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Community detection is an important task for mining the structure and function of complex networks. In this paper, a novel label
propagation approach with «-degree neighborhood impact is proposed for efficiently and effectively detecting communities in
networks. Firstly, we calculate the neighborhood impact of each node in a network within the scope of its a-degree neighborhood
network by using an iterative approach. To mitigate the problems of visiting order correlation and convergence difficulty when
updating the node labels asynchronously, our method updates the labels in an ascending order on the a-degree neighborhood
impact of all the nodes. The a-degree neighborhood impact is also taken as the updating weight value, where the parameter impact
scope « can be set to a positive integer. Experimental results from several real-world and synthetic networks show that our method
can reveal the community structure in networks rapidly and accurately. The performance of our method is better than other label

propagation based methods.

1. Introduction

With the emergence of all kinds of networks such as the
Internet, social networks, and organic molecules networks
human beings have stepped into the network era. Detection
of community structure in real networks has important the-
oretical significance and high application value. For example,
the community structure of social networks [1] can reveal
groups of the same interests, opinions, or beliefs and the
communities in a bimolecular network can represent the
different functional modules [2-5].

At present, many kinds of algorithms for community
detection in complex networks have been proposed, such
as hierarchical clustering, modularity optimization, and
spectral clustering [6-12]. However, some of the existing
methods suffer from the problems of prior information
requirements, parameter sensitivity, poor time efficiency,
and so forth. In 2007, a label propagation algorithm was
proposed by Raghavan et al. [13], called LPA, which can
detect the intrinsic communities in a network without prior

information. Because of its simplicity, high speed, and time
efficiency, LPA has drawn much attention recently. LPA and
most improved algorithms of it update the label of each node
in an asynchronous way until a general consensus is reached.
Each node updates its label based on its adjacent neighbor
label status, and different nodes have the same influence
on its neighborhood [13-16]. As a result, the labels can be
sensitive to the update order of nodes and have difficulty
in converging. Leung et al. proposed an improved label
propagation method named LHLC by introducing scores to
represent the transmission intensity of labels with the iterative
process. However, the result is susceptible to the parameter of
attenuation [16]. In addition, in order to improve the accuracy
of community detection, some label propagation methods
adopt the process of modularity optimization to get more
robust results, but the running time and space complexity
significantly increases [14, 15].

To improve the accuracy and robustness of label propa-
gation, we propose a method by using the a-degree neigh-
borhood impact for community detection, called NILP.



Given a certain value of «, we firstly calculate the a-degree
neighborhood impact of each node. Then, we arrange the
nodes for updating process in ascending order on their «-
degree neighborhood impact values. Thirdly, we update the
label of each node asynchronously, and the new label is
the one that has the maximum of the sum of weighted «-
degree neighborhood impact. The main contributions of our
method are as follows: (1) we propose a method to calculate
the a-degree neighborhood impact, which can quantify the
centricity of a node within its local link structure. (2) Our
method takes the impact of neighborhood into consideration
in the label update process, which makes it more robust than
other label propagation algorithms. (3) Our method separates
the process of calculating a-degree neighborhood impact and
updating labels of nodes, which improves the running time
efficiency. (4) A certain order of label updating is given which
can expedite the convergence process.

The rest of the paper is organized as follows. Section 2
introduces «-degree neighborhood networks, as well as the
a-degree neighborhood impact formula. Section 3 describes
the working principle and steps of the proposed algorithm
a-NILP in detail. Section 4 presents the experimental results
and the analysis. Finally, Section 5 concludes the paper.

2. a-Degree Neighborhood Impact

Given a network G = (V, E), where V is the set of nodes
and E is the set of edges, and the task of network community
detection is to find densely connected subgraphs in G. The
label propagation method is applied here to implement
automatic community detection [13]. Taking nodes as the
basic computing units, we initialize every node with a unique
label and let the labels propagate in a certain order through
the network. In order to make densely connected nodes
have the same labels, we take the local link structure into
consideration. In this section, some related definitions are
given as follows.

Definition 1 (a-degree neighbor). Let G = (V,E) be an
undirected network, where V is a set of nodes and E is a set
of edges. Let u, v € V. If the length of the shortest path from
node u to v is «, then node v is called the «-degree neighbor

of node u, denoted by u S Tw)={v|veVAau 5 v}is
the set containing all the a-degree neighbors of u.

