2 word is given as input to the
network. The upper panels describe activity in the feature areas, while the bottom panels represent the activity in the lexical area. The L2
word is represented by neuron activity in position 20, 30 of the lexical area, while the corresponding L1 word is represented by activity in
position 5, 5. Results of three simulations are given, characterized by a different proficiency of the second language: beginning of L2 training
(a), after a weak L2 training (b), and after a prolonged L2 training (c). It is worth noting that, after weak training, the L2 word can evoke the
correct object representation in the feature areas (represented by simultaneous activation of four features), but it still requires activation of
the L1 word. After prolonged training the L2 word becomes almost completely autonomous from L1.

causes a conflict between L1 and L2 words. Some prob-
lems, thus, arise. How can a low-proficiency L2 subject
produce a correct L2 word (for instance, when he/she is
forced to use L2 in a foreign context or a classroom)?
And how can the conflict between L1 and L2 words be
solved in high-proficiency L2 subjects? To answer these
questions, model must assume the presence of a further
top-down inhibitory input (i.e., the term I,%ias in (3))
probably coming from higher cognitive centers, which is
directed to the nontarget language. As an example, in
Figure 6 we repeated the same simulations as in Figure 5
(object as input to the network, i.e., the word production
paradigm) assuming that all L1 words are receiving an
inhibitory input from an external source. Results show
that, in this condition, the presentation of the object
engages activation of the L2 word, less active in the low-
proficiency case (Figure 6(b)) and more active in the high-
proficiency case (Figure 6(c)), but without any interference
from L1.

4. Discussion

The term “bilinguals” means people who can use two lan-
guages in their life, a first or native language usually denoted
as L1 and a second language named L2. Bilingualism, of
course, entails several complex problems, which are still
debated in the psycholinguistic literature. A first problem
is whether the second language (or L2) makes use of the
same neural structures as L1 or whether different structures
and different mechanisms underlie the acquisition of L2. A
second fundamental aspect of bilingualism is the necessity
of some control mechanisms to establish which language
should be used at a given moment and in a given context and
which language should be inhibited, for both what concerns
word production and word comprehension.

Most studies on bilingualism appeared in recent years
(some of them summarized by Abutalebi [12]) making use
of functional neuroimaging techniques (such as PET or
fMRI) to detect which brain regions are involved or activated
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FIGURE 3: Temporal pattern of neuron activity in the feature areas representing the object (a) and (b) and in the lexical area (c) and (d) in
the same simulations as in Figure 2, in case of weak training (a) and (c) and in case of strong training (b) and (d). All object features oscillate
in synchronism in the gamma band (about 40 Hz). The L2 word, stimulated from an external input, exhibits quite a constant activity close
to maximal saturation (red line) while the L1 word, triggered by the object representation, exhibits a significant activity in the gamma band

(blue line).

during a specific psycholinguistic test. Although these studies
provide important information on brain organization in
bilingualism, they do not explore the neural mechanisms
involved. Moreover, language is a typical characteristic of
humans; hence, animal experiments cannot be used to
deepen our knowledge of the problem.

In this situation, mathematical models and computer
simulations, although drastically simplified compared with
the reality, may provide important contributions to clarify
the possible mechanisms involved in language processing
(at least for what concerns basic aspects as word recognition
and word production) and to convert current hypotheses
into rigorous quantitative theories. Indeed, several current
theories on language frequently use expressions like “com-
petition”, “inhibition”, “neural activity”, and “control” and
can be regarded as “qualitative models”, which may certainly
benefit of a more accurate quantitative formalization.

The model presented in this work whishes to represent
a first step in that direction. However, it aspires to describe
only the lexical-semantic aspects of language, without any
inclusion of grammatical issues: in particular, attention is
focused on word recognition (i.e., the process through which a
word is converted into a coherent object representation) and
word production (the process through which the representa-
tion of an object is converted into a word).

The main assumption of the model is that neurons
labeling words, and neurons describing their semantic object
representation over different areas, are linked together via
excitatory synapses. It is remarkable that the model, for the
sake of simplicity, does not incorporate the two “external”

aspects of this processing stream, namely, how phonemes
are converted to lemmas (and words) and how the sensory-
motor information coming from senses is generalized to
arrive at an abstract representation of objects.