It is obvious that the definition of a-degree neighbor is
symmetrical, which means if node u is the a-degree neighbor
of node v, then so is node v to node u. Particularly, node u is
the 0-degree neighbor of itself.

Definition 2 (a-degree neighborhood network). Let G =
(V,E) be an undirected network with node u,v € V and
Vi={v|ve VAuSvAO<e< a}. The spanning subgraph
G' = (V',E), which is composed of V'and E' = {(u,v) |
u,v € V' A{u,v) € E}, is called the a-degree neighborhood
network of node u.

As shown in Figure 1, nodes 2-6, which are the neighbors
of node 1 and are called its 1-degree neighborhood nodes,
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FIGURE 1: A sample network.

form the 1-degree neighborhood network of node 1 with
all the incident edges of those nodes. Node 7 is a 2-degree
neighbor of node 1, and the spanning subgraph composed
of nodes 1-7 is a 2-degree neighborhood network of node 1.
In general, we can view an «a-degree network as a complete
closed system constituted by an initiating center node and
its surrounding counterparts and their incident edges. In
this system, starting from a certain node u, we measure and
analyze its local connection density via its «c-degree neighbors
and neighborhood network to yield the average degree of
impact on all its surrounding nodes.

In a real network, a node affects its neighbors through
its edges. In an unweighted network, a center node u wields
precisely identical influence on its every neighbor. When the
network is a weighted one, the degree to which surrounding
neighbors will be affected by their center node is in propor-
tion to the weight assigned to the incident edges. While a
center node u influences all its neighbors, the center itself
also absorbs impacts exerted by its neighbors. Due to the link
path characteristics inherent in networks, the influence of a
node on its 2-degree neighbors is the mean value of impacts
on all its 1-degree neighbors. In the following, we give the
calculation formula of the a-degree neighborhood impact.

Definition 3 (a-degree neighborhood impact). Let G =
(V,E,A) be an undirected and weighted network G =
(V,E, 1), where V is a set of nodes, E is a set of edges, and
A is the weight function of edges. The weight between nodes
iand node jis A;; (A;; > 0), and 1 is the default value for the
weight in an unweighted network. The formula for 0-degree
neighborhood impact of a node is

vi®O =1, ®

where A;, represents the weight of the edge between node i
and node x. For node x to its a-degree neighborhood nodes
(a = 1), the impact formula is

(a—1)
Ziel"l(x) (Aix : VIia )

(o)
VI = , a1 (2)
* Ziel"l(x) /‘ix
Given a network G = (V,E) and the parameter o >

1, through recursive calculation, we can get the «-degree
neighborhood impact scalar VI = (VI\, vI{®¥, .., vI®)
of each node.

The weights of the edges of the sample undirected
network given in Figure 1 are considered as 1. As shown in
Figure 2, the a-degree neighborhood impact of each node
is calculated by formulas (1) and (2) in the sample network
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FIGURE 2: Average node impact in the sample network (« =1, 2, 3).

shown in Figure 1 with parameter « =1, 2, and 3. For example,
for node 7, the 1-degree neighborhood impact is 1/4, the 2-
degree impact is 5/16, and the 3-degree impact is 271/960. We
take VI below as an example, illustrating the calculation
procedure of 3-degree neighborhood impact. Consider

3  VIP +VvIP + VI + VI
v = .

(w@+wﬂ+w@+wﬁ v + i + vl
= +
4 3

v + vy + v vﬁ”+«n§)+V§“>
+
3 3

X

=

1 1 1 5 2
=ZWP+ZWP+ZW@+ZWQ+§W@

250, 240
+§V19 +§VIIO

271

= Seo°
(3)

We can find that as the value of « increases, the scanning
range of the neighbors of a node gradually expands. The
calculation of a-degree neighborhood impact fully considers
every path whose end point is itself and the length is e. The
effects of a-degree neighborhood of node u (including 1-
degree neighborhood, 2-degree neighborhood,.. ., a-degree
neighborhood) will spread along all possible paths and
ultimately have a tangible influence on node u. Eventually,
a-degree neighborhood impact of node u is the weighted
average of all the (o — 1)-degree neighborhood impact of
the neighbors of node u. For any node u in a network,
the fact that its average a-degree neighborhood impact is
comparably small indicates that nodes and edges in a-degree
neighborhood network of node u are relatively dense, and
the node u has strong centricity. Therefore, node u is less
affected by its neighborhood, and the label of node u is more
stable. The larger the average a-degree neighborhood impact
of node u is, the sparser the links between nodes and edges

are and the weaker the centricity that node u has. Thus in
such case, for node u, the effect of its neighborhood is lager
and the label is susceptible to change. In our method, all
the nodes in network G are in ascending order on their
a-degree neighborhood impacts, and we choose this order
as the updating order of labels, which makes the updating
order of labels relatively constant. In addition, the smaller the
impact is, the earlier the node updates. We strive to avert label
updating oscillation to facilitate convergence.