A second fundamental aspect of the model is that the
synaptic links between object representation and words are
learned during a training phase, in which the object and the
corresponding word are presented together. This particularly
of the model allows learning of L2 words with the same basic
mechanism as that of L1, supposing a training phase in which
the L2 word is presented together with a previously learned
L1 word.

The latter assumption, which is fundamental in our
work, received several confirms from recent neuroimaging
studies (some of them summarized by Perani and Abutalebi
[13] and Abutalebi [12]). Indeed, a traditional viewpoint
in the neurolinguistic literature, which dominated for more
than one century, was that the first and second languages
depend on different cerebral structures and on different neu-
ral mechanisms [14]. Following this line of thinking, a recent
qualitative model (named the Ullman declarative/procedural
model [15]) assumes that processing of L2, acquired late
on life, depends upon different cognitive mechanisms and
different cerebral structures than L1. Several recent results,
however, using functional neuroimaging data [16, 17], con-
tradict this hypothesis for what concerns the lexical-semantic
aspects of L2 (although structural differences between L1 and
L2 may effectively occur for what concerns the grammatical
aspects). As summarized in the review paper by Abutalebi
[12] “The emerging picture from studies investigating the
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FIGURE 4: Some snapshots of the model response at some instant of the simulations, performed when the L1 word is given as input to
the network. The upper panels describe activity in the feature areas, while the bottom panels represent the activity in the lexical area. The
L1 word is represented by neuron activity in position 5, 5 of the lexical area, while the corresponding L2 word is represented by activity
in position 20, 30. Results of three simulations are given, characterized by a different proficiency of the second language: beginning of L2
training (a), after a weak L2 training (b), and after a prolonged L2 training (c). It is worth noting that, at any training level, the L1 word can
evoke the correct object representation in the feature areas (represented by simultaneous activation of four features), without any significant

participation of the L2 word.

lexical-semantic domain is that L2 is essentially processed
through the same neural networks underlying L1 process-
ing.”

Assuming that the lexical-semantic aspects of L2 are
acquired through the same neural structures and the same
plasticity rules as L1, the present model makes some testable
predictions, at different stages of the learning process, which
can be compared with present functional neuroimaging
data and with present theories on bilingualism. In the
following, these predictions will be separately discussed for
what concerns the neural representation of L2 (i.e., the
neural substrates of words and concepts) and the control
mechanisms implicated in bilingualism.

The neural representation of L2—An interesting result of
our simulations is that, at a low proficiency level, when L2
is just poorly learned, the recognition of an object from an
L2 word implicates the participation of L1. This is evident in
Figures 2 and 3 by the activation of the L1 word in the lexical
area. These simulation results agree with some psycholin-
guistic theories. For instance, Kroll and Stewart [18] state

that, during the early stages of L2 acquisition, L2 depends
on L1 to access meaning for its lexical items. A consequence
of this idea is that, at low proficiency level, the use of an
L2 word causes a greater neural activation in the lexical
and in the inhibitory areas, compared with the use of L1
words. Let us consider the situation depicted in Figure 2(b),
and in Figures 3(a) and 3(c): here one can observe two
zones of the lexical area which are simultaneously active; of
course, the inhibitory interneurons are also active in same
zones (since they receive their input directly from the lexical
area). This signifies that a greater activation is recruited when
the low-proficiency subject is trying to use an L2 word.
This result is supported by neuroimaging data, although
it is quite difficult to force this parallelism beyond a very
qualitative level. Studies investigating the lexical-semantic
domain show that bilinguals with low-proficiency L2 entail
additional brain activity compared with the L1 word or
compared with monolingual subjects: the increased activity
is especially observed in the left inferior frontal gyrus and in
prefrontal areas [16, 19].
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FIGURE 5: Some snapshots of the model response at some instant of the simulations, performed when the object (i.e., its four features)
is given as input to the network. The upper panels describe activity in the feature areas, while the bottom panels represent the activity in
the lexical area. The L2 word is represented by neuron activity in position 20, 30 of the lexical area, while the corresponding L1 word is
represented by activity in position 5, 5. Results of three simulations are given, characterized by a different proficiency of the second language:
beginning of L2 training (a), after a weak L2 training (b), and after a prolonged L2 training (c). It is worth noting that, at the beginning of
training and after a weak training, the external object can evoke only the L1 word without any significant activity of the L2 word. Conversely,
after prolonged training, the external object simultaneously evokes both the L1 word and the L2 word, despite the presence of a competitive
mechanism. This requires the participation of a higher-level mechanism (perhaps inhibitory) to resolve the conflict.