Definition 4 (ratio of stable node). In the label updating pro-
cess, after one iteration, the percentage of nodes possessing
exactly identical labels as before is called the ratio of stable
node. We can calculate the stable node ratio p as

N,
= £, 4
P= (4)

where N, is the number of nodes whose labels have no change
in this round of iteration.

The stable node ratio p can be employed to measure the
degree of convergence of our algorithm in the duration of
label propagation.

3. Proposed Algorithm

Just like the original label propagation algorithm LPA, our
algorithm based on a-degree neighborhood impact also
iteratively updates labels according to a node traversal order
and will eventually group nodes with the same label into
the same community. The difference is that we introduce
the impact values for each node and use it to determine the
rankings of nodes and to update the node labels.

3.1. Label Updates. The method of updating label in algo-
rithm «-NILP is based on the average impact of neighbor-
hood nodes. When the label of node u needs to be updated,
we use the following formula to determine its new label:

L =max Y (V¥ -8 (L,1)), 5)
! i€N(u)

where N (1) is a set of 1-degree neighbors of node u and §(3, j)
is the Kronecker function. If i = j, then 6(j, j) = 1; otherwise
0@, j) = 0.
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FIGURE 3: The process of label propagation by using algorithm NILP to detect community structure on the sample network.

Therefore, the label of the 1-degree neighbor that exerts
the greatest influence becomes the new label of node u.
If there exist multiple choices of greatest neighborhood
influence labels of node u, we randomly select a label as the
new label of node .

3.2. Algorithm Description. Given « > 1, we can describe our
algorithm «-NILP in the following steps.

Step 1. For any node u in a complex network G = (V, E),
calculate VI,E“) the average a-degree neighborhood impact of
node u.

Step 2. According to the a-degree neighborhood impact
VI, arrange the nodes in the network in an ascending order

on the impact values to determine the updating order of node
labels.

Step 3. For any node u € V, assign it a unique label, and set
the stable ratio p = 0.

Step 4. According to the determined updating order above,
use formula (5) for updating labels of all the nodes.

Step 5. Calculate stable ratio p, of the current round of label
update.

Step 6. Compare the value of p and p;; if p; > p, then
p = p;, and go to Step 4 to continue to update the node
labels; otherwise, stop updating, and perform rollbacks of all
the node labels to revert them to their previous states.

Figure 3 illustrates the process of community detection
using algorithm NILP in the above example network when
a = 2. In Figure 3(a), in the sample network, each node is
marked with a unique label, and the 2-degree neighborhood

impact values are labeled beside the nodes. According to the
ascending sort order of the impact values, the nodes update
order is determinedas5 - 1 - 4 - 2 - 3 - 6 —
7 — 8 — 9 — 10. Node 5 is the first one for label update,
using formula (5) to decide the new label, and the result for
adjacent neighborhood node 6 has the greatest influence on
it, so we change the label of node 5 to the node number of its
neighbor, in case 6. Next, we update all the nodes sequentially.
Figure 3(b) is the result of the divided community which is
updated at the end of the first round of label propagation.
After the first round of label update process completed, with
the stable ratio of the current node being p;, = 0.3, we
are supposed to update labels in accordance with the above
order in the next round of node label update process. The
algorithm continues to run until the stable ratio no longer
rises. Figure 3(c) shows the final results of our algorithm on
detecting communities on the sample network.