In addition, model predicts that, with an increase in
L2 proficiency, the neural activity engaged by L2 words is
reduced and becomes progressively comparable with that
engaged by L1 words. This model predictions reflect the
so-called Green’s convergence hypothesis [20], according to
which higher levels of proficiency in L2 produce a lexical-
semantic representation which more closely resembles that
produced by L1. Indeed, neuroimaging studies have reported
similar activations in the left frontal and tempo-parietal
brain areas when a subject performs a word production
task, in case of L1 and high-proficiency L2 [21, 22]. This
signifies that highly proficient bilinguals do not need to
recruit additional resources when using L2 to achieve similar
results as L1.

Control mechanisms—The model stresses the need of
some control mechanisms, which must be put into action
to solve several conflicts involved in bilingualism: which
language must be used at a given moment and in a given
context? How can a low-proficiency subject use L2 words

avoiding any interference from the stronger L1? A common
hypothesis in the neurolinguistic literature assumes that
control entails a sort of competition between the two
languages and that this competition is solved by inhibiting
the nontarget language [23]. Of course, competition can
occur both at the level of phonemes (for instance, the
English word “dog” competes with the English word “dot”),
and at a semantic level (the English word “dog” competes
with the French word “chien”). Since the first aspect,
linking phonemes to words, is not considered in this model,
only the second kind of competition will be considered
below.

According to a former assumption by Rodriguez-Fornells
et al. [24], model suggests the presence of two distinct
but interrelated control mechanisms, which work through
inhibition.

A local bottom-up inhibitory mechanism aims to inhibit
the weaker language without the participation of higher
control centers. This mechanism is directly implemented
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Initial training
44.34ms

Feature areas

Lexical area

(a)

Weak training
44.4ms

(b)

Strong training
22.76 ms

22.84ms

FIGURE 6: Some snapshots of the model response at some instant of the simulations, performed when the object (i.e., its four features) is
given as input to the network. Simulations are the same as in Figure 5, with the same meaning of figures, but in this case we assumed that
a strong top-down inhibitory input (from a higher control center) targets all L1 words. It is noticeable that, in this situation, the object
representation can evoke the L2 word, but with a different level of activation depending on the proficiency level.

within the model via inhibitory interneurons and is trained
with the same Hebbian rule used to link words and objects.
In the present simulations, this mechanism operates when
L2 proficiency is lower than L1 proficiency and the subject
perceives an object and must produce the corresponding
word. In this condition, word production in response to an
object spontaneously engages L1 without any activation of
the L2 word (L2 is inhibited by the internal competition; see
Figure 5 central column).

Results in Figures 5 and 6 stress the need for a second
top-down control system, which can be considered an
external input to the model and inhibits one language
to favor the other. This situation may involve paradigms
like language switching, language translation, or language
selection. In our simulations this external input may become
necessary when two languages have a similar proficiency
level (compare Figures 5(c) and 6(c)) or when the sub-
ject is forced to use a low-proficiency language despite
the interference from the high-proficiency one (compare
Figures 5(b) and 6(b)). A classic point of view is that
these conflicts are solved by a dynamical inhibitory input
to the nontarget language, and this may originate from

various brain areas classically related to cognitive control,
such as the caudate nucleus, the prefrontal cortex, and the
anterior cingulate cortex [25-27]. An interesting question
is whether this top-down control system is specifically
dedicated to language or represents a more general struc-
ture, devoted to conflict resolution independently of its
explicit domain. Inclusion of such an external mechanism
may be the subject of future improvement of the present
model.

In conclusion, the present work represents a first attempt
to study lexical-semantic aspects of language, such as
word production and word comprehension, using neural
networks and computer simulations. Assuming that the
same neural structures and the same learning mechanisms
operate for L1 and L2, the model makes several predictions
which agree with some psycholinguistic theories and recent
neuroimaging data. Further aspects which require model
extension are especially concerned with language control
via top-down inhibitory mechanisms. Introduction of this
mechanism may allow more complex paradigms to be
simulated, such as language selection, language switching, or
language translation.
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