Algorithm NILP is different from other label propagation
based algorithms. First, NILP limits the scope of impact
that nodes can exert on their neighbors to a variable «,
and it differs from the attenuation degree setting in the
label propagation process of LHLC, rendering it feasible for
nonattenuation propagation in local areas in real life. Such
as a network of friends, only a limited number of people
within the scope of the friends will be in the same circle
of friends. When the information of insiders interest has
been released, the information exchanges along the route
of various relationships to attain the goal of information
sharing, while outsiders are mostly not likely to disseminate
such information because they are not interested in it.
Secondly, NILP calculates the mean value of impact for
each node in the scanning range of a-degree neighborhood
and fully takes its «-degree neighborhood network structure
into account, which improves the efficiency of the process
of label propagation. Third, the mutual influence between
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TaBLE 1: The comparison of time and space complexity of four algorithms LPA, LPAm, LHLC, and «-NILP based on label propagation (n is

the number of nodes in the network).

Label propagation based algorithm LPA LPAm LHLC «-NILP
Time complexity O(nlogn) O(nlogn) O(nlogn) O(nlogn)
Space complexity O(n) om?) O(n) O(n)

nodes is an objective existence, independent of the label
propagation, so the node neighborhood impact and the label
iterative update process are separated. Due to the fact that
label propagation proceeds with nodes affecting each other,
the process of node update must be based on the value
of average neighborhood impact. Finally, according to the
size of neighborhood impact, NILP updates all the nodes in
ascending order and makes the process of updating labels
more definite instead of more randomized. In an unweighted
network, when « — 00, all the neighborhood impact of
nodes tends to be the same. So any node update order can
be applicable to the label propagation process. Therefore, for
the unweighted network, formula (5) can be simplified as

L = max > 8 (11). ()

i€eN(u)

At this point, NILP algorithm becomes the original
label propagation algorithm LPA. Hence, we can draw the
conclusion that LPA is merely a simple case of our a-degree
neighbors label propagation algorithm NILP.

3.3. Complexity Analysis. In this subsection, we analyze and
compare both time and space complexity of various label
propagation based algorithms «-NILP, LPA, LPAm, and
LHLC. The pertinent data is shown in Table 1. In terms
of time complexity, our algorithm «-NILP consists of three
parts which are the calculation of «a-degree neighborhood
impact, the node sorting process, and the label propagation
process. In the calculation of impact values, our algorithm
needs to traverse all the nodes in the network and the 1-degree
neighbors of all the nodes, so the time complexity is O(am +
n), where m and n are, respectively, the number of edges and
nodes in the network. In the sorting process, we adopt quick
sort algorithm and the time complexity is O(nlogn). The
time complexity of the label propagation process is O(n1log n).
Therefore, the overall time complexity is O(nlogn) when
O(m) = O(n) in a sparse scale-free network.

Then, we analyze the space complexity of our a-NILP
algorithm. Because the algorithm creates n nodes and » initial
communities, we use adjacency lists to describe the 1-degree
relationship between nodes and the correspondence between
nodes and communities, which occupies O(2m + n) and
O(n + n) space, respectively, and amounts to the total space
complexity of O(n).

In summary, in the case of the same time complexity,
LPA, LHLC, and «a-NILP have lower space complexity. This
is because these algorithms run without using adjacency
matrix, which leads to the decline of the volume of data
involved in the creating, reading, and manipulating process.
The running time elapsed also dwindles due to the reduction

in the space complexity, implying that the above three
algorithms also run faster.

4. Experimental Results and Analysis

In this section, we evaluate the performance of the proposed
algorithm «-NILP through experiments. Our algorithm is
implemented using ANSI C++. All the experiments were
conducted on a PC with 3.20 GHz processors and 4.0 GB
memory.

4.1. Data Sets. To evaluate the performance of our algorithm,
we use the following three real-world networks.

Zachary’s Karate Club Network. A network of social relations
between members of an American university karate club
(http://networkdata.ics.uci.edu/data.php?id=105) is composed
of 105 vertexes and 882 edges, where each vertex represents
a club member and an edge denotes the fact that the two
members, assumed as friends rather than mere acquaintances
by us, contact each other frequently. Due to internal disputes,
the club splits into two groups, which is its real network
community structure.

NCAA College-Football Network. The network of American
football games between Division IA colleges during Regular
Season Fall 2000 (http://networkdata.ics.uci.edu/data.php?
id=5) is composed of 115 vertexes and 1,232 edges, in which
each vertex corresponds to an American college football team
and each edge represents two corresponding teams played
a game during Regular Season Fall 2000. All the teams are
divided into eleven conferences and five independent teams.

Books about US Politics. The network of books about recent
US Politics sold by the online bookseller is composed of 105
vertexes and 882 edges, in which each vertex corresponds to
an US Politics book and each edge represents the frequent
copurchasing of two corresponding books.

DBLP Coauthorship Network. A weighted network of author-
ship in four research fields (ie., DB, IR, DM, and ML)
extracted from the DBLP computer science bibliographical
dataset is composed of 28,702 vertexes and 66,832 edges, in
which each vertex corresponds to a distinct author who has
published more than twenty papers and each edge represents
their coauthor relationship. The weight of an edge denotes the
number of papers coauthored by these two authors.
Meanwhile, we utilize the tool developed by Lancichinetti
et al. [17] to generate several synthetic networks and divide
them into two groups based upon the number of nodes
in networks, with the nodes number of one group being
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FIGURE 4: The achieved NMI values of our algorithm varying with the parameter « in a real network Football and the synthetic networks

with n = 1000.

1000 and the other group 10000. Each group comprises 15
networks, with their mixing coefficient ranging from 0.1 to
0.8 at a step size of 0.05. To further evaluate the performance
of our method, we also run our algorithm on networks of
different number of nodes, including 1000, 5000, 25000, 5000,
100000, 250000, and 500000, with the mixing coeflicient
being 0.3.

4.2. Analysis of the Influence of Parameter a. To compare the
impacts of different values of & on the performance of our
algorithm, we conduct our experiment on the benchmark
Football dataset and fifteen 1000-node synthetic LFR net-
works with their mixing coefficients varying from 0.1to 0.8 at
an increment interval of 0.05. Setting the values of & from 1 to
40, when detecting communities in the real network Football
and the synthetic networks, the NMI values of our algorithm
are shown in Figures 4(a) and 4(b).

As shown in Figure 4(a), in the real Football network,
when « = 2, the highest NMI value is obtained, indicating
that the results are the closest to the correct ones. When
« = 5,11, 13, 20, NMI value fluctuates drastically, which
is because, under these values, the obtained label update
order and the neighborhood impacts of nodes divide the
real network into several large-scale communities, and thus
NMI is significantly reduced. This indicates that the link
structure of a real network has some randomness; thus a
label propagation based algorithm running in these networks
for community detection is more sensitive to the traversal
order of nodes. Figure 4(b) shows the experimental results
on the 1000-node synthetic networks, and we can find that,
compared with the real network, this algorithm is more stable
on the synthetic networks. When the mixing coefficient y =
0.2, 0.4, or 0.6, « = 2 can always yield the maximum NMI

value. For the network of mixing coefficient being 0.8, the
value of NMI is not a maximum when « = 2, but it is very
close to the maximum value. A large number of experiments
show that, in most cases, the community-dividing results of
the proposed algorithm NILP are optimal or near-optimal
when o« = 2. Therefore, all the subsequent parts of our
experiment were conducted using 2-NILP for experimental
analysis.

4.3. Evaluation on Real Networks. First, we analyze the results
of the algorithms NILP and LPAm in Zachary’s Karate net-
work, as shown in Figure 5. In Figure 5(a), the detection result
of algorithm LPAm is given, in which the network is divided
into three communities, while algorithm 2-NILP divides the
network into two communities, which is exactly the real
situation, just as the ground truth shown in Figure 5(b).
Comparing the two figures, we can tell that the most notable
difference lies in whether the node set {5, 6,7, 11,17} is seen
as a separate community or not. As can be seen from the
graph, the structure of the subgraph composed of the nodes
{5,6,7,11, 17} is relatively stable, and {5,6, 7,11} are closely
connected with node 1, so the node set {5, 6, 7, 11, 17} should
belong to the community which node 1 belongs to. Algorithm
LPAm adopts local modularity optimization principle but
does not find the optimal division of communities, while
our 2-NILP algorithm discovers the network structure by
calculating the local neighborhood impacts and analyzing
density of local areas. Although the optimal partition does
not necessarily have the largest network module values, it is
more effective in detecting the intrinsic community structure
of networks. The NMI values that we obtained from the
experiments of the four different kinds of label propagation
algorithms, namely, LPA, LPAm, LHLC, and 2-NILP, on
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TABLE 2: The accuracy comparison of various label propagation algorithms in networks with ground truth of community structure.

Real networks LPA LPAm LHLC 2-NILP
Zachary’s Karate 9.6E — 05 0.825518 0.422542 1
NCAA College-Football 0.485261 0.828798 0.404785 0.877295
Books about US Politics 0.0310231 0.17699 0.31861 0.452619

TaBLE 3: The accuracy comparison of various label propagation algorithms in networks with ground truth of community structure.

Community [1] Community [2] Community [8] Community [188] Community [346]

Philip S. Yu Jiawei Han Hector Garcia-Molina Tom M. Mitchell Douglas W. Oard
Haixun Wang Xifeng Yan Jennifer Widom Reid G. Smith Anton Leuski
Charu C. Aggarwal Dong Xin Jeffrey D. Ullman Louis I. Steinberg G. Craig Murray
Wei Fan Deng Cai Yannis Papakonstantinou Mark A. Jones J. Scott Olsson
Kun-Lung Wu Hong Cheng Rajeev Motwani Van E. Kelly Jiangiang Wang
Zhongfei (Mark) Zhang Xiaofei He Inderpal Singh Mumick Sen Slattery David S. Doermann
Xiaolei Li Vagelis Hristidis Gilles M. E. Lafue Kareem Darwish

Bugra Gedik

FIGURE 5: The comparison of results detected by algorithms LPAm and 2-NILP in Zachary’s Karate networks.

network Zachary’s Karate and Football are listed in Table 2.
As can be seen from Table 2, our algorithm 2-NILP achieved
the best results in terms of accuracy, and this is also almost
true for LPAm which has decent accuracy. However, earlier
proposed label propagation algorithms LPA and LHLC have
lower accuracy due to their update processes not being well
controlled.

In the following, we will analyze the result of our NILP
algorithm on a real DBLP coauthorship network. Since the
network DBLP does not provide a standard result which
can be used to compare, we assess the correctness of the
obtained communities by referring to the data source of the
network. The proposed method detected 3,466 communities
of different sizes in this network. Table 3 lists the five real
communities detected. Due to the limitation of space of our
paper, only seven members are listed for each community.

As can be seen from Table 3, the Community [1] and
Community [2] are experts and scholars in the field of
data mining in which Philip S. Yu and Jiawei Han are
regarded as their leading figures, respectively. Community [8]
is composed of the experts and scholars in database who are
from InfoLab laboratory at Stanford University. Community
[188] comprises experts and scholars from CMU in the field
of machine learning and Community [346] is constituted
by experts and scholars in the field of information retrieval.
It can be observed that scientists from one community,
detected by our algorithm, are often in the same realm
of research, which accounts for their frequent academic
collaboration. In the same field, usually there are multiple
communities which are formed from different work teams.
In a team, often there is a common or similar research
direction and long-term cooperation, while different work
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FIGURE 6: The NMI values varying with the mixing coeflicient achieved by four label propagation algorithms on the synthetic networks.

teams will rarely have chance to collaborate. Consequently,
the community detection result obtained from DBLP via the
proposed algorithm is sound and accurate.

4.4. Evaluation on Synthetic Networks. We also evaluate the
performance of our algorithm on synthetic networks. Fig-
ure 6 illustrates the comparison of accuracy for community
detection of four label propagation based algorithms LPA,
LPAm, LHLC, and 2-NILP. The mixing coefficients of the
1000-node synthetic networks in Figure 6(a) and 10000-
node networks in Figure 6(b) both range from 0.1 to 0.8.
It can be observed that the accuracy of LHLC is relatively
low compared with the other three algorithms. Algorithms
LPA, LPAm, and NILP have higher values of NMI. When
the number of nodes is 1000, as shown in Figure 6(a),
the accuracy of 2-NILP is obviously better than that of
the algorithm LPA. When mixing coeflicient is less than
0.55, 2-NILP has equal accuracy with the algorithm LPAm,
while when mixing coefficient is greater than 0.55, 2-NILP is
significantly better than LPAm. When the number of nodes is
10000, as shown in Figure 6(b), the accuracy of our algorithm
2-NILP is superior to the other three algorithms.

4.5. Running Time Comparison. In order to compare the effi-
ciency of the four algorithms above, we continue to conduct
experiments on the synthetic networks, and the experimental
results are shown in Figure 7. In this experiment, we selected
the network whose mixing coeflicient is 0.3 and the number
of nodes is 1000, 5000, 10000, 25000, 50000, 100000, 250000,
and 500000. As can be seen from Figure 7, in the same
circumstances, running time of our algorithm NILP should
be less than that of other three algorithms. This is because
NILP calculates the «-degree neighborhood impact of each
node and updates the labels according to the degree of impact,

0.1 0.5 1.0 2.5 5.0 10.0 25.0 50.0
Size x10

—4— NILP
—— LPA

—=— LPAm
—— LHLC

FIGURE 7: Running time comparison of four label propagation based
algorithms.

and the final label is closely related to its impact; thus NILP
algorithm can make the node labels achieve their stability
more easily. As a result, algorithm NILP needs less time
compared with the other three algorithms. Owning to the
tremendous space cost incurred at runtime, when the number
of nodes exceeds 10000, algorithm LPAm fails to proceed to
its completion in reasonable time.

5. Conclusion

In this paper, a novel label propagation based algorithm,
called NILP, is proposed for community detection in net-
works. Based on the link structure in networks, our method
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introduces measurement of node a-degree neighborhood
impact, which fully considers the impact that nodes have on
their neighbors in order to determine the updating order of
node labels. The proposed method improves the accuracy and
efficiency of community detection and reduces the memory
consumption. The result of our method is prominent in var-
ious kind of networks. It is suitable for community detection
and evolution analysis of dynamic networks, especially with
a large number of online social networks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work was supported in part by the National Sci-
ence Foundation of China Grants 61173093, 61202182, and
71373200, the China Postdoctoral Science Foundation Grant
2012M521776, the Natural Science Basic Research Plan
in Shaanxi Province of China Grants 2013JM8019 and
2014]JQ8359, the Fundamental Research Funds for the Central
Universities of China Grants K5051323001 and BDY10, and
the Shannxi Postdoctoral Science Foundation. Any opinions,
findings, and conclusions expressed here are those of the
authors and do not necessarily reflect the views of the funding
agencies.

References

(1] Z.Zhao,S.Feng, Q. Wang, J. Z. Huang, G. ]. Williams, and J. Fan,
“Topic oriented community detection through social objects
and link analysis in social networks,” Knowledge-Based Systems,
vol. 26, pp. 164-173, 2012.

R. Albert and A.-L. Barabasi, “Statistical mechanics of complex

networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47-97,

2002.

[3] A.-L.Barabdsi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[4] A. Lancichinetti, J. Saramaki, M. Kiveld, and S. Fortunato,
“Characterizing the community structure of complex net-
works,” PLoS ONE, vol. 5, no. 8, Article ID e11976, 2010.

[5] M. E. Newman, “The structure and function of complex
networks,” STAM Review, vol. 45, no. 2, pp. 167-256, 2003.

[6] R. T. Ng and J. Han, “Clarans: a method for clustering objects
for spatial data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 14, no. 5, pp. 1003-1016, 2002.

[7] M. Girvan and M. E. Newman, “Community structure in social

and biological networks,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 99, no. 12, pp.

7821-7826, 2002.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means

clustering algorithm,” Journal of the Royal Statistical Society.

Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise;” in Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining (KDD ’96), pp. 226-231,
1996.

S

[8

[10] P. Pons and M. Latapy, “Computing communities in large
networks using random walks,” in Computer and Information
Sciences—ISCIS 2005, vol. 3733 of Lecture Notes in Computer
Science, pp. 284-293, 2005.

[11] M. E. J. Newman, “Detecting community structure in net-
works,” The European Physical Journal B: Condensed Matter and
Complex Systems, vol. 38, no. 2, pp. 321-330, 2004.

[12] J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger, “Towards
online multiresolution community detection in large-scale
networks,” PLoS ONE, vol. 6, no. 8, Article ID €23829, 2011.

[13] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks,” Physical Review E, vol. 76, no. 3, Article ID 036106,
2007.

[14] M. ]. Barber and J. W. Clark, “Detecting network communities
by propagating labels under constraints,” Physical Review E, vol.
80, Article ID 026129, 2009.

[15] X. Liu and T. Murata, “Advanced modularity-specialized label
propagation algorithm for detecting communities in networks,”
Physica A: Statistical Mechanics and Its Applications, vol. 389, no.
7, pp- 1493-1500, 2010.

[16] 1. X. Y. Leung, P. Hui, P. Lio, and J. Crowcroft, “Towards real-
time community detection in large networks,” Physical Review
E, vol. 79, Article ID 066107, 2009.

[17] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,” Physical
Review E, vol. 78, no. 4, Article ID 046110, 2008.



Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics




